
1

Using LEL and scenarios to derive mathematical programming models. 1
Application in a fresh tomato packing problem 2

 3
Alejandra Garridoa,b, Leandro Antonellia, Jonathan Martina, M.M.E. Alemanyc, *Josefa Mulac 4

 5
a LIFIA, Fac. de Informática, Univ. Nac. de La Plata, La Plata, Argentina, garrido@lifia.info.unlp.edu.ar, 6

lanto@lifia.info.unlp.edu.ar, jonathan.martin@lifia.info.unlp.edu.ar, 7
b CONICET, Argentina 8

c Research Centre on Production Management and Engineering (CIGIP), Universitat Politècnica de València, Valencia, Spain, 9
mareva@cigip.upv.es,*Corresponding author: fmula@cigip.upv.es 10

Abstract 11
Mathematical programming models are invaluable tools at decision making, assisting managers to uncover otherwise 12
unattainable means to optimize their processes. However, the value they provide is only as good as their capacity to 13
capture the process domain. This information can only be obtained from stakeholders, i.e., clients or users, who can 14
hardly communicate the requirements clearly and completely. Besides, existing conceptual models of mathematical 15
programming models are not standardized, nor is the process of deriving the mathematical programming model from 16
the concept model, which remains ad hoc. In this paper, we propose an agile methodology to construct mathematical 17
programming models based on two techniques from requirements engineering that have been proven effective at 18
requirements elicitation: the language extended lexicon (LEL) and scenarios. Using the pair of LEL + scenarios allows 19
to create a conceptual model that is clear and complete enough to derive a mathematical programming model that 20
effectively captures the business domain. We also define an ontology to describe the pair LEL + scenarios, which has 21
been implemented with a semantic mediawiki and allows the collaborative construction of the conceptual model and 22
the semi-automatic derivation of mathematical programming model elements. The process is applied and validated in 23
a known fresh tomato packing optimization problem. This proposal can be of high relevance for the development and 24
implementation of mathematical programming models for optimizing agriculture and supply chain management 25
related processes in order to fill the current gap between mathematical programming models in the theory and the 26
practice. 27
 28
Keywords: Language extended lexicon (LEL); scenarios; software engineering; mathematical programming; fresh 29
tomato packing. 30
 31
1. Introduction 32

There is an increasing interest in mathematical programming models for optimal decision support 33

applications (Dominguez-Ballesteros et al., 2002). Indeed, the development of optimization and 34

decision support tools is needed to obtain all the benefits of transactional information technology 35

(IT), improving the economic performance and customer satisfaction of supply chains 36

(Grossmann, 2005). Along these lines, mathematical programming models have been 37

demonstrated to be powerful optimization tools to support decision makers in many supply chain 38

processes such as: production planning (Alemany et al., 2013), order promising (Alemany et al., 39

2018; Grillo et al., 2017), shortage planning (Esteso et al., 2018), supply chain production and 40

transport planning (Mula et al., 2010), among others. The agriculture sector also faces many 41

mailto:garrido@lifia.info.unlp.edu.ar
mailto:lanto@lifia.info.unlp.edu.ar
mailto:jonathan.martin@lifia.info.unlp.edu.ar

2

complex problems for optimization (Saranya & Amudha, 2017) as it has been reported in some 42

recent works (Cid-Garcia & Ibarra-Rojas, 2019; Grillo et al., 2017; Liu et al., 2019). Some 43

revisions about mathematical programming models applied to different problems in agriculture 44

can be found for supply chain design (Esteso, Alemany, & Ortiz, 2018), fresh fuit supply chain 45

management (Soto-Silva et al., 2016), agribusiness supply chain risk management (Behzadi et al., 46

2018) and crop planning (Jain et al., 2018), among others. 47

Once formulated, mathematical programming models are often implemented as part of a decision 48

support system (DSS), which is thus called model-driven DSS. We refer readers to the work of 49

Udias et al. (2018) regarding an example of recent agricultural model-based DSS. These types of 50

DSSs allow the user to make what-if analysis and define different scenarios without the need to 51

understand the complexities of mathematical programming models (Mundi et al., 2013). Mir et al. 52

(2015) provide an extensive revision of DSS application in agriculture noting their main 53

weaknesses, most of them related to the poor involvement of stakeholders in the DSS construction 54

process, which our methodology aims to overcome: failure to support stakeholder participation 55

before and after development stages, failure to support the relationship between stakeholders and 56

experts/developers, low adaptation, complexity with user inputs and under-definition of end users. 57

Moreover, the construction of mathematical programming models is a complex and very time-58

consuming process, which requires an expert to acquire a deep understanding of the modelling 59

domain, context of use, decision making activity, and to learn the complete set of constraints from 60

the problem under study. All this problem knowledge should be acquired before the model is 61

constructed, because any change that occurs afterwards might imply a whole redesign and 62

implementation of the model. For this reason, mathematical programming model construction 63

should be preceded by a conceptual modelling activity whose natural use in the field of applied 64

mathematics has been pointed out by Lesh (1981) and Lesh et al. (1983). 65

3

During conceptual modelling, different tools are used, like Bizagi, BPWin, iGrafx, Process 66

Modeler, System Architect and Visio, to help understand the domain, the flow of data, products, 67

decisions and the interaction among parties, and to elicit requirements as completely as necessary 68

(Armengol et al., 2015; Giannoccaro & Pontrandolfo, 2001; Hernández et al., 2008; Mula et al., 69

2006; Pérez Perales et al., 2012). However, there has been no consensus or standardization in this 70

regard. 71

The process of creating a conceptual model may be closely compared with the process of 72

requirements elicitation for any software system. In particular, we claim that a very important 73

aspect of conceptual models is that they should allow their iterative, incremental and collaborative 74

construction. Indeed, agile methods in requirements engineering have demonstrated the 75

importance of managing the inherent complexity of a system specification in an incremental and 76

iterative manner (Schön et al., 2017). A relevant technique to elicit requirements and get a clear 77

and complete understanding of a domain is the use of scenarios (Leite et al., 2000). The description 78

of scenarios ranges from visual (storyboards) to narrative (structured text) (Young, 2004). They 79

are constructed iteratively on the basis of a universe of discourse (UofD), i.e., a domain’s 80

vocabulary or lexicon. Leite and Franco (1993) named it the language extended lexicon (LEL). It 81

is a meta-language used to gather or elicit requirements, which aims at describing the meaning of 82

words and phrases specific to a given application domain. It has three convenient characteristics 83

in the context of analytical modelling: easy to learn (Cysneiros & Leite, 2001), easy to use (Gil et 84

al., 2000) and good expressiveness (Kaplan et al., 2000). Moreover, there exist specific rules to 85

derive LEL elements into scenario elements, and scenarios retrofit LEL’s vocabulary in a very 86

incremental and iterative construction process (Leite et al., 2000). Here, we claim that the above 87

quality characteristics and the construction process of the pair LEL + scenarios make them an 88

adequate conceptual model from where mathematical programming models could be 89

systematically derived. 90

4

In this article, we propose a novel methodology to guide the derivation of mathematical 91

programming model elements from a conceptual model created with LEL + scenarios. Our 92

derivation proposal consists of several rules that map conceptual model elements (either LEL 93

vocabulary items or scenario elements previously derived from LEL) into mathematical 94

programming model elements. The added benefit of this methodology is that it provides 95

traceability from vocabulary and requirements specification to each mathematical programming 96

model element. This traceability becomes very important when a change is necessary in the 97

conceptual model, to know the particular place in the mathematical programming model 98

specification where the change will have an impact. 99

In order to give further support to the derivation process, we relate conceptual model creation to a 100

knowledge building process of collective creation between stakeholders and analysts. This process 101

emphasizes the production and continuous improvement of knowledge parts (Moskaliuk et al., 102

2009), and it is usually supported with a web-based knowledge building community like a 103

mediawiki (Baraniuk et al., 2004). Thus, we have constructed a semantic mediawiki based on an 104

ontology for the collaborative creation of the conceptual model based on LEL and scenarios. 105

Moreover, the semantic mediawiki is used to semi-automatically derive mathematical 106

programming models. 107

Thus, the paper proposes a novel methodology that connects the areas of requirements engineering 108

and agile methods with conceptual modelling in order to create mathematical programming 109

models that capture the agriculture research domain more effectively and completely. 110

