
Collaborative, distributed simulations of agri-food
supply chains. Analysis on how linking theory and

practice by using multi-agent structures

Alejandro Fernandez1 , Jorge E. Hernandez Hormazabal 2,3, Shaofeng Liu4, Hervé
Panetto5, Matías Nahuel Pankow1 and Esteban Sanchez1,

1 LIFIA, CIC/Faculty of Informatics, National University of La Plata; Argentina

2 Management School, The University of Liverpool, UK
3 Universidad de La Frontera, Temuco, Chile

4 Plymouth Business School, Plymouth University, UK
5 CRAN Université de Lorraine, CNRS, France

{Alejandro.Fernandez}@lifia.info.unlp.edu.ar

Abstract. Simulations help to understand and predict the behaviour of complex
phenomena’s, likewise distributed socio-technical systems or how stakeholders
interacts in complex domains. Such domains are normally based on networked
based interaction, where information, product and decision flows comes in to
play, especially under the well-known supply chains structures. Although tools
exist to simulate supply chains, they do not adequately support multiple
stakeholders to collaboratively create and explore a variety of decision-making
scenarios. Hence, in order to provide a preliminary understanding on how these
interaction affects stakeholders decision-making, this research presents an study,
analysis and proposal development of robust platform to collaboratively build
and simulate communication among supply chain. Since realistic supply chain
behaviours are complex, a multi-agent approach was selected in order to
represent such complexities in a standardised manner. The platform provides
agent behaviours for common agent patterns. It provides extension hotspots to
implement more specific agent behaviour for expert users (that requires
programming). Therefore, as key contribution, technical aspects of the platform
are presented, and also the role of multi-level supply chain scenario simulation is
discussed and analysed, especially under de context of digital supply chain
transformation in the agri-food context. Finally, we discuss lessons learned from
early tests with the reference implementation of the platform.

Keywords: digital transformation, supply chain, simulations

1 Introduction

In the last two decades, companies of all sizes have realized the importance of
collaboration with suppliers and customers [1]. Supply chain collaboration can be
defined as “long-term relationships where participants generally cooperate, share
information, and work together to plan and even modify their business practices to

2 <Authors>

improve joint performance” [2]. Despite the existence of abundant literature (as a recent
literature review on supply chain collaboration [3] shows) organizations still have
problems understanding how collaboration can impact their performance, and they are
consequently reluctant to explore it.

ANONYMOUS is multidisciplinary, collaborative project whose goal is help agri-
food value chains deal with risk and uncertainty. Researchers that participate in the
project understand the importance of value chain collaboration. They regularly meet
with different actors of the value chain, in an attempt to understand to what extent
collaboration takes place, and to foster collaboration. In doing so, they must cross
multiple knowledge boundaries. There are knowledge boundaries among organizations
in the value chain, and there are knowledge boundaries among researchers and
practitioners. Researchers understand they need to act as boundary spanners [4]
(helping cross knowledge boundaries) and for that they need support.

Simulations have long been used as a means to understand and predict complex
phenomena. The complexity can be understood as the variety of nodes and alternatives
that exist in order to reach a solution, but, and more importantly, how protocols,
hardware and software platforms are able to interact in order to provide the right
recommendation, in the right time with the right quality. Thus, these kind of complex
interactions are mostly found in supply chain domains, where resources, information,
products and decision flows are required to commit to the end-customer requirement.
Therefore, by the use of these simulations, what-if analysis are considered to help
stakeholders and to understand the benefits and issues from co-operative environment
rather than playing a pure transaction role with others [5][6]. In the line of this, but
specially to provide a deep understanding and analysis about the relevance of such
collaborations, this research work is committed to propose a platform that simulate
communications and interaction based behaviours amongst supply chain stakeholders,
which are represented by using agents. For this purpose, and based on the current
analysis from [7], the main agri-food challenges and complexities are considered, this
within the purpose of driving the supply chain agent-based structure. These aspects are:
(a) complexity of interactions across agricultural value chain; (b) understands decision-
makers challenge to build the solution; (c) Quantification of factors to generate desired
solution; and (d) understand the whole-of-chain practical problem, especially when
social, environmental and technological are the key drivers. Hence, this platform, which
also consider the work from [6] as starting point, is oriented ease the creation,
deployment, exercising and analysis of distributed supply chains within an agri-food
view. This is achieved via the simplicity, standardization, scalability, collaboration of
its main components. We argue that it offers adequate to support the task of boundary
spanners looking to disseminate the benefits of collaboration in value chains.

