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Abstract 11 
Mathematical programming models are invaluable tools at decision making, assisting managers to uncover otherwise 12 
unattainable means to optimize their processes. However, the value they provide is only as good as their capacity to 13 
capture the process domain. This information can only be obtained from stakeholders, i.e., clients or users, who can 14 
hardly communicate the requirements clearly and completely. Besides, existing conceptual models of mathematical 15 
programming models are not standardized, nor is the process of deriving the mathematical programming model from 16 
the concept model, which remains ad hoc. In this paper, we propose an agile methodology to construct mathematical 17 
programming models based on two techniques from requirements engineering that have been proven effective at 18 
requirements elicitation: the language extended lexicon (LEL) and scenarios. Using the pair of LEL + scenarios allows 19 
to create a conceptual model that is clear and complete enough to derive a mathematical programming model that 20 
effectively captures the business domain. We also define an ontology to describe the pair LEL + scenarios, which has 21 
been implemented with a semantic mediawiki and allows the collaborative construction of the conceptual model and 22 
the semi-automatic derivation of mathematical programming model elements. The process is applied and validated in 23 
a known fresh tomato packing optimization problem. This proposal can be of high relevance for the development and 24 
implementation of mathematical programming models for optimizing agriculture and supply chain management 25 
related processes in order to fill the current gap between mathematical programming models in the theory and the 26 
practice.  27 
 28 
Keywords: Language extended lexicon (LEL); scenarios; software engineering; mathematical programming; fresh 29 
tomato packing. 30 
 31 
1. Introduction  32 

There is an increasing interest in mathematical programming models for optimal decision support 33 

applications (Dominguez-Ballesteros et al., 2002). Indeed, the development of optimization and 34 

decision support tools is needed to obtain all the benefits of transactional information technology 35 

(IT), improving the economic performance and customer satisfaction of supply chains 36 

(Grossmann, 2005). Along these lines, mathematical programming models have been 37 

demonstrated to be powerful optimization tools to support decision makers in many supply chain 38 

processes such as: production planning (Alemany et al., 2013), order promising (Alemany et al., 39 

2018; Grillo et al., 2017), shortage planning (Esteso et al., 2018), supply chain production and 40 

transport planning (Mula et al., 2010), among others. The agriculture sector also faces many 41 
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complex problems for optimization (Saranya & Amudha, 2017) as it has been reported in some 42 

recent works (Cid-Garcia & Ibarra-Rojas, 2019; Grillo et al., 2017; Liu et al., 2019). Some 43 

revisions about mathematical programming models applied to different problems in agriculture 44 

can be found for supply chain design (Esteso, Alemany, & Ortiz, 2018), fresh fuit supply chain 45 

management (Soto-Silva et al., 2016), agribusiness supply chain risk management (Behzadi et al., 46 

2018) and crop planning (Jain et al., 2018), among others. 47 

Once formulated, mathematical programming models are often implemented as part of a decision 48 

support system (DSS), which is thus called model-driven DSS. We refer readers to the work of 49 

Udias et al. (2018) regarding an example of recent agricultural model-based DSS. These types of 50 

DSSs allow the user to make what-if analysis and define different scenarios without the need to 51 

understand the complexities of mathematical programming models (Mundi et al., 2013). Mir et al. 52 

(2015) provide an extensive revision of DSS application in agriculture noting their main 53 

weaknesses, most of them related to the poor involvement of stakeholders in the DSS construction 54 

process, which our methodology aims to overcome: failure to support stakeholder participation 55 

before and after development stages, failure to support the relationship between stakeholders and 56 

experts/developers, low adaptation, complexity with user inputs and under-definition of end users. 57 

Moreover, the construction of mathematical programming models is a complex and very time-58 

consuming process, which requires an expert to acquire a deep understanding of the modelling 59 

domain, context of use, decision making activity, and to learn the complete set of constraints from 60 

the problem under study. All this problem knowledge should be acquired before the model is 61 

constructed, because any change that occurs afterwards might imply a whole redesign and 62 

implementation of the model. For this reason, mathematical programming model construction 63 

should be preceded by a conceptual modelling activity whose natural use in the field of applied 64 

mathematics has been pointed out by Lesh (1981) and Lesh et al. (1983).  65 
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During conceptual modelling, different tools are used, like Bizagi, BPWin, iGrafx, Process 66 

Modeler,  System Architect and Visio, to help understand the domain, the flow of data, products, 67 

decisions and the interaction among parties, and to elicit requirements as completely as necessary 68 

(Armengol et al., 2015; Giannoccaro & Pontrandolfo, 2001; Hernández et al., 2008; Mula et al., 69 

2006; Pérez Perales et al., 2012). However, there has been no consensus or standardization in this 70 

regard.  71 

The process of creating a conceptual model may be closely compared with the process of 72 

requirements elicitation for any software system. In particular, we claim that a very important 73 

aspect of conceptual models is that they should allow their iterative, incremental and collaborative 74 

construction. Indeed, agile methods in requirements engineering have demonstrated the 75 

importance of managing the inherent complexity of a system specification in an incremental and 76 

iterative manner (Schön et al., 2017). A relevant technique to elicit requirements and get a clear 77 

and complete understanding of a domain is the use of scenarios (Leite et al., 2000). The description 78 

of scenarios ranges from visual (storyboards) to narrative (structured text) (Young, 2004). They 79 

are constructed iteratively on the basis of a universe of discourse (UofD), i.e., a domain’s 80 

vocabulary or lexicon. Leite and Franco (1993) named it the language extended lexicon (LEL). It 81 

is a meta-language used to gather or elicit requirements, which aims at describing the meaning of 82 

words and phrases specific to a given application domain. It has three convenient characteristics 83 

in the context of analytical modelling: easy to learn (Cysneiros & Leite, 2001), easy to use (Gil et 84 

al., 2000) and good expressiveness (Kaplan et al., 2000). Moreover, there exist specific rules to 85 

derive LEL elements into scenario elements, and scenarios retrofit LEL’s vocabulary in a very 86 

incremental and iterative construction process (Leite et al., 2000). Here, we claim that the above 87 

quality characteristics and the construction process of the pair LEL + scenarios make them an 88 

adequate conceptual model from where mathematical programming models could be 89 

systematically derived.  90 
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In this article, we propose a novel methodology to guide the derivation of mathematical 91 

programming model elements from a conceptual model created with LEL + scenarios. Our 92 

derivation proposal consists of several rules that map conceptual model elements (either LEL 93 

vocabulary items or scenario elements previously derived from LEL) into mathematical 94 

programming model elements. The added benefit of this methodology is that it provides 95 

traceability from vocabulary and requirements specification to each mathematical programming 96 

model element. This traceability becomes very important when a change is necessary in the 97 

conceptual model, to know the particular place in the mathematical programming model 98 

specification where the change will have an impact.  99 

In order to give further support to the derivation process, we relate conceptual model creation to a 100 

knowledge building process of collective creation between stakeholders and analysts. This process 101 

emphasizes the production and continuous improvement of knowledge parts (Moskaliuk et al., 102 

2009), and it is usually supported with a web-based knowledge building community like a 103 

mediawiki (Baraniuk et al., 2004). Thus, we have constructed a semantic mediawiki based on an 104 

ontology for the collaborative creation of the conceptual model based on LEL and scenarios. 105 

Moreover, the semantic mediawiki is used to semi-automatically derive mathematical 106 

programming models.  107 

Thus, the paper proposes a novel methodology that connects the areas of requirements engineering 108 

and agile methods with conceptual modelling in order to create mathematical programming 109 

models that capture the agriculture research domain more effectively and completely. 110 

Summarizing, the main contributions of this paper are:  (i) a proposal for utilizing the pair LEL + 111 

scenarios to create conceptual models that gather the vocabulary of decision makers and specify 112 

the domain knowledge necessary to build a mathematical programming model; (ii) a rule-based 113 

methodology for the systematic derivation of mathematical programming models from the 114 

conceptual model generated by LEL + scenarios; (iii) a knowledge model designed over an 115 
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ontology based on the description of LEL + scenarios; and (iv) an extensible tool consisting of a 116 

semantic mediawiki that allows to partially automate the mathematical modelling derivation. To 117 

the best of our knowledge, the methodology proposed in this article is the first approach to 118 

standardize the development of a conceptual model and its consequent translation to a 119 

mathematical programming model, and no other requirement elicitation method in the field of 120 

software engineering has been adapted for the derivation of mathematical programming models. 121 