Summarizing, the main contributions of this paper are: (i) a proposal for utilizing the pair LEL + 111

scenarios to create conceptual models that gather the vocabulary of decision makers and specify 112

the domain knowledge necessary to build a mathematical programming model; (ii) a rule-based 113

methodology for the systematic derivation of mathematical programming models from the 114

conceptual model generated by LEL + scenarios; (iii) a knowledge model designed over an 115

5

ontology based on the description of LEL + scenarios; and (iv) an extensible tool consisting of a 116

semantic mediawiki that allows to partially automate the mathematical modelling derivation. To 117

the best of our knowledge, the methodology proposed in this article is the first approach to 118

standardize the development of a conceptual model and its consequent translation to a 119

mathematical programming model, and no other requirement elicitation method in the field of 120

software engineering has been adapted for the derivation of mathematical programming models. 121

Moreover, the derivation process provides traceability from requirements to mathematical 122

programming model elements to deal with changes more effectively. 123

The rest of the paper is organized as follows. Section 2 provides a literature review on 124

mathematical programming models, conceptual models, requirements elicitation, LEL and 125

scenarios and knowledge building. Section 3 describes our methodology for the systematic 126

derivation of mathematical programming model elements from the conceptual model generated 127

by LEL+ scenarios. Section 4 applies the method to derive a linear mathematical programming 128

model for fresh tomato packing. Section 5 defines an ontology for LEL + scenarios on which we 129

based the construction of a semantic mediawiki for the semi-automatic derivation of the 130

mathematical programming model. Section 6 provides conclusions and future research directions. 131

2. Literature review 132

2.1 Mathematical programming models 133

Mathematical programming involves finding the values of some variables that, subject to certain 134

constraints, maximize or minimize an objective function. We assume that deterministic 135

mathematical programming models have a generic structure: a definition part and a modelling part 136

(Pérez et al., 2010; Shapiro, 1993). Table 1 provides a description of mathematical programming 137

model parts. 138

2.2 Conceptual mathematical modelling 139

6

Siau (2004) defines conceptual modeling as the process of formally documenting a problem 140

domain to achieve understanding and communication between the different participants. 141

Developing conceptual models means specifying the essential objects, or components, of the 142

system to be studied, and the relationships or types of exchanges between the objects that affect 143

the functioning of the system (Lezoche et al., 2012). From the abstraction of conceptual models 144

emerges the concept of reference models, which are generic conceptual models that formalize 145

recommended practices for a given domain (Pesic & van der Aalst, 2005). 146

Table 1. Mathematical programming model parts. 147
MATHEMATICAL
PROGRAMMING
MODEL PART

ELEMENT DESCRIPTION EXAMPLES

Definition part Indexes Objects or concepts of the model. The number of
elements of a class of objects provides the number
of instances of this class

Machines (m)
Products (i)

Sets Group of instances of one or several indexes that
meet certain characteristics or constraints

Group of products that can be
processed by each machine P(m)

Parameters Known characteristics of one or several elements
(indexes) over which is not possible to act

Capacity of each machine (Capm)
Production cost for each product on
each machine (PCim)

Decision
variables

Unknown characteristics of one or several
elements (indexes) over which it is possible to act
(decision-maker can determine their value)

Quantity to be produced of each
product on each machine every time
period (Ximt)

Modelling part

Objective
function

Goal/s to be optimized (minimize or maximize) Maximize profits
Minimize costs
Minimize time

Constraints Problem limitations that should be respected for
every combination of the decision variables

Availability of resources (e.g.
machines’ capacity)
Company policies (e.g. service level)
Logic or implicit constraints (e.g.
flow balance, positive quantities)

Decision-maker Decision-
maker

Person who makes the decision Planner, manager

Temporal
characteristics

Time-horizon The length of time (with a beginning and end date)
over which a problem is optimized

A year, six months, etc.

Time-period Space of time into which a time-horizon is divided Seconds, minutes, hours, days,
weeks, months or years

Replanning
time period

Space of time in which the plan is calculated again Seconds, minutes, hours, days,
weeks, months or years

 148

In the field of conceptual mathematical modelling, Schneeweiss (2003a) identifies different 149

classes of distributed decision making (DDM) problems in supply chain management. The same 150

author derives the coupling equations for the most usual cases in coordinating the supply chain 151

(Schneeweiss, 2003b). However, the coupling equations are still of a very general, almost verbal 152

character. In this context, Alemany et al. (2007) propose a reference mathematical programming 153

7

model for collaborative planning that addresses two of the challenges of DDM: the spatial and 154

temporal interdependencies. Alemany et al. (2011) developed an application to support the 155

integrated modelling and execution of the supply chain collaborative planning process made up of 156

several decisional centers which make decisions based on mathematical programming models. 157

However, the formulation of the own specific decisional characteristics of each decision center 158

(micro-decision view) mainly relies on the ability of the mathematical programming modeler. 159

Moreover, Pérez-Perales et al. (2012) propose a framework to support modelling the decisional 160

view of collaborative planning through mathematical programming models. 161

While the above studies are very useful, this article provides further tool-supported guidence and 162

a precise specification in terms of derivation rules to derive mathematical programming models 163

from a conceptual model, as opposed to general descriptions or relying in the modeler’s ability. 164

2.3 Process of mathematical programming model formulation 165

Since conceptual models are not standardized, neither is the process of deriving the mathematical 166

programming model from the concept model, which remains ad hoc. In this sense, Raghunathan 167

(1996) proposed a methodology to design a DSS with its underlying mathematical programming 168

and data models. The methodology includes six steps: (i) problem domain analysis, (ii) database 169

design, (iii) modelbase design, (iv) database/modelbase integration design, (v) problem/decision 170

maker characteristics and (vi) specific DSS design. However, the setting of Raghunathan (1996) 171

is a classroom, so the problem statement is completely specified from the start. Alternatively, our 172

proposal is inspired in the current, agile way of system specification, which recognizes that the 173

construction of any model should be iterative and incremental. Additionally, the use of entity-174

relationship modelling by Raghunathan (1996) has two implications: a) the problem must be 175

simple, otherwise the diagram is not even readable; and b) stakeholders may not be able to 176

understand it. Contrarily, we use a natural language and a semi-structured scenario specification 177

8

for the conceptual model, which is more appealing for a system specification that incorporates 178

stakeholders in the process. 179

Furthermore, Dominguez-Ballesteros et al. (2002) define different stages in the process of 180

deterministic and stochastic linear programming model formulation and implementation: 181

conceptualisation (data collection and study of the problem), data modelling (categorisation and 182

abstraction of the data), algebraic form (modeller’s form), translation (matrix generator/modelling 183

language), machine-readable form (algorithm’s form), solution and solution analysis. However, 184

the stages can be understood as guidelines for the mathematical programming modeler more than 185

a derivation procedure. That is, unlike Raghunathan (1996) and to the best of our knowledge, no 186

methodology or structured modeling language is proposed for the conceptualization stage. 187

2.4 Requirements elicitation 188
 189
Requirements elicitation is the process that analysts follow to ensure a correct understanding of 190

stakeholders’ needs and the domain specification before a system is designed and implemented 191

(Leite et al., 2000). In this regard, Geisser and Hildenbrand (2006) state that software requirements 192

are very complex and a multitude of stakeholders participate in their description (Geisser & 193

Hildenbrand, 2006). They propose a method called CoREA that covers collaborative requirements 194

elicitation in a distributed environment as well as quantitative decision support for distributed 195

requirements prioritization and selection. Our proposed approach also relies on collaborative 196

knowledge acquisition and description, with the added advantage of using this knowledge base as 197

a conceptual model from where a mathematical programming model can be derived through the 198

application of a set of rules. 199

Closer to our work, Laporti et al. (2009) propose an approach to develop system requirements in 200

an iterative and collaborative way. Experts in the domain collaborate to build narrative 201

descriptions of stories. Then, these stories are used as input to describe scenarios, which are in 202

turn used to define use cases. In this regard, our proposal is similar since it considers the collective 203

9

construction of LEL + scenarios and a mapping between LEL, scenarios and mathematical 204

programming models. The difference is that the output of the transformation in the work by Laporti 205

et al. (2009) is still a textual, semi-structured representation (use cases), which does not distance 206

much of the previous products, whereas in our case the output is a structured mathematical 207

programming model, so the mapping requires a more complex strategy that includes a precise 208

representation of the relations among model elements. Our approach uses two existing techniques 209

for requirements elicitation: the LEL (Leite & Franco, 1993) and scenarios (Leite et al., 2000). 210