2 Approach Overview

Multiple platforms exist to create multi-agent systems. In the context of agri-food,
as [8] analysed, agent based model has been dominated by the following characteristics:
single echelon supply chains; cases in high and middle income countries; unprocessed
food products; use of empirical data; decisions related to production planning and

<Paper title> 3

investment; and the use of black box validation. Moreover, from technical point view
validation, JADE [9], for example, is a well-known framework and supporting tools
that aims at supporting the creation of multi-agent, peer-to-peer systems. It is domain
independent, which is JADE, makes no assumptions regarding the behaviour of agents
and the rules for the interaction. This makes JADE powerful, and consequently
complex. A supply chain is a particular case of multi-agent system. Conversations
follow certain specific conversation patterns (e.g., call for proposal, proposal, accept
proposal). Existing agent platforms are rich and powerful but consequently difficult to
use. Ad-hoc simulation tools are simpler to use, but limited to the features provided by
its creators. We aim at something midway from both extremes. Instead of providing
simulation authors with a full-fledge agent systems such as JADE, we have chosen to
hide those fixed patterns behind an object-oriented framework. The framework captures
common aspects of all supply-chain-simulations and implements then in a robust
design. The platform, that we named Sim-a-chain currently focuses on demand-offer
negotiations, similar to what occurs in agri-food domains.

Thus, The Foundation for Intelligent Physical Agents (FIPA) proposed a series of
standards for the definition of agent systems, namely FIPA's Contract Net Interaction
Protocol Specification and ACL Message Structure Specification 1. The standards cover
aspects such as inter-agent communication, agent management across and within agent
platforms, and the transport and representation of messages between agents. Sim-a-
chains adopts FIPA's proposals for message transport and representation of messages.
For the content of a message (e.g., an offer), we looked at a newer development in the
web; the Schema.org vocabularies [10] . These vocabularies have become a standard to
represent certain types of objects in the web, in particular products, offers, and demands
(which are the key elements in a supply chain conversation).

Existing agent platforms, and agent simulations platforms, requires users to deploy
an agent execution engine to a server. Preparing and maintaining these servers
(operating systems, security, updates, etc.) is only worth if simulations will be created
and run frequently. A way to reduce the effort of server maintenance is virtualization.
Sadly, traditional server virtualization does not help get rid of the cost of idle servers
(when no simulation run, the server is still running). Moreover, when simulations grow
in number of agents and computation needs, servers need to be provisioned. Recent
developments in serverless [11] computing reduce the effort and cost of server
maintenance, automate scalability, and remove the need to pay for idle time. Sim-a-
chain has been built as serverless.

3 Sim-a-chain's abstract model

The core-modelling concept in Sim-a-chain is the Supply Chain Agent environment.
Agents have a unique identifier, a short descriptive name, a list of products they can
offer, an internal memory, and a behaviour. Agents have a messaging inbox. An agent's

1FIPA specifications - http://www.fipa.org/specs/ - Last accessed on June 2019.

4 <Authors>

behaviour depends on its type (e.g., a raw materials producer, a factory, a storage
facility, a distributor, etc.). In this model, an agent's behaviour is determined by the
way the agent reacts to messages from other agents.

Agent are normally dormant (idle). When an agent receives a message, it wakes up
and reacts by activating the part of its behaviour that corresponds to the message type
(e.g., a Call for Proposals). It accesses its internal memory, which holds information
about available stock, or a list of suppliers. If necessary, the agent can send messages
to other agents, including the sender of the message that activated it in the first place.
After this, the agent goes back to idle state.

Messages in this model reflect what was proposed by FIPA's Contract Net
Interaction Protocol Specification. From the protocol specification, we take only the
proposal negotiation part, and leave out the contract fulfilment part.