Moreover, the derivation process provides traceability from requirements to mathematical 122 

programming model elements to deal with changes more effectively.  123 

The rest of the paper is organized as follows. Section 2 provides a literature review on 124 

mathematical programming models, conceptual models, requirements elicitation, LEL and 125 

scenarios and knowledge building. Section 3 describes our methodology for the systematic 126 

derivation of mathematical programming model elements from the conceptual model generated 127 

by LEL+ scenarios. Section 4 applies the method to derive a linear mathematical programming 128 

model for fresh tomato packing. Section 5 defines an ontology for LEL + scenarios on which we 129 

based the construction of a semantic mediawiki for the semi-automatic derivation of the 130 

mathematical programming model. Section 6 provides conclusions and future research directions. 131 

2. Literature review  132 

2.1 Mathematical programming models 133 

Mathematical programming involves finding the values of some variables that, subject to certain 134 

constraints, maximize or minimize an objective function. We assume that deterministic 135 

mathematical programming models have a generic structure: a definition part and a modelling part 136 

(Pérez et al., 2010; Shapiro, 1993). Table 1 provides a description of mathematical programming 137 

model parts. 138 

2.2 Conceptual mathematical modelling  139 
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Siau (2004) defines conceptual modeling as the process of formally documenting a problem 140 

domain to achieve understanding and communication between the different participants. 141 

Developing conceptual models means specifying the essential objects, or components, of the 142 

system to be studied, and the relationships or types of exchanges between the objects that affect 143 

the functioning of the system (Lezoche et al., 2012). From the abstraction of conceptual models 144 

emerges the concept of reference models, which are generic conceptual models that formalize 145 

recommended practices for a given domain (Pesic & van der Aalst, 2005).  146 

Table 1. Mathematical programming model parts. 147 
MATHEMATICAL 
PROGRAMMING 
MODEL PART 

ELEMENT DESCRIPTION EXAMPLES 

Definition part Indexes Objects or concepts of the model. The number of 
elements of a class of objects provides the number 
of instances of this class  

Machines (m) 
Products (i) 
 

Sets Group of instances of one or several indexes that 
meet certain characteristics or constraints 

Group of products that can be 
processed by each machine P(m) 

Parameters Known characteristics of one or several elements 
(indexes) over which is not possible to act 

Capacity of each machine (Capm) 
Production cost for each product on 
each machine (PCim) 

Decision 
variables 

Unknown characteristics of one or several 
elements (indexes) over which it is possible to act 
(decision-maker can determine their value) 

Quantity to be produced of each 
product on each machine every time 
period (Ximt) 

Modelling part 
 

Objective 
function 

Goal/s to be optimized (minimize or maximize) Maximize profits 
Minimize costs 
Minimize time 

Constraints Problem limitations that should be respected for 
every combination of the decision variables 

Availability of resources (e.g. 
machines’ capacity) 
Company policies (e.g. service level) 
Logic or implicit constraints (e.g. 
flow balance, positive quantities) 

Decision-maker Decision-
maker 

Person who makes the decision Planner, manager 

Temporal 
characteristics 

Time-horizon The length of time (with a beginning and end date) 
over which a problem is optimized  

A year, six months, etc. 

Time-period Space of time into which a time-horizon is divided Seconds, minutes, hours, days, 
weeks, months or years 

Replanning 
time period 

Space of time in which the plan is calculated again Seconds, minutes, hours, days, 
weeks, months or years 

 148 

In the field of conceptual mathematical modelling, Schneeweiss (2003a) identifies different 149 

classes of distributed decision making (DDM) problems in supply chain management. The same 150 

author derives the coupling equations for the most usual cases in coordinating the supply chain 151 

(Schneeweiss, 2003b). However, the coupling equations are still of a very general, almost verbal 152 

character. In this context, Alemany et al. (2007) propose a reference mathematical programming 153 
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model for collaborative planning that addresses two of the challenges of DDM: the spatial and 154 

temporal interdependencies. Alemany et al. (2011) developed an application to support the 155 

integrated modelling and execution of the supply chain collaborative planning process made up of 156 

several decisional centers which make decisions based on mathematical programming models. 157 

However, the formulation of the own specific decisional characteristics of each decision center 158 

(micro-decision view) mainly relies on the ability of the mathematical programming modeler. 159 

Moreover, Pérez-Perales et al. (2012) propose a framework to support modelling the decisional 160 

view of collaborative planning through mathematical programming models. 161 

While the above studies are very useful, this article provides further tool-supported guidence and 162 

a precise specification in terms of derivation rules to derive mathematical programming models 163 

from a conceptual model, as opposed to general descriptions or relying in the modeler’s ability. 164 

2.3 Process of mathematical programming model formulation 165 

Since conceptual models are not standardized, neither is the process of deriving the mathematical 166 

programming model from the concept model, which remains ad hoc. In this sense, Raghunathan 167 

(1996) proposed a methodology to design a DSS with its underlying mathematical programming 168 

and data models. The methodology includes six steps: (i) problem domain analysis, (ii) database 169 

design, (iii) modelbase design, (iv) database/modelbase integration design, (v) problem/decision 170 

maker characteristics and (vi) specific DSS design. However, the setting of Raghunathan (1996) 171 

is a classroom, so the problem statement is completely specified from the start. Alternatively, our 172 

proposal is inspired in the current, agile way of system specification, which recognizes that the 173 

construction of any model should be iterative and incremental. Additionally, the use of entity-174 

relationship modelling by Raghunathan (1996) has two implications: a) the problem must be 175 

simple, otherwise the diagram is not even readable; and b) stakeholders may not be able to 176 

understand it. Contrarily, we use a natural language and a semi-structured scenario specification 177 
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for the conceptual model, which is more appealing for a system specification that incorporates 178 

stakeholders in the process.  179 

Furthermore, Dominguez-Ballesteros et al. (2002) define different stages in the process of 180 

deterministic and stochastic linear programming model formulation and implementation: 181 

conceptualisation (data collection and study of the problem), data modelling (categorisation and 182 

abstraction of the data), algebraic form (modeller’s form), translation (matrix generator/modelling 183 

language), machine-readable form (algorithm’s form), solution and solution analysis. However, 184 

the stages can be understood as guidelines for the mathematical programming modeler more than 185 

a derivation procedure. That is, unlike Raghunathan (1996) and to the best of our knowledge, no 186 

methodology or structured modeling language is proposed for the conceptualization stage. 187 

2.4 Requirements elicitation 188 
 189 
Requirements elicitation is the process that analysts follow to ensure a correct understanding of 190 

stakeholders’ needs and the domain specification before a system is designed and implemented 191 

(Leite et al., 2000). In this regard, Geisser and Hildenbrand (2006) state that software requirements 192 

are very complex and a multitude of stakeholders participate in their description (Geisser & 193 

Hildenbrand, 2006). They propose a method called CoREA that covers collaborative requirements 194 

elicitation in a distributed environment as well as quantitative decision support for distributed 195 

requirements prioritization and selection. Our proposed approach also relies on collaborative 196 

knowledge acquisition and description, with the added advantage of using this knowledge base as 197 

a conceptual model from where a mathematical programming model can be derived through the 198 

application of a set of rules.  199 

Closer to our work, Laporti et al. (2009) propose an approach to develop system requirements in 200 

an iterative and collaborative way. Experts in the domain collaborate to build narrative 201 

descriptions of stories. Then, these stories are used as input to describe scenarios, which are in 202 

turn used to define use cases. In this regard, our proposal is similar since it considers the collective 203 
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construction of LEL + scenarios and a mapping between LEL, scenarios and mathematical 204 

programming models. The difference is that the output of the transformation in the work by Laporti 205 

et al. (2009) is still a textual, semi-structured representation (use cases), which does not distance 206 

much of the previous products, whereas in our case the output is a structured mathematical 207 

programming model, so the mapping requires a more complex strategy that includes a precise 208 

representation of the relations among model elements. Our approach uses two existing techniques 209 

for requirements elicitation: the LEL (Leite & Franco, 1993) and scenarios (Leite et al., 2000). 210 