The LEL is a very convenient tool for both stakeholders with no technical skills and analysts, since 211

it conforms to the mechanism used by the human brain to organize knowledge (Oliveira et al., 212

2007), which makes it easy to learn while having good expressiveness. The process to build the 213

LEL is comprised of six steps (Breitman & Leite, 2003; Kaplan et al., 2000), which allow 214

constructing a list of terms classified in four categories (see Table 2). 215

Turning into scenarios, they can be used in different stages of software development, from 216

clarifying business processes and describing requirements to providing the basis of acceptance 217

tests (Alexander & Maiden, 2004). Leite et al. (2000) propose a template with six elements to 218

describe scenarios (see Table 2), which are derived from the LEL following a methodology 219

consisting of five steps: (i) to identify main and secondary actors, i.e., LEL symbols that belong 220

to the subject type; (ii) to identify scenarios within the behavioral responses of symbols chosen as 221

actors; (iii) to define the scenario goal based on the notion of the verb symbol in which the scenario 222

is based; (iv) to identify the scenario resources, searching in the notion of the verb that created the 223

scenario, for LEL symbols of the object category; and (v) to derive episodes from each behavioral 224

response of the verb that identified the scenario. 225

 226

10

Table 2. LEL categories and scenarios elements. 227
Category Characteristics Notion Behavioral responses
Subject Active elements which perform

actions
Characteristics or condition
that subject satisfies

Actions that subject performs

Object Passive elements on which
subjects perform actions

Characteristics or attributes
that object has

Actions that are performed on
object

Verb Actions that subjects perform
on objects

Goal that verb pursues Steps needed to complete the
action

State Situations in which subjects
and objects can be located

Situation represented Actions that must be performed
to change into another state

Attribute Description
Title Name that describes the scenario
Goal Conditions and restrictions to be reached after the execution of the scenario
Context Conditions and restrictions that are satisfied and constitute the starting point of the scenario

execution.
Actors Agents that perform actions during the scenario starting from the context to reach the goal
Resources Products and elements used by the actors to perform actions
Episodes Steps executed by the actors using the resources starting at the context to reach the goal

 228
2.5 Ontologies and knowledge building 229
 230
Ontologies define the common vocabulary in which shared knowledge from a domain of discourse 231

is represented (Gruber, 1993; 1995). They can be constructed in two ways, domain dependent and 232

generic. CYC (Lenat, 1995), WordNet (G.A. Miller, 1995) and Sensus (Swartout et al., 1996) are 233

examples of generic ontologies. A benefit of using a domain ontology is to attain the shared and 234

agreed definition of a semantic model of domain data and the links between different types of 235

semantic knowledge, which makes it suitable in formulating data searching strategies for 236

information retrieval (Munir & Sheraz Anjum, 2018). 237

Furthermore, a semantic mediawiki defined over an ontology provides a web-based support for a 238

knowledge building community (Baraniuk et al., 2004). We have used a semantic mediawiki in 239

this work to allow for the collaborative definition of LEL + scenarios of the problem domain and 240

for the semi-automatic derivation of the mathematical programming model using the mediawiki’s 241

query engine. 242

11

3. Methodology for mathematical programming model derivation 243

3.1. Conceptual model construction and methodology overview 244

The mathematical programming model derivation process starts from an existing conceptual 245

model consisting of a complete or close to complete specification of LEL + scenarios of the 246

system. There are three variations that we propose to the original definition of LEL and scenarios 247

for the specific goal of generating mathematical programming models. The first is that we do not 248

use the terms in the “state” category of the LEL, because no mathematical programming model 249

element is derived from them. The second is that we distinguish attributes inside the notion of 250

symbols, especially those that become scenario’s actors and resources. That is, an actor is a LEL 251

subject, and as such it will have a notion with its conceptual definition. We call attributes to the 252

terms that characterize the actors and appear in their notion, usually after the verb “has”. Similarly, 253

a resource is a LEL object with a notion that names its attributes. In turn, attributes are also defined 254

as LEL objects, and this is the reason that attributes are underlined in the notion of the actor or 255

resource that they characterize, describing a relation between LEL terms. The third variation that 256

we propose is related to specifying the temporal location inside scenarios’ context element with 257

more detail, identifying three fields: time horizon, time period and replanning time period. 258

In order to provide a better understanding of the proposed methodology, Figure 1 depicts its two 259

main stages (Conceptual model construction and Mathematical programming model construction), 260

the phases in the construction process for each stage, and two different levels of iteration. There 261

is one iteration cycle that occurs often in the construction of the conceptual model, where scenarios 262

may retrofit the LEL, and a second level or global iteration cycle, between the conceptual model 263

and the mathematical programming model, which should not be as usual. The methodology 264

provides traceability by way of rules that specify the source of each mathematical programming 265

model element. Therefore, this methodology is robust enough to actually afford changes in the 266

mathematical programming model construction. 267

12

The input for the whole process, as Figure 1 shows, is the domain knowledge obtained from 268

stakeholders and documents. The first phase consists in the LEL specification, which is created by 269

a system analyst together with the stakeholders and, if possible, the expert in mathematical 270

modelling, thus creating a multi-disciplinary team. They should identify the sources of knowledge, 271

define the LEL, verify and validate it. The second phase consists in specifying scenarios using the 272

knowledge captured in the LEL. If during the description of the scenario, it is noticed that more 273

knowledge from the domain is needed, the process goes back to phase 1. 274

When the knowledge captured by the LEL + scenarios appears adequate and complete, the third 275

phase (Mathematical Programming Model Derivation) begins. This phase uses the knowledge 276

captured in LEL and scenarios to derive the mathematical model. The mathematical programming 277

derivation proposal consists of several rules that map conceptual model elements (either LEL 278

vocabulary items or scenario elements previously derived from LEL) into mathematical 279

programming model elements. The derivation process may be carried out manually by the 280

mathematical programming expert, possibly together with the system analyst. In addition, we 281

provide tool support for a semi-automatic derivation through a semantic mediawiki. Even with a 282

tool support, manual revision from the mathematical programming expert will be necessary, since 283

it is not possible to automatically create the equations that model constraints from a textual 284

description, although we can isolate the sentence that contains a constraint from the conceptual 285

model. In Fig. 1, the numbering of steps in the mathematical programming model derivation phase 286

denotes a sequence in which rules should be applied. Moreover, at the end of each of these steps, 287

the manual intervention of the mathematical programming expert is advised to prevent an overly 288

complex mathematical programming model (as it could happen with a large number of indexes) 289

or to spot missing items in the conceptual model. Furthermore, it could also be detected that more 290

knowledge from the LEL and Scenarios is needed, and it that case, the process goes back to the 291

conceptual model construction. 292

13

 293
Fig. 1. Methodology for mathematical programming model derivation. 294
 295
3.2. Mathematical programming model derivation 296
 297
This section presents the rules that allow deriving a mathematical programming model from a 298

conceptual model composed of LEL + scenarios. Below we present a detailed description of each 299

derivation rule, listed by its rule number. Note that rule numbers do not dictate an order of 300

application except for the order dictated by the methodology and outlined in Figure 1. Following 301

this description, Table 3 provides a summary of the rules. 302

Rule 1. The main actor of the base scenario becomes the decision maker in the mathematical 303

programming model 304

Main actors are those who execute actions in the domain, in this case, those making decisions. 305

We consider the main actors to be a single person or several persons playing the same role, i.e., 306

making a centralized decision. There will be a base scenario that derives from the behavioral 307

response of the single main actor, who will be the decision maker in the mathematical 308

programming model. 309

14

Rule 2. The time period of the planning horizon defined in the temporal location, inside the 310

context of the base scenario, becomes an index of the mathematical programming model. 311

Moreover, other data objects related to time in the temporal location could also become 312

indexes. 313

The base scenario should specify the temporal location in its context attribute. Particularly, the 314

time period specifies the regular intervals in the time horizon at which different decisions are to 315

be made. If such time period exists, Rule 2 is applied to derive an index from it. Other LEL objects 316

specifying time considerations (shipping day or maturity day, among others) could also appear in 317

the temporal location and probably become indexes. 318

Rule 3. Scenarios’ actors that have multiple instances become indexes of the mathematical 319

programming model 320

Actors in scenarios are derived from LEL subjects. A subject in LEL could denote a specific 321

person or a role. If it is a role, which is filled by several persons, there should be an index in the 322

mathematical programming model to represent them. If the cardinality of a particular actor is likely 323

to grow from 1 into several people, the mathematical programming expert could decide to include 324

the index to make the model more flexible to accommodate this change in the near future. 325