A conversation among two agents starts when an initiator agent sends a cfp (call for
proposal) message to another agent (the participant). In response to a cfp, the
participant can send a propose message (if it can satisfy the call), or a refuse message
to the initiator. When the initiator receives a propose message, it can accept the
proposal, and consequently send an accept-proposal message to the participant. A
proposal can also be rejected by sending a reject-proposal message to the
participant. Upon receiving a reject-proposal message, the participant can try with a
new proposal, or desist. A conversation among two agents reaches a (local) finish state
when a cfp message is refused, when a propose message is accepted, or when a
propose message is rejected and the sender of the proposal desists. In response to a
cfp, an agent can in turn send cfp messages to its suppliers thus involving these agents
into the conversation. A conversation reaches a (global) finish state when it reaches
local finish state for all pairs of two agents involved in it.

When the first cfp of a conversation is created, a unique, global conversation-id
is generated. This id will identify all messages that derive from the first call. In order
to pair responses to requests, messages include a replay-with and in-reply-to
attributes.

Agents live in "nodes". A node is a computing infrastructure that offers storage,
computing, and communication facilities to agents. Within nodes, agents can be
organized in collections. Nodes and collections are not to be confused with Supply
Chains. A Supply Chain in this model is an abstraction that emerges from the
dependencies and interactions among agents. Upstream connections in a chain are the
result of agents knowing other agents as their suppliers. Downstream connections are
the result of agents receiving call for proposal messages from other agents. Chains,
therefore, span collections and even nodes. In this model, supply chains are not
explicitly modelled. They are the result of the creations of multiple, potentially
distributed, agent authors.

4 Reference implementation

We have implemented platform model version on the basis of modern digital web
standards. At the centre of our approach lies an extensible object-oriented framework
that simplifies development of new agent types and simulation models, and fosters

<Paper title> 5

extensibility. Nodes, the execution environment for agents, are implemented as
serverless functions with minimal deployment requirements. Communication among
agents is implemented via REST requests. Messaging protocol follows the FIPA
standard, and message content adopts semantic web principles in the form of the
Schema.org vocabulary. Collaboration among simulation authors occurs when agents
in nodes under the control of different institutions / persons talk to each other. Usable
editor tools lower the barrier for non-expert simulation editors. Following, we discuss
each of these claims in more detail.

4.1 Serveless architecture

Serverless is a new systems architecture approach that removes the requirement of
provisioning and maintenances of servers. Applications are implemented as a series of
functions that can be activated by a variety of events such as HTTP requests, or database
triggers. Serverless platform providers, such as Amazon, Google and Microsoft, take
care of provisioning the resources necessary for functions to execute. Platform users
are only charged for the resources used by functions (and only when they execute). In
our case, this means no servers to provision and administer; no maintenance cost when
no simulation is running; automated scaling of resources in response to simulation
needs; and high availability and fault tolerance.

For the reference implementation of the Nodes element of the proposed platform we
have selected AWS Lambda (Amazon Web Services implementation of serverless
functions), and AWS DynamoDB for persistence. It can be ported with minimal effort
to other platforms.

Communication among agents is implemented via HTTP REST requests.
Communications is asynchronous. This means that a response to a message (e.g., a
propose that responds to a cfp) will take place as an independent and asynchronous
REST request.

The FIPA standard for the structure of ACL messages proposes various alternatives
for the content of messages. Three attributes of a message describe its content:
language, encoding, and ontology. In the case of framework messages are encoded
following the mime-type “application/json”. As for the ontology, we have decided to
use a selection of elements from the Schema.org vocabulary. In particular, we use the
class http://schema.org/Demand and its properties for the content of cfp messages, and

6 <Authors>

the class http://schema.org/Offer and its properties for the content of propose
messages.

4.2 Object Oriented, Supply Chain Simulations Framework

An object-oriented framework [12] captures key knowledge of a domain, offering a
well-tested, robust implementation for a family of applications in the domain. It hides
the complexity of the implementation of the common parts of all applications in the
family (frozen-spots), while providing extension points (hot-spots) for applications
developers to introduce variability. An object-oriented framework for supply chain
simulations materializes the abstract model presented in previous sections. Fig. 1
provides an overview of the architecture of the framework and supporting tools.