The LEL is a very convenient tool for both stakeholders with no technical skills and analysts, since 211 

it conforms to the mechanism used by the human brain to organize knowledge (Oliveira et al., 212 

2007), which makes it easy to learn while having good expressiveness. The process to build the 213 

LEL is comprised of six steps (Breitman & Leite, 2003; Kaplan et al., 2000), which allow 214 

constructing a list of terms classified in four categories (see Table 2).  215 

Turning into scenarios, they can be used in different stages of software development, from 216 

clarifying business processes and describing requirements to providing the basis of acceptance 217 

tests (Alexander & Maiden, 2004). Leite et al. (2000) propose a template with six elements to 218 

describe scenarios (see Table 2), which are derived from the LEL following a methodology 219 

consisting of five steps: (i) to identify main and secondary actors, i.e., LEL symbols that belong 220 

to the subject type; (ii) to identify scenarios within the behavioral responses of symbols chosen as 221 

actors; (iii) to define the scenario goal based on the notion of the verb symbol in which the scenario 222 

is based; (iv) to identify the scenario resources, searching in the notion of the verb that created the 223 

scenario, for LEL symbols of the object category; and (v) to derive episodes from each behavioral 224 

response of the verb that identified the scenario. 225 

  226 
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Table 2. LEL categories and scenarios elements. 227 
Category Characteristics Notion Behavioral responses 
Subject Active elements which perform 

actions 
Characteristics or condition 
that subject satisfies 

Actions that subject performs 

Object Passive elements on which 
subjects perform actions 

Characteristics or attributes 
that object has 

Actions that are performed on 
object 

Verb Actions that subjects perform 
on objects 

Goal that verb pursues Steps needed to complete the 
action 

State Situations in which subjects 
and objects can be located 

Situation represented Actions that must be performed 
to change into another state 

Attribute Description 
Title Name that describes the scenario  
Goal Conditions and restrictions to be reached after the execution of the scenario 
Context Conditions and restrictions that are satisfied and constitute the starting point of the scenario 

execution. 
Actors  Agents that perform actions during the scenario starting from the context to reach the goal 
Resources Products and elements used by the actors to perform actions 
Episodes Steps executed by the actors using the resources starting at the context to reach the goal 

 228 
2.5 Ontologies and knowledge building 229 
 230 
Ontologies define the common vocabulary in which shared knowledge from a domain of discourse 231 

is represented (Gruber, 1993; 1995). They can be constructed in two ways, domain dependent and 232 

generic. CYC (Lenat, 1995), WordNet (G.A. Miller, 1995) and Sensus (Swartout et al., 1996) are 233 

examples of generic ontologies. A benefit of using a domain ontology is to attain the shared and 234 

agreed definition of a semantic model of domain data and the links between different types of 235 

semantic knowledge, which makes it suitable in formulating data searching strategies for 236 

information retrieval (Munir & Sheraz Anjum, 2018).  237 

Furthermore, a semantic mediawiki defined over an ontology provides a web-based support for a 238 

knowledge building community (Baraniuk et al., 2004). We have used a semantic mediawiki in 239 

this work to allow for the collaborative definition of LEL + scenarios of the problem domain and 240 

for the semi-automatic derivation of the mathematical programming model using the mediawiki’s 241 

query engine.  242 
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3. Methodology for mathematical programming model derivation 243 

3.1. Conceptual model construction and methodology overview 244 

The mathematical programming model derivation process starts from an existing conceptual 245 

model consisting of a complete or close to complete specification of LEL + scenarios of the 246 

system. There are three variations that we propose to the original definition of LEL and scenarios 247 

for the specific goal of generating mathematical programming models. The first is that we do not 248 

use the terms in the “state” category of the LEL, because no mathematical programming model 249 

element is derived from them. The second is that we distinguish attributes inside the notion of 250 

symbols, especially those that become scenario’s actors and resources. That is, an actor is a LEL 251 

subject, and as such it will have a notion with its conceptual definition. We call attributes to the 252 

terms that characterize the actors and appear in their notion, usually after the verb “has”. Similarly, 253 

a resource is a LEL object with a notion that names its attributes. In turn, attributes are also defined 254 

as LEL objects, and this is the reason that attributes are underlined in the notion of the actor or 255 

resource that they characterize, describing a relation between LEL terms. The third variation that 256 

we propose is related to specifying the temporal location inside scenarios’ context element with 257 

more detail, identifying three fields: time horizon, time period and replanning time period. 258 

In order to provide a better understanding of the proposed methodology, Figure 1 depicts its two 259 

main stages (Conceptual model construction and Mathematical programming model construction), 260 

the phases in the construction process for each stage, and two different levels of iteration. There 261 

is one iteration cycle that occurs often in the construction of the conceptual model, where scenarios 262 

may retrofit the LEL, and a second level or global iteration cycle, between the conceptual model 263 

and the mathematical programming model, which should not be as usual. The methodology 264 

provides traceability by way of rules that specify the source of each mathematical programming 265 

model element. Therefore, this methodology is robust enough to actually afford changes in the 266 

mathematical programming model construction.  267 
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The input for the whole process, as Figure 1 shows, is the domain knowledge obtained from 268 

stakeholders and documents. The first phase consists in the LEL specification, which is created by 269 

a system analyst together with the stakeholders and, if possible, the expert in mathematical 270 

modelling, thus creating a multi-disciplinary team. They should identify the sources of knowledge, 271 

define the LEL, verify and validate it. The second phase consists in specifying scenarios using the 272 

knowledge captured in the LEL. If during the description of the scenario, it is noticed that more 273 

knowledge from the domain is needed, the process goes back to phase 1.  274 

When the knowledge captured by the LEL + scenarios appears adequate and complete, the third 275 

phase (Mathematical Programming Model Derivation) begins. This phase uses the knowledge 276 

captured in LEL and scenarios to derive the mathematical model. The mathematical programming 277 

derivation proposal consists of several rules that map conceptual model elements (either LEL 278 

vocabulary items or scenario elements previously derived from LEL) into mathematical 279 

programming model elements. The derivation process may be carried out manually by the 280 

mathematical programming expert, possibly together with the system analyst. In addition, we 281 

provide tool support for a semi-automatic derivation through a semantic mediawiki. Even with a 282 

tool support, manual revision from the mathematical programming expert will be necessary, since 283 

it is not possible to automatically create the equations that model constraints from a textual 284 

description, although we can isolate the sentence that contains a constraint from the conceptual 285 

model. In Fig. 1, the numbering of steps in the mathematical programming model derivation phase 286 

denotes a sequence in which rules should be applied. Moreover, at the end of each of these steps, 287 

the manual intervention of the mathematical programming expert is advised to prevent an overly 288 

complex mathematical programming model (as it could happen with a large number of indexes) 289 

or to spot missing items in the conceptual model. Furthermore, it could also be detected that more 290 

knowledge from the LEL and Scenarios is needed, and it that case, the process goes back to the 291 

conceptual model construction.   292 
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 293 
Fig. 1. Methodology for mathematical programming model derivation. 294 
 295 
3.2. Mathematical programming model derivation  296 
 297 
This section presents the rules that allow deriving a mathematical programming model from a 298 

conceptual model composed of LEL + scenarios. Below we present a detailed description of each 299 

derivation rule, listed by its rule number. Note that rule numbers do not dictate an order of 300 

application except for the order dictated by the methodology and outlined in Figure 1. Following 301 

this description, Table 3 provides a summary of the rules. 302 

Rule 1. The main actor of the base scenario becomes the decision maker in the mathematical 303 

programming model 304 

Main actors are those who execute actions in the domain, in this case, those making decisions. 305 

We consider the main actors to be a single person or several persons playing the same role, i.e., 306 

making a centralized decision. There will be a base scenario that derives from the behavioral 307 

response of the single main actor, who will be the decision maker in the mathematical 308 

programming model.  309 
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Rule 2. The time period of the planning horizon defined in the temporal location, inside the 310 

context of the base scenario, becomes an index of the mathematical programming model. 311 