Rule 4. Scenarios’ resources that have multiple instances become indexes of the 326

mathematical programming model 327

Resources represent relevant physical elements or information used by scenarios’ actors to achieve 328

their goal. Resources derive from LEL’s objects. Objects can be singletons (a single instance) or 329

denote a class of elements. When an object denotes a class, it becomes an index of the 330

mathematical programming model. Similar to Rule 3, if the object could grow into a class in the 331

future, the mathematical programming expert could decide to include the index. 332

15

Rule 5. Actors and/or resources which are related by a notion in the LEL become sets in the 333

mathematical programming model when their relation denotes a restriction 334

Two or more actors and/or resources are related when they appear in the same notion. In the case 335

where the relation among them is restricted for some cases, this restriction should be defined as a 336

set. Conversely, if the relation is many-to-many, it would not be necessary to define the sets. 337

Rule 6. The number of instances of the indexes could become parameters in the 338

mathematical programming model 339

An actor that becomes an index derives from a LEL subject with multiple instances. The number 340

of instances of an index is known, and therefore, it could become a parameter of the mathematical 341

programming model, although this is not always the case. The same occurs with resources and 342

temporal data objects. An example is the number of instances of the time period, which matches 343

the decision time horizon and could be defined as a parameter. 344

Rule 7. Attributes of scenarios’ actors and attributes of scenarios’ resources and attributes 345

of their relationship with known values become parameters of the mathematical 346

programming model. Each parameter is indexed by those indexes related to it by the same 347

notion and for which its value remains known 348

In the case of attributes that did not become indexes by Rule 4 and denote a known value, by this 349

rule they become parameters of the mathematical programming model. Moreover, a parameter 350

derived by this rule should be indexed by the indexes that are related to it. We define two LEL 351

terms as related if they appear in the same notion, i.e., either one of them appears in the notion of 352

the other, or both terms appear in the notion of a third term. These indexes could include other 353

actors but also other resources. However, note that not all indexes that appear in the notion will be 354

assigned to the parameter, only those that refer to a known value. Thus, the mathematical 355

programming expert should determine which subset of indexes refers to a known value, and the 356

16

parameter should be indexed only by that subset of indexes. The notion gives the whole subset, 357

but the expert decides what indexes should be used. 358

Rule 8. Attributes of scenarios’ actors and attributes of scenarios’ resources and attributes 359

of their relationship that have unknown values become decision variables of the 360

mathematical programming model. Each decision variable is indexed by those indexes 361

related to it by the same notion and for which its value is unknown 362

This rule is similar to Rule 7 but for unknown values. That is, attributes that appear in the notion 363

of actors or resources, which values should be assigned in the decision process, become decision 364

variables. Moreover, decision variables should take the indexes that are related to it by the same 365

notion and refer to unknown values. It could be necessary to define artificial decision variables 366

(without economic/physical interpretation) in order to mathematically represent a reality or to 367

force some logical constraint. 368

Rule 9. The goal of the base scenario contains the objective function 369

The base scenario should specify in its goal attribute, the purpose of the main actor (which 370

becomes the decision maker by Rule 1) in executing the scenario. This goal is specified as a 371

complex sentence with a relative clause that starts with “so as to” followed by the verb “minimize” 372

or “maximize”. From this verb to the end, this relative clause becomes the objective function. 373

Moreover, the expert may look for further details of each objective function in the notion of the 374

LEL symbols involved in the goal. 375

Rule 10. The set of context sentences of all scenarios become the set of constraints of the 376

mathematical programming model 377

Scenarios should specify in its context attribute, the conditions to comply. These conditions are 378

described in natural language, as sentences that relate to the actors and resources of each scenario. 379

17

Experts in mathematical programming modeling should use the restrictions described in the 380

scenarios’ context and relate them to parameters and indexes previously defined by other rules to 381

derive the set of mathematical programming model constraints. These constraints usually contain 382

logical constraints that represent business rules. These rules should appear during the requirements 383

elicitation that a system analyst carries out to construct the LEL, and therefore they would also be 384

derived as part of the scenarios’ context. Additionally, there are added other artificial constraints 385

(for instance, a positive boundary to variables) in order to avoid erroneous results. These 386

constraints will not generally appear in the conceptual model and they should be added by a 387

subsequent analysis of the mathematical programming expert. 388

Table 4 summarizes the relationship among LEL, scenarios and mathematical programming model 389

elements. Rules are grouped by the mathematical programming model element that is derived from 390

them. The second and third columns use indentation to represent nested concepts (for example, in 391

Rule #2, the scenario element that generates an “Index” is the “Time period”, inside the “Temporal 392

location”, which is in the “Context” of the “Base scenario”). 393

Table 3. Equivalences among LEL, scenario and mathematical programming model elements. 394

Rule
Number

LEL model Scenario model Mathematical
model

1 Subject Base scenario
 Main actor

Decision Maker

2 Object Base scenario
 Context
 Temporal location
 Time period

Index

3 Subject
 (multiple instances
 or single instance--opt)

Any scenario
 Actor

Index

4 Object
 (multiple instances
 or single instance--opt)

Any scenario
 Resource

Index

5 Subject / Object
 Notion
 (restriction)

Any scenario
 Actor / Resource

Set

6 Subject / Object
 Notion
 (no. of instances)

Any scenario
 Actor / Resource (index)

Parameter

7 Subject / Object
 Attribute (known value)

Any scenario
 Actor / Resource

Parameter

18

 Attribute

8 Subject / Object
 Attribute (unknown value)

Any scenario
 Actor / Resource
 Attribute

Decision Variable

9 Subject
 Behavioral response
 (verb)

Base scenario
 Goal

Objective function

10 Object Any context Constraint

4. Application 395

This section applies the above methodology to the problem of fresh tomato packing addressed by 396

Miller et al. (1997). The purpose of using an existing problem is to contrast the result of our 397

derivation rules with a real, published mathematical programming model while avoiding the long 398

description that a new mathematical program would require. 399

4.1 Conceptual model of the tomato packing problem: LEL + scenarios 400

This section presents the conceptual model for the tomato packing problem created in terms of 401

LEL + scenarios. The team assembled for this task was multidisciplinary, that is, composed of 402

system analysts and a mathematical programming expert. The information sources of the UofD to 403

construct the LEL were provided by the article from Miller et al. (1997), interviews with local 404

tomato producers that played the role of customers and other documentation sources online. After 405

three iterations, the team arrived at the LEL that appears in Table 4. 406

Table 4. LEL of the tomato packing problem. 407
Term Role Notion
Packinghouse
management (PM)

Subject Conducts the business of the packinghouse. The PM decides when to harvest tomatoes
matured in the present or previous cycle, communicates its decision to growers and packs
the harvested tomatoes to fulfil the market demand

Grower Subject Person responsible for a tomato field (has been assigned a certain number of acres of
tomatoes), including harvesting the tomatoes, for which it has some harvest capacity.
There are several growers. Each grower produces a certain yield of bins of tomatoes per
acre to take them to the packinghouse

Market Subject Customers of the packinghouse, who buy tomatoes to sell them. The market has a market
demand in number of boxes of tomatoes they would like to buy each day

Acres of tomatoes Object Land assigned to a grower with tomatoes that get matured on a certain maturity day, and
are harvested on a certain harvesting day. Acres may have a fraction of “vine ripe

tomatoes” that are sold “as is”
Tomato Object Produce planted by growers on the acres of their fields. Tomatoes that have not been

harvested in 2 cycles generate a cost of damaged tomato
Harvesting day Object Day in which tomatoes already matured are harvested. Every day in the horizon may be

a harvesting day
Maturity day Object Day in a period in which tomatoes in an acre get ready to be harvested. The acres of a

specific grower may have different maturity days within the decision horizon

19

Decision horizon Object Largest time in which the readiness of tomato fields for harvest can be accurately
predicted. It is 3 days

Harvest capacity Object The capacity of a grower to harvest during a certain day
Bin Object Container where the grower places the harvested tomatoes
Cost of damaged tomato Object Penalty cost due to dissatisfaction of a grower because of delayed harvest of fields

matured in the previous and present cycles in $ per bin
Fraction of “vine ripe

tomatoes” (v.r.t.)
Object Tomatoes sold without gassing

Yield of bins of tomatoes
per acre

Object The number of bins of harvested tomatoes per acre of a certain grower

Packinghouse Object Place where tomatoes are packed in boxes and stored. It has a packing capacity, and a
gassing capacity per day. The packinghouse requires some fraction of hour needed to
pack a bin at a certain packing cost. The packinghouse generates a fraction of tomatoes
ready after gassing. The packinghouse works on regular hours (9 to 5) and overtime hours
(after 5pm) to generate an inventory level at the end of the day