The sequence diagram in Fig. 2 depicts how incoming messages are handled by the
framework. The diagram shows the particular case of a call for proposal (cfp) message.
The messageReceived() serverless function is activated by a REST request to a URL
that represents the messaging inbox of an agent in a node. The framework retrieves the
agent from the persistent storage, and delegates to it the processing of the Call for
Proposals message. A hierarchy of classes model all possible types of messages
(following the FIPA ontology as discussed in the previous section). Message classes
offer utility methods to create message templates from them (thus reducing the room
for configuration errors). In this case, a propose message template is created from the
cfp message. The fields conversationId, inReplyTo, sender and receiver are set
accordingly to match those of the original message. The content of the propose
message depends on the specific behavior of the agent class and its internal state. The
Agent class is an extension point (a hotspot) which means that simulation authors with
programming skills can define subclasses that implement specific behavior for
processing messages. Once the agent finished processing the message, any queued
messages are delivered, the agent (its conversations included) is saved, and the
messageReceived() function deactivates until a new message arrives.

Fig. 1. Overall architecture implemented in the framework. Authoring tools connect to
simulation nodes to create and interact with simulations. All communication occurs via REST
protocols.

<Paper title> 7

Fig. 2. Sequence diagram for the handling of incoming messages. In this case, a Call for Proposal
message. This interaction constitutes one of the frozen-spots of the framework (adapted from
[6]).

Fig. 3. UML class diagram showing the Agent class hotspot. Subclasses of the abstract agent
class implement variability in agent behaviour. The message class with the possible values for
its “performative” attribute constitute a frozen-spot (non-variable aspect) of the framework.

The (abstract) Agent class and its subclasses implement the most important hotspot
offered by the framework. Each possible activation event of an agent (i.e., the reception
of a different type of message) is implemented as a hook method that subclasses can
override. The UML class diagram in Fig. 3 shows three example subclasses of agent,
implementing specific behavior. The UnlimitedProducer agent class, for example, will
answer to a cfp (call for proposals) with a propose if the product of the call matches
one of those offered by the agent, regardless of the quantity requested (thus the

8 <Authors>

“Unlimited” name) of the call. The userStore property of a UnlimitedProducer agent
stores pricing information for each product.

The framework hides the complexity of inter-agent communication from simulation
authors. It provides out of the box agent behaviour for common agent patterns. It
provides extension hot-pots to implement more specific agent behaviour for expert
users (that requires programming).

4 Preliminary evaluation

In order to obtain a preliminary evaluation of the applicability of the approach we
conducted two pilots. Asking a software developer to create new agent types using the
framework, and presenting the platform to an expert on value chains (with experience
in simulations) to obtain feedback.

The framework developer: A skilled software developer was tasked to use the
framework to build new agents. He first received training in the hotspots and frozen
spots of the framework. Then, a description of the desired agent behaviour was
provided. He used one of the scripts provided with the framework to generate a stub
agent class (JavaScript). Then, he modified the generated until de desired agent
behaviour was obtained. For this, he had to iterate multiple time in a cycle: program -
build simulation - run simulation - program. The following paragraphs summarize the
findings. He concluded that the tool in fact allows the agent developer to abstract from
agent life-cycle management, packaging of messages, and agent persistency. However,
he noticed that with the current capabilities, the program-model-run-program cycle was
too time demanding. There is currently no provision for isolated agent testing (alike
Unit Testing). Moreover, bugs in agent code were hard to track as error reports
intertwined framework and agent code.

The value-chain simulation expert: The platform (from the perspective of the
simulation authoring tools) was presented to an expert on value chains. He had, in the
past, built agent simulations using JADE. His opinion was that the general idea (as
explained to him), and the reference implementation adequately captured the needs he
had to create simulations of value chains. He was able to propose new agent behaviours
that matched the capabilities and philosophy of the framework. In particular, he
highlighted the improvement that this approach offered (as opposed to JADE) in terms
of distribution of agents and collaboration among agent authors. He criticized the
inability of the tools to graphically visualize (animate) message exchange in real time.
He stressed the importance of making it possible to define agent behaviour as calls to
external systems. This made sense, as many experts in value chain simulation
frequently have programming skills, but not in JavaScript (or have already programmed
an agent's behaviour that they may want in to integrate in a simulation) .