Moreover, other data objects related to time in the temporal location could also become 312 

indexes. 313 

The base scenario should specify the temporal location in its context attribute. Particularly, the 314 

time period specifies the regular intervals in the time horizon at which different decisions are to 315 

be made. If such time period exists, Rule 2 is applied to derive an index from it. Other LEL objects 316 

specifying time considerations (shipping day or maturity day, among others) could also appear in 317 

the temporal location and probably become indexes.  318 

Rule 3. Scenarios’ actors that have multiple instances become indexes of the mathematical 319 

programming model 320 

Actors in scenarios are derived from LEL subjects. A subject in LEL could denote a specific 321 

person or a role. If it is a role, which is filled by several persons, there should be an index in the 322 

mathematical programming model to represent them. If the cardinality of a particular actor is likely 323 

to grow from 1 into several people, the mathematical programming expert could decide to include 324 

the index to make the model more flexible to accommodate this change in the near future. 325 

Rule 4. Scenarios’ resources that have multiple instances become indexes of the 326 

mathematical programming model  327 

Resources represent relevant physical elements or information used by scenarios’ actors to achieve 328 

their goal. Resources derive from LEL’s objects. Objects can be singletons (a single instance) or 329 

denote a class of elements. When an object denotes a class, it becomes an index of the 330 

mathematical programming model. Similar to Rule 3, if the object could grow into a class in the 331 

future, the mathematical programming expert could decide to include the index. 332 
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Rule 5. Actors and/or resources which are related by a notion in the LEL become sets in the 333 

mathematical programming model when their relation denotes a restriction  334 

Two or more actors and/or resources are related when they appear in the same notion. In the case 335 

where the relation among them is restricted for some cases, this restriction should be defined as a 336 

set. Conversely, if the relation is many-to-many, it would not be necessary to define the sets. 337 

Rule 6. The number of instances of the indexes could become parameters in the 338 

mathematical programming model 339 

An actor that becomes an index derives from a LEL subject with multiple instances. The number 340 

of instances of an index is known, and therefore, it could become a parameter of the mathematical 341 

programming model, although this is not always the case. The same occurs with resources and 342 

temporal data objects. An example is the number of instances of the time period, which matches 343 

the decision time horizon and could be defined as a parameter. 344 

Rule 7. Attributes of scenarios’ actors and attributes of scenarios’ resources and attributes 345 

of their relationship with known values become parameters of the mathematical 346 

programming model. Each parameter is indexed by those indexes related to it by the same 347 

notion and for which its value remains known 348 

In the case of attributes that did not become indexes by Rule 4 and denote a known value, by this 349 

rule they become parameters of the mathematical programming model. Moreover, a parameter 350 

derived by this rule should be indexed by the indexes that are related to it. We define two LEL 351 

terms as related if they appear in the same notion, i.e., either one of them appears in the notion of 352 

the other, or both terms appear in the notion of a third term. These indexes could include other 353 

actors but also other resources. However, note that not all indexes that appear in the notion will be 354 

assigned to the parameter, only those that refer to a known value. Thus, the mathematical 355 

programming expert should determine which subset of indexes refers to a known value, and the 356 
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parameter should be indexed only by that subset of indexes. The notion gives the whole subset, 357 

but the expert decides what indexes should be used. 358 

Rule 8. Attributes of scenarios’ actors and attributes of scenarios’ resources and attributes 359 

of their relationship that have unknown values become decision variables of the 360 

mathematical programming model. Each decision variable is indexed by those indexes 361 

related to it by the same notion and for which its value is unknown 362 

This rule is similar to Rule 7 but for unknown values. That is, attributes that appear in the notion 363 

of actors or resources, which values should be assigned in the decision process, become decision 364 

variables. Moreover, decision variables should take the indexes that are related to it by the same 365 

notion and refer to unknown values. It could be necessary to define artificial decision variables 366 

(without economic/physical interpretation) in order to mathematically represent a reality or to 367 

force some logical constraint. 368 

Rule 9. The goal of the base scenario contains the objective function 369 

The base scenario should specify in its goal attribute, the purpose of the main actor (which 370 

becomes the decision maker by Rule 1) in executing the scenario. This goal is specified as a 371 

complex sentence with a relative clause that starts with “so as to” followed by the verb “minimize” 372 

or “maximize”. From this verb to the end, this relative clause becomes the objective function. 373 

Moreover, the expert may look for further details of each objective function in the notion of the 374 

LEL symbols involved in the goal.  375 

Rule 10. The set of context sentences of all scenarios become the set of constraints of the 376 

mathematical programming model 377 

Scenarios should specify in its context attribute, the conditions to comply. These conditions are 378 

described in natural language, as sentences that relate to the actors and resources of each scenario. 379 
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Experts in mathematical programming modeling should use the restrictions described in the 380 

scenarios’ context and relate them to parameters and indexes previously defined by other rules to 381 

derive the set of mathematical programming model constraints. These constraints usually contain 382 

logical constraints that represent business rules. These rules should appear during the requirements 383 

elicitation that a system analyst carries out to construct the LEL, and therefore they would also be 384 

derived as part of the scenarios’ context. Additionally, there are added other artificial constraints 385 

(for instance, a positive boundary to variables) in order to avoid erroneous results. These 386 

constraints will not generally appear in the conceptual model and they should be added by a 387 

subsequent analysis of the mathematical programming expert. 388 

Table 4 summarizes the relationship among LEL, scenarios and mathematical programming model 389 

elements. Rules are grouped by the mathematical programming model element that is derived from 390 

them. The second and third columns use indentation to represent nested concepts (for example, in 391 

Rule #2, the scenario element that generates an “Index” is the “Time period”, inside the “Temporal 392 

location”, which is in the “Context” of the “Base scenario”). 393 

Table 3. Equivalences among LEL, scenario and mathematical programming model elements. 394 

Rule 
Number 

LEL model Scenario model Mathematical 
model 

1 Subject Base scenario 
     Main actor 

Decision Maker  

2 Object Base scenario  
    Context 
        Temporal location 
            Time period 

Index 
 
 
 

3 Subject 
     (multiple instances  
      or single instance--opt) 

Any scenario 
    Actor  
 

Index 

4 Object 
     (multiple instances  
      or single instance--opt) 

Any scenario 
    Resource  
 

Index 

5 Subject / Object 
    Notion 
        (restriction)  

Any scenario 
    Actor / Resource 

Set 

6 Subject / Object 
    Notion 
        (no. of instances) 

Any scenario 
    Actor / Resource (index) 

Parameter 

7 Subject / Object 
   Attribute (known value) 

Any scenario 
    Actor / Resource 

Parameter 
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        Attribute 

8 Subject / Object 
   Attribute (unknown value) 

Any scenario 
    Actor / Resource 
        Attribute 

Decision Variable 

9 Subject 
   Behavioral response 
           (verb) 

Base scenario 
    Goal 

Objective function 

10 Object Any context Constraint 

4. Application  395 

This section applies the above methodology to the problem of fresh tomato packing addressed by 396 

Miller et al. (1997). The purpose of using an existing problem is to contrast the result of our 397 

derivation rules with a real, published mathematical programming model while avoiding the long 398 

description that a new mathematical program would require.  399 

4.1 Conceptual model of the tomato packing problem: LEL + scenarios 400 

This section presents the conceptual model for the tomato packing problem created in terms of 401 

LEL + scenarios. The team assembled for this task was multidisciplinary, that is, composed of 402 

system analysts and a mathematical programming expert. The information sources of the UofD to 403 

construct the LEL were provided by the article from Miller et al. (1997), interviews with local 404 

tomato producers that played the role of customers and other documentation sources online. After 405 

three iterations, the team arrived at the LEL that appears in Table 4.  406 

Table 4. LEL of the tomato packing problem.  407 
Term Role Notion 
Packinghouse 
management (PM) 

Subject Conducts the business of the packinghouse. The PM decides when to harvest tomatoes 
matured in the present or previous cycle, communicates its decision to growers and packs 
the harvested tomatoes to fulfil the market demand 