Packing cost Object The total packing cost consist of: (1) cost of damaged tomatoes; (2) inventory holding
cost, (3) shortfall cost, (4) overtime and (5) regular hour packing costs

Packing capacity Object No more tomatoes may be packed once the packinghouse reaches the packing capacity
Gassing capacity Object Capacity of the packinghouse to gass tomatoes in a harvesting day. It is measured in

number of boxes of tomatoes
Fraction of hour needed
to pack a bin

Object Time required for packing 1 bin of harvested tomatoes and put them in boxes

Fraction of tomatoes
ready after gassing

Object Tomatoes ready after a gassing session

Regular packing hours Object Hours when the packinghouse is operating on a day, that generates a regular packing
cost. It goes from 9 am to 5 pm

Overtime packing hours Object Extra hours required to complete the packing at the packinghouse on a day. They
generate a higher cost than the regular packing hours. Overtime hours are after 5pm

Regular packing cost Object Cost of packinghouse operation in $ per hour during regular packing hours
Overtime packing cost Object Cost of packinghouse operation in $ per hour during overtime packing hours
Inventory level Object Number of boxes of tomatoes of the packinghouse at the end of a certain day. It has a

certain inventory holding cost in box/day
Inventory holding cost Object Cost of packinghouse storage in boxes/day
Market demand Object Number of boxes of tomatoes that the packinghouse customers require in each harvesting

day. If the market demand is not covered it generates a shortfall
Shortfall Object Number of missing boxes of tomatoes needed to reach the market demand on a certain

harvesting day
Shortfall cost Object Cost of being short on satisfying the market demand in $ per box short
Box Object Container where tomatoes are placed during packing
Harvest Verb To cut the tomatoes that are matured
Pack Verb Put in boxes the harvested tomatoes. Packing is done on regular hours at a certain cost

or overtime hours to complete packing all harvested tomatoes
Gass Verb Technique used to ripen tomatoes that are not completely matured by exposing them to

ethylene gas

 408
The first version of the scenarios was created after the first iteration of the LEL and was used to 409

retrofit the second iteration of the LEL. 410

The following four tables describe the scenarios of the tomato packing problem. First, Table 5 411

presents the sole Level 0 scenario, called base scenario. Then, Tables 6 through 8 show the three 412

scenarios of Level 1, which derive from episodes of the base scenario. 413

 414

20

Table 5. Scenario Level 0 of the tomato packing problem. 415
Scenario 0: Plan the harvest and the packing of fresh tomatoes
Goal Make a plan at the beginning of the present cycle to harvest and pack tomatoes matured on the present and last

cycles, so as to minimize the total packing cost
Actors Main actor Packinghouse management (PM)
 Secondary actors Growers, market
Resources Physical resources Packinghouse; acres of matured tomatoes for each grower in the present and past cycles;

tomatoes; bins; boxes.
 Information

resources
Market demand in number of boxes for each day in the present cycle; for each grower, the
number of acres of matured tomatoes in the present and past cycles and the number of bins
of tomatoes generated after harvesting.

Context - Not all tomatoes that get matured in a cycle are harvested in the same cycle.
- Tomatoes harvested in the next cycle after they get matured may be sold but have less quality.
- Tomatoes not harvested in the next cycle after they get matured must be discarded.
- A grower may only harvest up to their capacity.
- The packinghouse may only pack and gass a limited number of tomato boxes a day.
- Temporal location:
• Decision horizon: 3 days
• Decision period: harvesting day; every day in a decision horizon.
• Other temporal variables: maturity day; any day in the decision horizon.

Episodes - PM makes a plan with the harvesting day of matured tomatoes, for each day in the present cycle, in number of acres
for each grower.
- Each grower harvests the amount decided and communicated by the PM.
- Each grower takes the harvested tomatoes in bins to the packinghouse.
- PM packs the harvested tomatoes in the packinghouse, labelling some boxes as “vine-ripe tomatoes”.
- PM gasses all boxes of tomatoes which are not labelled as “vine ripe”.
- Tomato boxes are shipped to cover the market demand, and the surplus remains as inventory of the packinghouse.

Table 6. Scenario 1.1 at Level 1 of the tomato packing problem. 416
Scenario 1.1: Plan the the harvesting day of matured tomatoes

Goal Decide how many acres of matured tomatoes to harvest for each grower in each day of the present cycle
Actors Main actor Packinghouse management (PM)
Resources Physical resources Acres of tomatoes.
 Information

resources
For each grower: harvest capacity, acres of matured tomatoes for each day and yields of bins
of tomatoes per acre. Also: cost of tomatoes damaged due to delayed harvest, packing and
gassing capacity of the packing house.

Context - A grower may only harvest in a day up to their harvest capacity.
- The number of bins of harvested tomatoes to pack from all growers should be less than the available gassing
capacity of the packinghouse for that day.
- The number of bins of harvested tomatoes to be packed per day should be less than the combined regular and
overtime packing capacity of the packinghouse.

Episodes - Considering the information resources available, the PM calculates, for each day in the present cycle and for each
grower, the number of acres to harvest of tomatoes matured of the previous and the present cycles.

Table 7. Scenario 1.2 at Level 1 of the tomato packing problem. 417
Scenario 1.2: Harvest
Goal Harvest the tomatoes and take them to the packinghouse.
Actors Main actor Grower
Resources Physical resources Acres of tomatoes; tomatoes; bins; packinghouse.
 Information

resources
Harvest capacity; acres of matured tomatoes for each day; number of acres to harvest each
day

Context - Tomatoes to be harvested are matured.
Episodes - The grower cuts the tomatoes from the acres already matured that the PM decided to cut on the present day.

- The grower places the tomatoes in bins.
- The grower takes the bins to the packinghouse.

 418

21

Table 8. Scenario 1.3 at Level 1 of the tomato packing problem. 419
Scenario 1.3: Pack the harvested tomatoes
Goal Put the tomatoes in boxes to be transported.
Actors Main actors Packinghouse personnel
Resources Physical resources Bins of tomatoes; boxes; packinghouse.
 Information

resources
Gassing capacity; regular packing hours; regular packing hour cost; overtime packing hours;
overtime packing hour cost

Context - Packing occurs during regular packing hour plus overtime packing hours, which combined are at most 12 hours.
- Regular packing hours are at most 8 hours a day, and overtime packing hours are at most 4 hours a day.
- No more tomatoes may be packed once the packinghouse reaches the packing capacity

 420

4.2 Derived mathematical programming model 421

We show the derived mathematical programming model elements in separate tables according to 422

the rules applied. First, Table 9 shows the decision maker and indexes generated by applying Rules 423

1 – 4. 424

Table 9. Derivation of decision maker and indexes. 425
Rule
Number

LEL model Scenario model Mathematical
programming
model

1 Subject: Packinghouse
Management (PM)

Scenario 0
 Main actor PM

Decision Maker
PM

2 Object: Harvesting day Scenario 0
 Context
 Temporal location
 Decision period

Indexes

t

2 Object: Maturity day Scenario 0
 Context
 Temporal location
 Other temporal vars

j

3 Subject: Grower Scenario 0 and 1.2
 Actor: Grower

i

 426
In the process of deriving the indexes, some scenarios’ resources with multiple instances were 427

considered as candidates on which to apply Rule 4. After that, the expert reviewed the relations 428

among actors and resources but did not derive any sets because there are none restricted relations. 429

Applying Rule 6 to the number of instances of the index for time period t yielded the time horizon 430

as the parameter T. The number of instances of the index for maturity day j is the same parameter 431

T. The number of instances of the index for grower i yielded parameter K. Other parameters came 432

from analyzing the attributes of scenarios’ actors and resources. For example, the attribute acres 433

of actor grower yielded parameter H. Rule 7 indicates that H should be indexed by the indexes 434

22

“related to it by the same notion”. In this case, the expert inspected the notion of acres looking the 435

underlined terms (i.e., related elements) that were defined as indexes: i for “grower”, j for 436