<Paper title> 9

5 Conclusions and future work

Simulations are a valuable tool to understand and explore value chains. As already
exposed by [6], supply chain complexities are certainly a source of limitations for
collaboration. In the agri-food world, stakeholders are getting involved in not only one
supply chain, but also in several. This necessarily implies multiple relationships, which
turns even more complex the management of decision-making process. Hence, a high
volume of experiments and scenarios are required to understand and mitigate agri-food
complexities. In this context, using general-purpose agent platforms to create value
chain simulations involves programming boilerplate code that does not add value to the
simulation (e.g., checking the validity of messages, packaging message content,
delivering, etc.). For that, a dedicated framework and supporting tools is a valuable
contribution. Thus, Sim-a-chain, as an abstract model and a reference implementation
has made visible the fact that a key area for future development is support to speed up
the agent development cycle, supporting other programming languages and integration
with existing systems. As further research, real-based evaluation will be performed to
test and evaluate the usability and applicability of the simulation authoring tools to
support value-chains decision-making for several types of food products.

Acknowledgement

This research is supported by Ruc-Aps, a H2020 RISE-2015 project, aiming at
Enhancing and implementing Knowledge based ICT solutions within high Risk and
Uncertain Conditions for Agriculture Production Systems.

References

1. Hieber, R.: Supply Chain Management. A Collaborative Performance
Measurement Approach. vdf Hochschulverlag AG, Zurich (2002).

2. Whipple, J.M., Lynch, D.F., Nyaga, G.N.: A buyer’s perspective on
collaborative versus transactional relationships. Ind. Mark. Manag. (2010).
https://doi.org/10.1016/j.indmarman.2008.11.008.

3. M. Ralston, P., Richey, R.G., J. Grawe, S.: The past and future of supply chain
collaboration: a literature synthesis and call for research. Int. J. Logist. Manag.
28, 508–530 (2017). https://doi.org/10.1108/IJLM-09-2015-0175.

4. Keszey, T.: Boundary spanners’ knowledge sharing for innovation success in
turbulent times. J. Knowl. Manag. 22, 1061–1081 (2018).
https://doi.org/10.1108/JKM-01-2017-0033.

5. Hernández, J.E., Lyons, A.C., Mula, J., Poler, R., Ismail, H.: Supporting the
collaborative decision-making process in an automotive supply chain with a
multi-agent system. Prod. Plan. Control. (2014).
https://doi.org/10.1080/09537287.2013.798086.

10 <Authors>

6. Hernández, J.E., Lyons, A.C., Poler, R., Mula, J., Goncalves, R.: A reference
architecture for the collaborative planning modelling process in multi-tier
supply chain networks: A Zachman-based approach. Prod. Plan. Control.
(2014). https://doi.org/10.1080/09537287.2013.808842.

7. Higgins, A.J., Miller, C.J., Archer, A.A., Ton, T., Fletcher, C.S., McAllister,
R.R.J.: Challenges of operations research practice in agricultural value chains.
J. Oper. Res. Soc. (2010). https://doi.org/10.1057/jors.2009.57.

8. Utomo, D.S., Onggo, B.S., Eldridge, S.: Applications of agent-based modelling
and simulation in the agri-food supply chains, (2018).
https://doi.org/10.1016/j.ejor.2017.10.041.

9. Moraitis, P., Spanoudakis, N.: The Gaia2JADE process for multi-agent systems
development. Appl. Artif. Intell. (2006).
https://doi.org/10.1080/08839510500484249.

10. Guha, R. V., Brickley, D., Macbeth, S.: Schema.org. Commun. ACM. 59, 44–
51 (2016). https://doi.org/10.1145/2844544.

11. Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-
Dusseau, A.C., Arpaci-Dusseau, R.H.: Serverless Computation with
OpenLambda. In: 8th {USENIX} Workshop on Hot Topics in Cloud
Computing (HotCloud 16). {USENIX} Association, Denver, CO (2016).

12. Fayad, M., Schmidt, D.C.: Object-oriented application frameworks, (1997).
https://doi.org/10.1145/262793.262798.