Grower Subject Person responsible for a tomato field (has been assigned a certain number of acres of 
tomatoes), including harvesting the tomatoes, for which it has some harvest capacity. 
There are several growers. Each grower produces a certain yield of bins of tomatoes per 
acre to take them to the packinghouse 

Market Subject Customers of the packinghouse, who buy tomatoes to sell them. The market has a market 
demand in number of boxes of tomatoes they would like to buy each day 

Acres of tomatoes  Object Land assigned to a grower with tomatoes that get matured on a certain maturity day, and 
are harvested on a certain harvesting day. Acres may have a fraction of “vine ripe 

tomatoes” that are sold “as is” 
Tomato Object Produce planted by growers on the acres of their fields. Tomatoes that have not been 

harvested in 2 cycles generate a cost of damaged tomato 
Harvesting day Object Day in which tomatoes already matured are harvested. Every day in the horizon may be 

a harvesting day 
Maturity day Object Day in a period in which tomatoes in an acre get ready to be harvested. The acres of a 

specific grower may have different maturity days within the decision horizon 
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Decision horizon Object Largest time in which the readiness of tomato fields for harvest can be accurately 
predicted. It is 3 days 

Harvest capacity Object The capacity of a grower to harvest during a certain day 
Bin Object Container where the grower places the harvested tomatoes 
Cost of damaged tomato Object Penalty cost due to dissatisfaction of a grower because of delayed harvest of fields 

matured in the previous and present cycles in $ per bin 
Fraction of “vine ripe 

tomatoes” (v.r.t.) 
Object Tomatoes sold without gassing 

Yield of bins of tomatoes 
per acre 

Object The number of bins of harvested tomatoes per acre of a certain grower 

Packinghouse Object Place where tomatoes are packed in boxes and stored. It has a packing capacity, and a 
gassing capacity per day. The packinghouse requires some fraction of hour needed to 
pack a bin at a certain packing cost. The packinghouse generates a fraction of tomatoes 
ready after gassing. The packinghouse works on regular hours (9 to 5) and overtime hours 
(after 5pm) to generate an inventory level at the end of the day 

Packing cost Object The total packing cost consist of: (1) cost of damaged tomatoes; (2) inventory holding 
cost, (3) shortfall cost, (4) overtime and (5) regular hour packing costs 

Packing capacity Object No more tomatoes may be packed once the packinghouse reaches the packing capacity 
Gassing capacity Object Capacity of the packinghouse to gass tomatoes in a harvesting day. It is measured in 

number of boxes of tomatoes 
Fraction of hour needed 
to pack a bin 

Object Time required for packing 1 bin of harvested tomatoes and put them in boxes 

Fraction of tomatoes 
ready after gassing 

Object Tomatoes ready after a gassing session 

Regular packing hours Object Hours when the packinghouse is operating on a day, that generates a regular packing 
cost. It goes from 9 am to 5 pm 

Overtime packing hours Object Extra hours required to complete the packing at the packinghouse on a day. They 
generate a higher cost than the regular packing hours. Overtime hours are after 5pm 

Regular packing cost Object Cost of packinghouse operation in $ per hour during regular packing hours 
Overtime packing cost Object Cost of packinghouse operation in $ per hour during overtime packing hours 
Inventory level Object Number of boxes of tomatoes of the packinghouse at the end of a certain day. It has a 

certain inventory holding cost in box/day 
Inventory holding cost Object Cost of packinghouse storage in boxes/day 
Market demand Object Number of boxes of tomatoes that the packinghouse customers require in each harvesting 

day. If the market demand is not covered it generates a shortfall 
Shortfall Object Number of missing boxes of tomatoes needed to reach the market demand on a certain 

harvesting day 
Shortfall cost Object Cost of being short on satisfying the market demand in $ per box short 
Box Object Container where tomatoes are placed during packing 
Harvest Verb To cut the tomatoes that are matured 
Pack Verb Put in boxes the harvested tomatoes. Packing is done on regular hours at a certain cost 

or overtime hours to complete packing all harvested tomatoes 
Gass Verb Technique used to ripen tomatoes that are not completely matured by exposing them to 

ethylene gas 

 408 
The first version of the scenarios was created after the first iteration of the LEL and was used to 409 

retrofit the second iteration of the LEL.  410 

The following four tables describe the scenarios of the tomato packing problem. First, Table 5 411 

presents the sole Level 0 scenario, called base scenario. Then, Tables 6 through 8 show the three 412 

scenarios of Level 1, which derive from episodes of the base scenario. 413 

  414 
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Table 5. Scenario Level 0 of the tomato packing problem.  415 
Scenario 0:      Plan the harvest and the packing of fresh tomatoes 
Goal Make a plan at the beginning of the present cycle to harvest and pack tomatoes matured on the present and last 

cycles, so as to minimize the total packing cost 
Actors Main actor Packinghouse management (PM) 
 Secondary actors Growers, market 
Resources Physical resources Packinghouse; acres of matured tomatoes for each grower in the present and past cycles; 

tomatoes; bins; boxes. 
 Information 

resources 
Market demand in number of boxes for each day in the present cycle; for each grower, the 
number of acres of matured tomatoes in the present and past cycles and the number of bins 
of tomatoes generated after harvesting. 

Context - Not all tomatoes that get matured in a cycle are harvested in the same cycle.  
- Tomatoes harvested in the next cycle after they get matured may be sold but have less quality. 
- Tomatoes not harvested in the next cycle after they get matured must be discarded. 
- A grower may only harvest up to their capacity.  
- The packinghouse may only pack and gass a limited number of tomato boxes a day. 
- Temporal location: 
• Decision horizon: 3 days  
• Decision period: harvesting day; every day in a decision horizon. 
• Other temporal variables: maturity day; any day in the decision horizon. 

Episodes - PM makes a plan with the harvesting day of matured tomatoes, for each day in the present cycle, in number of acres 
for each grower. 
- Each grower harvests the amount decided and communicated by the PM. 
- Each grower takes the harvested tomatoes in bins to the packinghouse. 
- PM packs the harvested tomatoes in the packinghouse, labelling some boxes as “vine-ripe tomatoes”. 
- PM gasses all boxes of tomatoes which are not labelled as “vine ripe”. 
- Tomato boxes are shipped to cover the market demand, and the surplus remains as inventory of the packinghouse. 

Table 6. Scenario 1.1 at Level 1 of the tomato packing problem.  416 
Scenario 1.1:   Plan the the harvesting day of matured tomatoes 

Goal Decide how many acres of matured tomatoes to harvest for each grower in each day of the present cycle 
Actors Main actor Packinghouse management (PM) 
Resources Physical resources Acres of tomatoes. 
 Information 

resources 
For each grower: harvest capacity, acres of matured tomatoes for each day and yields of bins 
of tomatoes per acre. Also: cost of tomatoes damaged due to delayed harvest, packing and 
gassing capacity of the packing house. 

Context - A grower may only harvest in a day up to their harvest capacity. 
- The number of bins of harvested tomatoes to pack from all growers should be less than the available gassing 
capacity of the packinghouse for that day. 
- The number of bins of harvested tomatoes to be packed per day should be less than the combined regular and 
overtime packing capacity of the packinghouse. 

Episodes - Considering the information resources available, the PM calculates, for each day in the present cycle and for each 
grower, the number of acres to harvest of tomatoes matured of the previous and the present cycles. 

Table 7. Scenario 1.2 at Level 1 of the tomato packing problem.  417 
Scenario 1.2:   Harvest 
Goal Harvest the tomatoes and take them to the packinghouse. 
Actors Main actor Grower 
Resources Physical resources Acres of tomatoes; tomatoes; bins; packinghouse. 
 Information 

resources 
Harvest capacity; acres of matured tomatoes for each day; number of acres to harvest each 
day  

Context - Tomatoes to be harvested are matured. 
Episodes - The grower cuts the tomatoes from the acres already matured that the PM decided to cut on the present day. 

- The grower places the tomatoes in bins. 
- The grower takes the bins to the packinghouse. 