“maturity day” and t for “harvesting time”. However, the known values of acres are their grower 437

and their maturity day, but their harvesting time is unknown. Therefore, the indexes assigned to 438

the parameter are i and j, and the parameter is Hij. Other parameters were derived similarly. The 439

whole list of parameters appears in Table 10. 440

Table 10. Derivation of parameters. 441
Rule
Number

LEL model Scenario model Mathematical
programming
model
parameter

6 Object: Harvesting day
 Index: t

Scenario 0
 Context
 Temporal location
 Decision period

T

6 Subject: Grower
 Index: i

Scenario 0 and 1.2
 Actor: Grower

K

7 Subject: Grower
 Attribute: Acres
 Related indexes:
 Grower (i),
 Maturity day (j)

Scenario 0 and 1.2
 Actor: Grower
 Attribute: Acres

Hij

7 Subject: Grower
 Attr: Harvest capacity
 Related indexes: i

Scenario 0 and 1.2
 Actor: Grower
 Attr: Harvest capacity

Ui

7 Subject: Grower
 Attr: Yields of bins
 Related indexes: i

Scenario 0 and 1.2
 Actor: Grower
 Attr: Yields of bins

bi

7 Subject: Market
 Attr: Market demand
 Related indexes:
 Harvesting day (t)

Scenario 0
 Actor: Market
 Attr: Market demand

Dt

7 Object: Acres
 Attr: Fraction of v.r.t.
 Related indexes: -

Scenario 0
 Resource: Acres
 Attr: Fraction of v.r.t.

 

7 Object: Packinghouse
 Attr: Packing capacity
 Related indexes: -

Scenario 0
 Resource: Packinghouse
 Attr: Packing capacity

P

7 Object: Packinghouse
 Attr: Gassing capacity
 Related indexes: t

Scenario 0
 Resource: Packinghouse
 Attr: Gassing capacity

Gt

7 Object: Packinghouse
 Attr: Packing cost
 Notion: Cost of
 damaged tomato
 Related indexes: -

Scenario 1.3
 Resource: Packinghouse
 Attr: Packing cost
 Notion: Cost of damaged
 tomato

C

7 Object: Packinghouse
 Attr: Packing cost
 Notion: Inventory
 holding cost
 Related indexes: -

Scenario 1.3
 Resource: Packinghouse
 Attr: Packing cost
 Notion: Inventory
 holding cost

Ch

23

7 Object: Packinghouse
 Attr: Packing cost
 Notion: Shortfall cost
 Related indexes: -

Scenario 1.3
 Resource: Packinghouse
 Attr: Packing cost
 Notion: Shortfall cost

Cs

7 Object: Packinghouse
 Attr: Packing cost
 Notion: Regular
 packing cost
 Related indexes: -

Scenario 1.3
 Resource: Packinghouse
 Attr: Packing cost
 Notion: Regular
 packing cost

Cr

7 Object: Packinghouse
 Attr: Packing cost
 Notion: Overtime
 packing cost
 Related indexes: -

Scenario 1.3
 Resource: Packinghouse
 Attr: Packing cost
 Notion: Overtime
 packing cost

Co

7 Object: Packinghouse
 Attr: Fraction of hour
 needed to pack a bin
 Related indexes: -

Scenario 0
 Resource: Packinghouse
 Attr: Fraction of hour
 needed to pack a bin

f

7 Object: Packinghouse
 Attr: Fraction of tom.
 ready after gassing
 Related indexes: -

Scenario 0
 Resource: Packinghouse
 Attr: Fraction of tom.
 ready after gassing

α

 442
The next step was to derive the decision variables from the analysis of the attributes of scenarios’ 443

actors and resources, but this time, with unknown values. For example, the attribute acres of actor 444

grower, with a certain maturity day and with an uncertain harvesting day. This attribute yielded 445

decision variable X. Similar to the case for parameter H, to find the indexes for variable X the 446

expert looked at the underlined indexes in notion of acres, which are: i for grower, j for maturity 447

day and t for harvesting time, and the 3 of them are assigned to X to yield Xijt. Other decision 448

variables were derived similarly by applying Rule 8 (It, Rt, Ot, St), and appear in Table 11. Further 449

analysis on the scenarios and the context, caused the expert to split the decision variable Xijt in 2 450

variables: Xijt to refer to the acres matured on the present cycle and Lijt to refer to the acres matured 451

on the last cycle. Additionally, 2 more decision variables were needed to represent the acres not 452

harvested, both in the present cycle (Yijt) and the past cycle (Aijt). 453

To define the objective function1, Rule 9 was applied. Then, the expert had to manually write the 454

final equation: 455

Minimize 456

24

∑ ∑ ∑ 𝐶 ∗ (𝐴𝑖𝑗𝑡
𝑇
𝑡=1

𝑇
𝑗=1 + 𝑌𝑖𝑗𝑡)𝐾

𝑖=1 + ∑ 𝐶ℎ ∗ 𝐼𝑡
𝑇
𝑡=1 + ∑ 𝐶𝑠 ∗ 𝑆𝑡 + ∑ 𝐶𝑟 ∗ 𝑅𝑡 + ∑ 𝐶𝑜 ∗ 𝑂𝑡

𝑇
𝑡=1

𝑇
𝑡=1

𝑇
𝑡=1 457

(1) 458

Table 11. Resulting decision variables. 459
Rule LEL model Scenario model Mathematical

programming
model

8 Subject: Grower
 Attribute: Acres
 Rel. indexes: i, j, t

Scenario 0 and 1.2
 Actor: Grower
 Attr.: Acres

Xijt

8 Object: Packinghouse
 Attr.: Inventory level
 Related indexes: t

Scenario 0
 Resource: Packinghouse
 Attr.: Inventory level

It

8 Object: Packinghouse
 Attr.: Regular packing hours
 Related indexes: t

Scenario 0
 Resource: Packinghouse
 Attr.: Regular packing hs

Rt

8 Object: Packinghouse
 Attr.: Overtime packing hours
 Related indexes: t

Scenario 0
 Resource: Packinghouse
 Attr.: Overtime packing hs

Ot

8 Object: Market demand
 Attribute: Shortfall
 Related indexes: t

Scenario 0
 Resource: Market demand
 Attribute: Shortfall

St

- Derived manually by the expert

Scenario 0 and 1.2
 Actor: Grower. Attr.: Acres
 (matured on last cycle)

Lijt

- Derived manually by the expert Scenario 0 and 1.2
 Actor: Grower. Attr.: Acres
 (matured present cycle not harvested)

Yijt

- Derived manually by the expert Scenario 0 and 1.2
 Actor: Grower. Attr.: Acres
 (matured on last cycle not harvested)

Aijt

 460
Deriving the constraints was mostly handcrafted taking all the information available in the context 461

sentences of scenarios to create the corresponding equations, plus the addition new constraints to 462

balance quantities and make the mathematical programming model work. Constraints appear in 463

Table 12. 464

Table 12. Resulting constraints. 465
Rule Scenario model Mathematical programming model

10 Scenario 0 & 1.1
 Context sentence: A grower may only harvest in a day up
to his harvest capacity.

 ∑ 𝑋𝑖𝑗𝑡
𝐾
𝑖=1 + 𝐿𝑖𝑗𝑡 ≤ 𝑈𝑖 ∀𝑖𝑡

10 Scenario 1.1
 Context sntc: The number of bins of harvested tomatoes
to pack from all growers should be less than the gassing
capacity of the packinghouse for that day.

 (1 − 𝛿) ∑ ∑ 𝑋𝑖𝑗𝑡
𝑇−1
𝑡−𝑗=0

𝐾
𝑖=1 ∗ 𝑏𝑖 +

∑ ∑ 𝐿𝑖𝑗𝑡
𝑇
𝑡+𝑇−𝑗=1

𝐾
𝑖=1 ∗ 𝑏𝑖 ≤ 𝐺𝑡 ∀𝑡

10 Scenario 1.1
 Context sntc: The number of bins of harvested tomatoes
to be packed per day should be less than the combined
regular and overtime packing capacity of the packinghouse.

 𝑂𝑡 + 𝑅𝑡 − 𝑓 ∑ ∑ 𝑋𝑖𝑗𝑡
𝑇−1
𝑡−𝑗=0

𝐾
𝑖=1 ∗ 𝑏𝑖 −

𝑓 ∑ ∑ 𝐿𝑖𝑗𝑡
𝑇
𝑇−𝑗=1

𝐾
𝑖=1 ∗ 𝑏𝑖 = 0 ∀𝑡

25

10 Scenario 1.3
 Context sntc: Packing occurs during regular packing hour
plus overtime packing hours, which are at most 12 hours.