 418 
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Table 8. Scenario 1.3 at Level 1 of the tomato packing problem.  419 
Scenario 1.3:   Pack the harvested tomatoes 
Goal Put the tomatoes in boxes to be transported. 
Actors Main actors Packinghouse personnel 
Resources Physical resources Bins of tomatoes; boxes; packinghouse. 
 Information 

resources 
Gassing capacity; regular packing hours; regular packing hour cost; overtime packing hours; 
overtime packing hour cost  

Context - Packing occurs during regular packing hour plus overtime packing hours, which combined are at most 12 hours.  
- Regular packing hours are at most 8 hours a day, and overtime packing hours are at most 4 hours a day. 
- No more tomatoes may be packed once the packinghouse reaches the packing capacity 

 420 

4.2 Derived mathematical programming model 421 

We show the derived mathematical programming model elements in separate tables according to 422 

the rules applied. First, Table 9 shows the decision maker and indexes generated by applying Rules 423 

1 – 4.  424 

Table 9. Derivation of decision maker and indexes. 425 
Rule 
Number 

LEL model Scenario model Mathematical 
programming 
model 

1 Subject: Packinghouse 
Management (PM) 

Scenario 0 
     Main actor PM 

Decision Maker 
PM 

2 Object: Harvesting day Scenario 0  
    Context 
        Temporal location 
            Decision period 

Indexes 
 
t 
 

2 Object: Maturity day Scenario 0 
    Context 
        Temporal location 
            Other temporal vars 

 
j 

3 Subject: Grower Scenario 0 and 1.2 
    Actor: Grower 

i 

 426 
In the process of deriving the indexes, some scenarios’ resources with multiple instances were 427 

considered as candidates on which to apply Rule 4. After that, the expert reviewed the relations 428 

among actors and resources but did not derive any sets because there are none restricted relations. 429 

Applying Rule 6 to the number of instances of the index for time period t yielded the time horizon 430 

as the parameter T. The number of instances of the index for maturity day j is the same parameter 431 

T. The number of instances of the index for grower i yielded parameter K. Other parameters came 432 

from analyzing the attributes of scenarios’ actors and resources. For example, the attribute acres 433 

of actor grower yielded parameter H. Rule 7 indicates that H should be indexed by the indexes 434 
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“related to it by the same notion”. In this case, the expert inspected the notion of acres looking the 435 

underlined terms (i.e., related elements) that were defined as indexes: i for “grower”, j for 436 

“maturity day” and t for “harvesting time”. However, the known values of acres are their grower 437 

and their maturity day, but their harvesting time is unknown. Therefore, the indexes assigned to 438 

the parameter are i and j, and the parameter is Hij. Other parameters were derived similarly. The 439 

whole list of parameters appears in Table 10. 440 

Table 10. Derivation of parameters. 441 
Rule 
Number 

LEL model Scenario model Mathematical 
programming 
model 
parameter 

6 Object: Harvesting day 
   Index: t 

Scenario 0  
    Context 
        Temporal location 
            Decision period 

T 

6 Subject: Grower 
   Index: i 

Scenario 0 and 1.2 
    Actor: Grower 

K 

7 Subject: Grower 
   Attribute: Acres 
      Related indexes:  
               Grower (i),  
               Maturity day (j) 

Scenario 0 and 1.2 
    Actor: Grower  
        Attribute: Acres 
 

Hij 

7 Subject: Grower   
   Attr: Harvest capacity 
       Related indexes: i 

Scenario 0 and 1.2 
    Actor: Grower  
        Attr: Harvest capacity 

Ui 

7 Subject: Grower   
   Attr: Yields of bins  
       Related indexes: i  

Scenario 0 and 1.2 
    Actor: Grower  
        Attr: Yields of bins 

bi 

7 Subject: Market 
   Attr: Market demand 
       Related indexes:  
           Harvesting day (t) 

Scenario 0 
    Actor: Market 
        Attr: Market demand 

Dt 

7 Object: Acres 
   Attr: Fraction of v.r.t. 
       Related indexes: - 

Scenario 0 
   Resource: Acres 
       Attr: Fraction of v.r.t. 

  

7 Object: Packinghouse 
   Attr: Packing capacity 
       Related indexes: - 

Scenario 0 
   Resource: Packinghouse 
        Attr: Packing capacity 

P 

7 Object: Packinghouse 
   Attr: Gassing capacity 
       Related indexes: t 

Scenario 0 
    Resource: Packinghouse 
        Attr: Gassing capacity 

Gt 

7 Object: Packinghouse 
   Attr: Packing cost 
     Notion: Cost of  
           damaged tomato 
     Related indexes: - 

Scenario 1.3 
    Resource: Packinghouse 
       Attr: Packing cost 
           Notion: Cost of damaged  
                                tomato 

C 

7 Object: Packinghouse 
    Attr: Packing cost 
      Notion: Inventory  
                 holding cost 
      Related indexes: - 

Scenario 1.3 
    Resource: Packinghouse 
        Attr: Packing cost 
            Notion: Inventory  
                         holding cost 

Ch 
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7 Object: Packinghouse 
   Attr: Packing cost 
     Notion: Shortfall cost 
     Related indexes: - 

Scenario 1.3 
    Resource: Packinghouse 
        Attr: Packing cost 
            Notion: Shortfall cost 

Cs 

7 Object: Packinghouse 
   Attr: Packing cost 
      Notion: Regular 
                packing cost 
      Related indexes: - 

Scenario 1.3 
    Resource: Packinghouse 
        Attr: Packing cost 
            Notion: Regular  
                         packing cost 

Cr 

7 Object: Packinghouse 
   Attr: Packing cost 
      Notion: Overtime 
                packing cost 
      Related indexes: - 

Scenario 1.3 
    Resource: Packinghouse 
        Attr: Packing cost 
            Notion: Overtime  
                         packing cost 

Co 

7 Object: Packinghouse 
   Attr: Fraction of hour 
        needed to pack a bin 
       Related indexes: - 

Scenario 0 
   Resource: Packinghouse 
        Attr: Fraction of hour 
        needed to pack a bin 

f 

7 Object: Packinghouse 
   Attr: Fraction of tom.  
            ready after gassing 
       Related indexes: - 

Scenario 0 
   Resource: Packinghouse 
        Attr: Fraction of tom. 
         ready after gassing  

α 

 442 
The next step was to derive the decision variables from the analysis of the attributes of scenarios’ 443 

actors and resources, but this time, with unknown values. For example, the attribute acres of actor 444 

grower, with a certain maturity day and with an uncertain harvesting day. This attribute yielded 445 

decision variable X. Similar to the case for parameter H, to find the indexes for variable X the 446 

expert looked at the underlined indexes in notion of acres, which are: i for grower, j for maturity 447 

day and t for harvesting time, and the 3 of them are assigned to X to yield Xijt. Other decision 448 

variables were derived similarly by applying Rule 8 (It, Rt, Ot, St), and appear in Table 11. Further 449 

analysis on the scenarios and the context, caused the expert to split the decision variable Xijt in 2 450 

variables: Xijt to refer to the acres matured on the present cycle and Lijt to refer to the acres matured 451 

on the last cycle. Additionally, 2 more decision variables were needed to represent the acres not 452 

harvested, both in the present cycle (Yijt) and the past cycle (Aijt).  453 

To define the objective function1, Rule 9 was applied. Then, the expert had to manually write the 454 

final equation:  455 

Minimize 456 
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∑ ∑ ∑ 𝐶 ∗ (𝐴𝑖𝑗𝑡
𝑇
𝑡=1

𝑇
𝑗=1 + 𝑌𝑖𝑗𝑡)𝐾

𝑖=1 + ∑ 𝐶ℎ ∗ 𝐼𝑡
𝑇
𝑡=1 + ∑ 𝐶𝑠 ∗ 𝑆𝑡 + ∑ 𝐶𝑟 ∗ 𝑅𝑡 + ∑ 𝐶𝑜 ∗ 𝑂𝑡

𝑇
𝑡=1

𝑇
𝑡=1

𝑇
𝑡=1                                                                                                                                                          457 

(1) 458 

Table 11. Resulting decision variables. 459 
Rule  LEL model Scenario model Mathematical 

programming 
model 

8 Subject: Grower 
   Attribute: Acres 
     Rel. indexes: i, j, t 

Scenario 0 and 1.2 
   Actor: Grower  
      Attr.: Acres 

Xijt 

8 Object: Packinghouse 
   Attr.: Inventory level 
      Related indexes: t  

Scenario 0 
   Resource: Packinghouse 
      Attr.: Inventory level 

It 

8 Object: Packinghouse 
   Attr.: Regular packing hours 
      Related indexes: t  

Scenario 0 
   Resource: Packinghouse  
      Attr.: Regular packing hs 

Rt 

8 Object: Packinghouse 
   Attr.: Overtime packing hours 
      Related indexes: t 

Scenario 0 
     Resource: Packinghouse  
      Attr.: Overtime packing hs 

Ot 

8 Object: Market demand 
   Attribute: Shortfall 
      Related indexes: t  

Scenario 0 
   Resource: Market demand  
      Attribute: Shortfall 

St 

- Derived manually by the expert 
 

Scenario 0 and 1.2 
   Actor: Grower. Attr.: Acres  
             (matured on last cycle) 

Lijt 

- Derived manually by the expert Scenario 0 and 1.2 
   Actor: Grower. Attr.: Acres  
   (matured present cycle not harvested) 

Yijt 

- Derived manually by the expert Scenario 0 and 1.2 
   Actor: Grower. Attr.: Acres  
    (matured on last cycle not harvested) 

Aijt 

 460 
Deriving the constraints was mostly handcrafted taking all the information available in the context 461 

sentences of scenarios to create the corresponding equations, plus the addition new constraints to 462 

balance quantities and make the mathematical programming model work. Constraints appear in 463 

Table 12. 464 

Table 12. Resulting constraints. 465 
Rule  Scenario model Mathematical programming model 

10 Scenario 0 & 1.1 
   Context sentence: A grower may only harvest in a day up 
to his harvest capacity. 

 ∑ 𝑋𝑖𝑗𝑡
𝐾
𝑖=1 + 𝐿𝑖𝑗𝑡 ≤ 𝑈𝑖 ∀𝑖𝑡 

10 Scenario 1.1 
   Context sntc: The number of bins of harvested tomatoes 
to pack from all growers should be less than the gassing 
capacity of the packinghouse for that day. 

 (1 − 𝛿) ∑ ∑ 𝑋𝑖𝑗𝑡
𝑇−1
𝑡−𝑗=0

𝐾
𝑖=1 ∗ 𝑏𝑖 +

∑ ∑ 𝐿𝑖𝑗𝑡
𝑇
𝑡+𝑇−𝑗=1

𝐾
𝑖=1 ∗ 𝑏𝑖 ≤ 𝐺𝑡  ∀𝑡 

10 Scenario 1.1 
   Context sntc: The number of bins of harvested tomatoes 
to be packed per day should be less than the combined 
regular and overtime packing capacity of the packinghouse. 

 𝑂𝑡 + 𝑅𝑡 − 𝑓 ∑ ∑ 𝑋𝑖𝑗𝑡
𝑇−1
𝑡−𝑗=0

𝐾
𝑖=1 ∗ 𝑏𝑖 −

𝑓 ∑ ∑ 𝐿𝑖𝑗𝑡
𝑇
𝑇−𝑗=1

𝐾
𝑖=1 ∗ 𝑏𝑖 = 0 ∀𝑡 
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10 Scenario 1.3 
   Context sntc: Packing occurs during regular packing hour 
plus overtime packing hours, which are at most 12 hours. 

𝑂𝑡 + 𝑅𝑡 ≤ 12 ∀𝑡 

10 Scenario 1.3 
   Context sntc: Regular packing hs. are at most 8 hours/day 

𝑅𝑡 ≤ 8 ∀𝑡 

- Added by expert: balance the acres matured in the previous 
cycle but not yet harvested 

𝐴𝑖𝑗𝑡 − 𝐴𝑖𝑗𝑡−1 + 𝐿𝑖𝑗𝑡 = 0 ∀𝑖𝑗𝑡  

- Added by expert: balance the acres matured in the present 
cycle but not yet harvested 

𝑌𝑖𝑗𝑡 − 𝑌𝑖𝑗𝑡−1 + 𝑋𝑖𝑗𝑡 = 𝐻𝑖𝑗  ∀𝑖𝑗𝑡 

- Added by expert: balance the end-of-period inventory level 
(equal to the preceding end-of-period level + the quantity 
of “vine ripe” tomatoes packed + the number of boxes of 

tomatoes ready after gassing - the forecasted demand) 

 𝐼𝑡 − 𝑆𝑡 − 𝐼𝑡−1 + 𝑆𝑡−1 − 𝛿 ∑ ∑ 𝑋𝑖𝑗𝑡
𝑇−1
𝑡−𝑗=0

𝐾
𝑖=1 ∗ 𝑏𝑖 +

𝛿 ∑ ∑ 𝐿𝑖𝑗𝑡
𝑇
𝑡−𝑇−𝑗=1

𝐾
𝑖=1 ∗ 𝑏𝑖 = 𝐷𝑡 + 𝐺𝑡  ∀𝑡 

- Added by expert: assure a continual flow of tomatoes to the 
market. The mature green tomatoes to be packed should be 
at least equal to a fraction α of tomatoes ready on the day 

of gassing. 

 (1 − 𝛿) ∑ ∑ 𝑋𝑖𝑗𝑡
𝑇−1
𝑡−𝑗=0

𝐾
𝑖=1 ∗ 𝑏𝑖 +

∑ ∑ 𝐿𝑖𝑗𝑡
𝑇
𝑡+𝑇−𝑗=1

𝐾
𝑖=1 ∗ 𝑏𝑖 ≥ 𝛼𝐺𝑡  ∀𝑡 

5. Semantic mediawiki construction for the LEL and scenarios definition  466 

A domain ontology is proposed to attain the shared and agreed definition of a semantic model for 467 

the LEL and scenarios. Moreover, ontology-based information retrieval allows us to formulate 468 

queries based on our derivation rules, which will help in the semi-automatic derivation of 469 

mathematical programming model elements. Finally, tool support is provided through a semantic 470 

mediawiki constructed over the ontology, which allows for the knowledge building process of a 471 

conceptual model and its derivation into math model elements. 472 

5.1 Ontology Model 473 

The proposed ontology is depicted in Figure 2. Thus, Subjects symbols are related to Scenario’s 474 

Actors while Objects symbols are related to Scenario’s Resources. Moreover, Verbs symbols are 475 

related to Scenario and Episode from Scenario’s representation as they represent the activities or 476 

actions that are realized. LEL symbols are represented by the Symbol element, that has two 477 

properties: a notion and a list of behavioral responses. Thus, the notion property just contains has 478 

relations with Subjects and Objects that represent attributes of the described Symbol. Since we 479 

need to differentiate known attributes (parameters) from unknown ones (decision variables), the 480 

has relation is in fact modeled as two separate relations: has known and has unknown. In turn, the 481 
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behavioral response of a LEL’s Symbol is represented using a relation to the Verbs that represent 482 

the actions were the Symbol participates, and therefore, its responsibilities.  483 

From the scenario’s perspective, the element Scenario is represented by a property to define a title 484 

as plane text. The rest of the Scenario’s properties are represented as relations with other model 485 

elements. Thus, there is a relation called bounded to a Context. There are two relations from 486 

Scenario to the Actor element called involves main actor and involves secondary actor, to 487 

represent the main and secondary actors of the Scenario respectively. Scenario also has a property 488 

called executed over, to related it with the Resources over which it is executed. The Scenario’s 489 

episodes are described by the property performs related with the Episode elements. Finally, 490 

Scenarios are connected by the property has to the Goal element. 491 

In turn, a Context has a text property description and a has property related to a TemporalLoc that 492 

represents the temporal location of the scenarios with its properties for time-horizon, time_period 493 

and replanning_time_period. The Actor element has name and instance_number as properties, 494 

where the latter is used for the mathematical programming model derivation, to identify actors 495 

with more than one instance as indexes. Resource has a structure identical to Actor although their 496 

semantic meaning is completely different. The Episode element has a sentence that describes it 497 

and a relation described in that connects the Episodes to the parent Scenario. Moreover, a Goal 498 

has a property description and a relation optimize to an Optimization Goal. This Optimization 499 