𝑂𝑡 + 𝑅𝑡 ≤ 12 ∀𝑡

10 Scenario 1.3
 Context sntc: Regular packing hs. are at most 8 hours/day

𝑅𝑡 ≤ 8 ∀𝑡

- Added by expert: balance the acres matured in the previous
cycle but not yet harvested

𝐴𝑖𝑗𝑡 − 𝐴𝑖𝑗𝑡−1 + 𝐿𝑖𝑗𝑡 = 0 ∀𝑖𝑗𝑡

- Added by expert: balance the acres matured in the present
cycle but not yet harvested

𝑌𝑖𝑗𝑡 − 𝑌𝑖𝑗𝑡−1 + 𝑋𝑖𝑗𝑡 = 𝐻𝑖𝑗 ∀𝑖𝑗𝑡

- Added by expert: balance the end-of-period inventory level
(equal to the preceding end-of-period level + the quantity
of “vine ripe” tomatoes packed + the number of boxes of

tomatoes ready after gassing - the forecasted demand)

 𝐼𝑡 − 𝑆𝑡 − 𝐼𝑡−1 + 𝑆𝑡−1 − 𝛿 ∑ ∑ 𝑋𝑖𝑗𝑡
𝑇−1
𝑡−𝑗=0

𝐾
𝑖=1 ∗ 𝑏𝑖 +

𝛿 ∑ ∑ 𝐿𝑖𝑗𝑡
𝑇
𝑡−𝑇−𝑗=1

𝐾
𝑖=1 ∗ 𝑏𝑖 = 𝐷𝑡 + 𝐺𝑡 ∀𝑡

- Added by expert: assure a continual flow of tomatoes to the
market. The mature green tomatoes to be packed should be
at least equal to a fraction α of tomatoes ready on the day

of gassing.

 (1 − 𝛿) ∑ ∑ 𝑋𝑖𝑗𝑡
𝑇−1
𝑡−𝑗=0

𝐾
𝑖=1 ∗ 𝑏𝑖 +

∑ ∑ 𝐿𝑖𝑗𝑡
𝑇
𝑡+𝑇−𝑗=1

𝐾
𝑖=1 ∗ 𝑏𝑖 ≥ 𝛼𝐺𝑡 ∀𝑡

5. Semantic mediawiki construction for the LEL and scenarios definition 466

A domain ontology is proposed to attain the shared and agreed definition of a semantic model for 467

the LEL and scenarios. Moreover, ontology-based information retrieval allows us to formulate 468

queries based on our derivation rules, which will help in the semi-automatic derivation of 469

mathematical programming model elements. Finally, tool support is provided through a semantic 470

mediawiki constructed over the ontology, which allows for the knowledge building process of a 471

conceptual model and its derivation into math model elements. 472

5.1 Ontology Model 473

The proposed ontology is depicted in Figure 2. Thus, Subjects symbols are related to Scenario’s 474

Actors while Objects symbols are related to Scenario’s Resources. Moreover, Verbs symbols are 475

related to Scenario and Episode from Scenario’s representation as they represent the activities or 476

actions that are realized. LEL symbols are represented by the Symbol element, that has two 477

properties: a notion and a list of behavioral responses. Thus, the notion property just contains has 478

relations with Subjects and Objects that represent attributes of the described Symbol. Since we 479

need to differentiate known attributes (parameters) from unknown ones (decision variables), the 480

has relation is in fact modeled as two separate relations: has known and has unknown. In turn, the 481

26

behavioral response of a LEL’s Symbol is represented using a relation to the Verbs that represent 482

the actions were the Symbol participates, and therefore, its responsibilities. 483

From the scenario’s perspective, the element Scenario is represented by a property to define a title 484

as plane text. The rest of the Scenario’s properties are represented as relations with other model 485

elements. Thus, there is a relation called bounded to a Context. There are two relations from 486

Scenario to the Actor element called involves main actor and involves secondary actor, to 487

represent the main and secondary actors of the Scenario respectively. Scenario also has a property 488

called executed over, to related it with the Resources over which it is executed. The Scenario’s 489

episodes are described by the property performs related with the Episode elements. Finally, 490

Scenarios are connected by the property has to the Goal element. 491

In turn, a Context has a text property description and a has property related to a TemporalLoc that 492

represents the temporal location of the scenarios with its properties for time-horizon, time_period 493

and replanning_time_period. The Actor element has name and instance_number as properties, 494

where the latter is used for the mathematical programming model derivation, to identify actors 495

with more than one instance as indexes. Resource has a structure identical to Actor although their 496

semantic meaning is completely different. The Episode element has a sentence that describes it 497

and a relation described in that connects the Episodes to the parent Scenario. Moreover, a Goal 498

has a property description and a relation optimize to an Optimization Goal. This Optimization 499

Goal is not part of the original definition of scenarios but added for mathematical programming 500

model derivation purposes. It is described by two properties: Operation and TargetVariable to 501

define the max/min operation for one particular variable as objective of the Scenario’s Goal. 502

Finally, there is a Constraint element that could be related with Episode, Actor, Resource or 503

TemporalLoc elements by the property is restricted by. A Constraint is defined by the property 504

expression, which is applied on the corresponding elements. 505

27

 506
Fig. 2. The LEL and scenarios ontology. 507
 508
5.2 Semantic queries 509

The queries rely on the definition of a specific Scenario instance defined as Base Scenario. The 510

result of these queries will be used by the mathematical programming expert to obtain a 511

preliminary version of the final mathematical programming model, as explained before. Table 13 512

summarizes the queries, in a pseudo-code that makes them more readable. 513

Table 13. Queries based on each rule to derive potential mathematical programming model elements 514
Rule
Number

Mathematical
model output

Semantic Query

1 Decision Maker Base Scenario involves main actor: ?Actor

2 Index

Base Scenario bounded: ?Context
?Context has: ?TemporalLoc ?time_period

3 Index Scenario involves main actor: ?Actor
?Actor instance_number >1: ?Actor

Scenario involves secondary actor: ?Actor
?Actor instance_number >1: ?Actor

4 Index Scenario executed over: ?Resource
?Resource instance_number > 1: ?Resource

5 Set Symbol has known: ?Attribute1
Symbol has known: ?Attribute2
(?Attribute1 is restricted by: ?Constraint) == (?Attribute2 is restricted by:
?Constraint)
 ?Attribute1, ?Attribute2

6 Parameter Scenario executed over: ?Resource
?Resource instance_number > 1: ?Resource instance_number

Scenario involves secondary actor: ?Actor
?Actor instance_number > 1: ?Actor instance_number

28

7 Parameter (Actor has known: ?Attribute)+ (Resource has known: ?Attribute)

8 Decision Variable (Actor has unknown: ?Attribute)+ (Resource has unknown: ?Attribute)

9 Objective function Base Scenario has: ?Goal
?Goal optimize: ?Optimization Goal

10 Constraint Constraint

 515
 516
Rule 1 determines the decision maker by requesting the main Actor from the Base Scenario. Rule 517

2 determines the temporal index from the time period, accessing the Context of the Base Scenario 518

through the bounded property, and from the Context, using the properties has to reach the 519

properties of the Temporal Location. Rules 3 and 4 are also intended for deriving indexes. In these 520

queries, all the instances of Actor and Resource in all the scenarios are collected by the properties 521

involves main actor, involves secondary actor and executed over, and they are selected if the 522

property instance_number is greater than 1. Rule 5 determines relations among Actors and 523

Resources that are candidates to become sets, specifically, if they appear in the same notion and 524

are related with the same Constraint by the property is restricted by. Rule 6 derives parameters 525

from the indexes obtained by rules 3 and 4, specifically, the number of instances described by the 526

property instance_number. Rule 7 derives parameters from known Attributes of Actors and 527

Resources. Particularly, this rule uses the property has known that belongs to Symbol elements 528

representing Subjects (for Actors) and Objects (for Resources). Similarly, Rule 8 determines 529

decision variables but using the property has unknown to denote the unknown Attributes. To define 530

the optimization goal of the mathematical programming model, it is necessary to access to the 531