Goal is not part of the original definition of scenarios but added for mathematical programming 500 

model derivation purposes. It is described by two properties: Operation and TargetVariable to 501 

define the max/min operation for one particular variable as objective of the Scenario’s Goal. 502 

Finally, there is a Constraint element that could be related with Episode, Actor, Resource or 503 

TemporalLoc elements by the property is restricted by. A Constraint is defined by the property 504 

expression, which is applied on the corresponding elements. 505 
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 506 
Fig. 2. The LEL and scenarios ontology. 507 
 508 
5.2 Semantic queries 509 

The queries rely on the definition of a specific Scenario instance defined as Base Scenario. The 510 

result of these queries will be used by the mathematical programming expert to obtain a 511 

preliminary version of the final mathematical programming model, as explained before. Table 13 512 

summarizes the queries, in a pseudo-code that makes them more readable. 513 

Table 13. Queries based on each rule to derive potential mathematical programming model elements 514 
Rule 
Number 

Mathematical 
model output 

Semantic Query 

1 Decision Maker  Base Scenario involves main actor: ?Actor 

2 Index 
 

Base Scenario bounded: ?Context  
?Context has: ?TemporalLoc ?time_period 

3 Index Scenario involves main actor: ?Actor  
?Actor instance_number >1: ?Actor 
 
Scenario involves secondary actor: ?Actor  
?Actor instance_number >1: ?Actor 

4 Index Scenario executed over: ?Resource  
?Resource instance_number > 1: ?Resource 

5 Set Symbol has known: ?Attribute1  
Symbol has known: ?Attribute2 
(?Attribute1 is restricted by: ?Constraint) == (?Attribute2 is restricted by: 
?Constraint) 
 ?Attribute1, ?Attribute2 

6 Parameter Scenario executed over: ?Resource  
?Resource instance_number > 1: ?Resource instance_number 
 
Scenario involves secondary actor: ?Actor  
?Actor instance_number > 1: ?Actor instance_number 
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7 Parameter (Actor  has known: ?Attribute)+ (Resource  has known: ?Attribute) 

8 Decision Variable (Actor  has unknown: ?Attribute)+ (Resource  has unknown: ?Attribute) 

9 Objective function Base Scenario has: ?Goal 
?Goal optimize: ?Optimization Goal 

10 Constraint Constraint 

 515 
 516 
Rule 1 determines the decision maker by requesting the main Actor from the Base Scenario. Rule 517 

2 determines the temporal index from the time period, accessing the Context of the Base Scenario 518 

through the bounded property, and from the Context, using the properties has to reach the 519 

properties of the Temporal Location. Rules 3 and 4 are also intended for deriving indexes. In these 520 

queries, all the instances of Actor and Resource in all the scenarios are collected by the properties 521 

involves main actor, involves secondary actor and executed over, and they are selected if the 522 

property instance_number is greater than 1. Rule 5 determines relations among Actors and 523 

Resources that are candidates to become sets, specifically, if they appear in the same notion and 524 

are related with the same Constraint by the property is restricted by. Rule 6 derives parameters 525 

from the indexes obtained by rules 3 and 4, specifically, the number of instances described by the 526 

property instance_number. Rule 7 derives parameters from known Attributes of Actors and 527 

Resources. Particularly, this rule uses the property has known that belongs to Symbol elements 528 

representing Subjects (for Actors) and Objects (for Resources). Similarly, Rule 8 determines 529 

decision variables but using the property has unknown to denote the unknown Attributes. To define 530 

the optimization goal of the mathematical programming model, it is necessary to access to the 531 

Goal of the Base Scenario by the property has and subsequently, to its Optimization Goals by the 532 

property optimize. Finally, any other restriction for the model could be derived from the Constraint 533 

elements. 534 
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5.3 Mediawiki implementation 535 

We have built a semantic mediawiki in order to provide support for the collaborative construction 536 

of a knowledge base. The wiki provides the capability of creating and editing articles by way of a 537 

user-friendly interface guided by forms that will be used by stakeholders, analysts and 538 

mathematical modelling experts. These forms are based on the ontology proposed for the LEL and 539 

scenarios. Figure 3 shows a form to describe a Scenario. The figure shows that some attributes as 540 

goal and context are plain text, while others are described with a kind of button or token. These 541 

tokens describe relations to other elements of the model already created.  542 

 543 
Fig. 3. Mediawiki form based on LEL and scenarios’ ontology. 544 
 545 
In turn, Figure 4 shows a form to navigate a Scenario. The wiki-links could be blue or red 546 

describing whether the related article is already defined or not, respectively.  547 
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 548 
Fig. 4. Scenario’s article. 549 
 550 
Finally, the capability of application of ontologies as a semantic knowledge model allows to 551 

implement the semantic queries described previously to semi-automatically derive mathematical 552 

programming model elements from LEL + scenarios elements. Thus, once the knowledge base is 553 

constructed, the mathematical modelling expert will be able to generate new articles with a 554 

preliminary version of the mathematical programming model. Figures 5 displays an example, with 555 

the article generated from the LEL and scenarios of the case study.  Note that the support is not 556 

completely automatic because the inference only allows for an approximation to the mathematical 557 

programming model, and the expert is still needed to verify the correctness of the mediawiki 558 

derivation and provide the algebraic form. 559 
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 560 

 561 
Fig. 5. Article of mediawiki with automatic mathematical programming model derivation. 562 
 563 
6. Conclusions 564 

This paper has presented a novel methodology that connects the areas of requirements engineering 565 

with conceptual modelling in order to build mathematical programming models that capture the 566 

business domain more effectively and completely. Specifically, the methodology has proposed for 567 

the first time the use of the LEL and scenarios for creating a conceptual model of a domain from 568 
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where a mathematical programming model can be derived. The construcion of the conceptual 569 

model invites the participation of all stakeholders, which is deficiency of other proposals for DSS 570 

construction in agriculture. In comparison with other approaches for conceptual mathematical 571 

modelling, this article provides further tool-supported guidence about how to obtain the problem 572 

definition and how to derive a mathematical programming model from a precise specification in 573 

terms of derivation rules, as opposed to relying on mere textual descriptions or in the modeler’s 574 

ability.  Moreover, we have proposed an ontology that provides the basis for a semantic mediawiki 575 

that serves both, sharing knowledge of the conceptual domain model among the different 576 

stakeholders, as well as semi-automating the derivation of the mathematical programming model. 577 

The usefulness of this proposal can be understood from several perspectives: research, academic 578 

and managerial. From the research and academic points of view, we may highlight the main 579 

contributions as follows: (i) it provides a novel step-by-step methodology based on the LEL and 580 

scenarios that allows both: to obtain the required information to derive the definition part of a 581 

mathematical programming model, and to define the optimization problems that constitute the 582 

modelling part of the model; (ii) our approach provides a structure to the problem that allows to 583 

identify the elements of the problem clearly; (iii) using the LEL and scenarios to create a 584 

conceptual model iteratively and incrementally in collaboration with stakeholders allows applying 585 

an agile development approach to mathematical modelling; (iv) the use of LEL and scenarios 586 

provides traceability from the requirements to the mathematical programming model 587 

implementation to cope with possible changes of requirements and a better understanding of their 588 

impact on the model; and (v) the process of creating a conceptual model with LEL + scenarios 589 

also generates a complete specification of requirements for a potential model-based DSS. 590 

Regarding the managerial perspective, we believe that the ease of use and good expressiveness of 591 

the proposed methodology will facilitate the implementation of mathematical programming 592 

models in agriculture, as well as provide new tools for teaching mathematical programming and 593 
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foster research in the combined areas of agile methods in requirements engineering, mathematical 594 

programming and decision support system development. Further research includes validating the 595 

proposed methodology in real world case studies from agriculture. Finally, we intend to extend 596 

the approach to the derivation of mathematical programming models under uncertainty, such as 597 

stochastic programming and fuzzy mathematical programming. 598 
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