Goal of the Base Scenario by the property has and subsequently, to its Optimization Goals by the 532

property optimize. Finally, any other restriction for the model could be derived from the Constraint 533

elements. 534

29

5.3 Mediawiki implementation 535

We have built a semantic mediawiki in order to provide support for the collaborative construction 536

of a knowledge base. The wiki provides the capability of creating and editing articles by way of a 537

user-friendly interface guided by forms that will be used by stakeholders, analysts and 538

mathematical modelling experts. These forms are based on the ontology proposed for the LEL and 539

scenarios. Figure 3 shows a form to describe a Scenario. The figure shows that some attributes as 540

goal and context are plain text, while others are described with a kind of button or token. These 541

tokens describe relations to other elements of the model already created. 542

 543
Fig. 3. Mediawiki form based on LEL and scenarios’ ontology. 544
 545
In turn, Figure 4 shows a form to navigate a Scenario. The wiki-links could be blue or red 546

describing whether the related article is already defined or not, respectively. 547

30

 548
Fig. 4. Scenario’s article. 549
 550
Finally, the capability of application of ontologies as a semantic knowledge model allows to 551

implement the semantic queries described previously to semi-automatically derive mathematical 552

programming model elements from LEL + scenarios elements. Thus, once the knowledge base is 553

constructed, the mathematical modelling expert will be able to generate new articles with a 554

preliminary version of the mathematical programming model. Figures 5 displays an example, with 555

the article generated from the LEL and scenarios of the case study. Note that the support is not 556

completely automatic because the inference only allows for an approximation to the mathematical 557

programming model, and the expert is still needed to verify the correctness of the mediawiki 558

derivation and provide the algebraic form. 559

31

 560

 561
Fig. 5. Article of mediawiki with automatic mathematical programming model derivation. 562
 563
6. Conclusions 564

This paper has presented a novel methodology that connects the areas of requirements engineering 565

with conceptual modelling in order to build mathematical programming models that capture the 566

business domain more effectively and completely. Specifically, the methodology has proposed for 567

the first time the use of the LEL and scenarios for creating a conceptual model of a domain from 568

32

where a mathematical programming model can be derived. The construcion of the conceptual 569

model invites the participation of all stakeholders, which is deficiency of other proposals for DSS 570

construction in agriculture. In comparison with other approaches for conceptual mathematical 571

modelling, this article provides further tool-supported guidence about how to obtain the problem 572

definition and how to derive a mathematical programming model from a precise specification in 573

terms of derivation rules, as opposed to relying on mere textual descriptions or in the modeler’s 574

ability. Moreover, we have proposed an ontology that provides the basis for a semantic mediawiki 575

that serves both, sharing knowledge of the conceptual domain model among the different 576

stakeholders, as well as semi-automating the derivation of the mathematical programming model. 577

The usefulness of this proposal can be understood from several perspectives: research, academic 578

and managerial. From the research and academic points of view, we may highlight the main 579

contributions as follows: (i) it provides a novel step-by-step methodology based on the LEL and 580

scenarios that allows both: to obtain the required information to derive the definition part of a 581

mathematical programming model, and to define the optimization problems that constitute the 582

modelling part of the model; (ii) our approach provides a structure to the problem that allows to 583

identify the elements of the problem clearly; (iii) using the LEL and scenarios to create a 584

conceptual model iteratively and incrementally in collaboration with stakeholders allows applying 585

an agile development approach to mathematical modelling; (iv) the use of LEL and scenarios 586

provides traceability from the requirements to the mathematical programming model 587

implementation to cope with possible changes of requirements and a better understanding of their 588

impact on the model; and (v) the process of creating a conceptual model with LEL + scenarios 589

also generates a complete specification of requirements for a potential model-based DSS. 590

Regarding the managerial perspective, we believe that the ease of use and good expressiveness of 591

the proposed methodology will facilitate the implementation of mathematical programming 592

models in agriculture, as well as provide new tools for teaching mathematical programming and 593

33

foster research in the combined areas of agile methods in requirements engineering, mathematical 594

programming and decision support system development. Further research includes validating the 595

proposed methodology in real world case studies from agriculture. Finally, we intend to extend 596

the approach to the derivation of mathematical programming models under uncertainty, such as 597

stochastic programming and fuzzy mathematical programming. 598

Acknowledgments. This work was supported by the European Commission, project H2020- 599
RUC-APS, grant number H2020-MSCA-RISE-2015-691249; and the Argentinian National 600
Agency for Scientific and Technical Promotion (ANPCyT), grant number PICT-2015-3000. 601

References 602
Alemany, M., Ortiz, A. & Fuertes-Miquel, V.S. (2018). A decision support tool for the order 603

promising process with product homogeneity requirements in hybrid Make-To-Stock and 604
Make-To-Order environments. Application to a ceramic tile company. Computers & 605
Industrial Engineering 122: 219–234. 606

Alemany, M.M.E., Alarcón, F., Lario, F.C. & Boj, J.J. (2011). An application to support the 607
temporal and spatial distributed decision-making process in supply chain collaborative 608
planning. Computers in Industry 62: 519–540. 609

Alemany, M.M.E., Lario, F.C., Ortiz, A. & Gómez, F. (2013). Available-To-Promise modeling 610
for multi-plant manufacturing characterized by lack of homogeneity in the product: An 611
illustration of a ceramic case. Applied Mathematical Modelling 37(5): 3380–3398. 612

Alemany, M.M.E., Pérez Perales, D., Alarcón, F. & Boza, A. (2007). Planificación Colaborativa 613
para Redes de Suministro-Distribución (RdS/D) mediante programación matemática en 614
entornos distribuidos. In Int. Conference on Industrial Engineering & Industrial 615
Management. 616

Alexander, I. & Maiden, N. (2004). Scenarios, stories, and use cases: the modern basis for system 617
development. Computing Control Engineering Journal 15(5): 24–29. 618

Armengol, A., Mula, J., Díaz-Madroñero, M. & Pelkonen, J. (2015). Conceptual model for 619
associated costs of the internationalisation of operations. Lecture Notes in Management and 620
Industrial Engineering 181–188. 621

Baraniuk, R., Burrus, C., Johnson, D. & Jones, D. (2004). Sharing knowledge and building 622
communities in signal processing. IEEE Signal Processing Magazine 21(5): 10–16. 623

Behzadi, G., O’Sullivan, M.J., Olsen, T.L. & Zhang, A. (2018, September 1). Agribusiness supply 624
chain risk management: A review of quantitative decision models. Omega (United Kingdom). 625
Elsevier Ltd. 626

Breitman, K.K. & Leite, J.C.S.P. (2003). Ontology as a requirements engineering product. In 627
Proceedings of the IEEE Int. Conference on Requirements Engineering (RE). 628

Cid-Garcia, N.M. & Ibarra-Rojas, O.J. (2019). An integrated approach for the rectangular 629
delineation of management zones and the crop planning problems. Computers and 630
Electronics in Agriculture 164. 631

Cysneiros, L.M. & Leite, J.C.S.P. (2001). Using the language extended lexicon to support non-632
functional requirements elicitation. In Proceedings of the Workshops de Engenharia de 633
Requisitos, Wer’01. Buenos Aires, Argentina. 634

Dominguez-Ballesteros, B., Mitra, G., Lucas, C. & Koutsoukis, N.S. (2002). Modelling and 635
solving environments for mathematical programming (MP): A status review and new 636

34

directions. Journal of the Operational Research Society 53(10 SPEC.): 1072–1092. 637
Retrieved from https://doi.org/10.1057/palgrave.jors.2601361 638

Esteso, A., Alemany, M., Ortiz, A. & Peidro, D. (2018). A multi-objective model for inventory 639
and planned production reassignment to committed orders with homogeneity requirements. 640
Computers & Industrial Engineering 124: 180 – 194. 641

Esteso, A., Alemany, M.M.E. & Ortiz, A. (2018). Conceptual framework for designing agri-food 642
supply chains under uncertainty by mathematical programming models. International 643
Journal of Production Research 56(13): 4418–4446. 644

Geisser, M. & Hildenbrand, T. (2006). A method for collaborative requirements elicitation and 645
decision-supported requirements analysis. In R. G. Ochoa S.F. (ed.), Advanced software 646
engineering: expanding the frontiers of software technology. Boston, MA: Springer. 647

Giannoccaro, I. & Pontrandolfo, P. (2001). Models for Supply Chain Management : A Taxonomy. 648
In Production and Operations Management 2001.Conference POMS mastery in the new 649
millennium. Orlando, FL, USA. 650

Gil, G.D., Figueroa, D.A. & Oliveros, A. (2000). Producción del LEL en un dominio técnico. 651
Informe de un caso. In Proceedings of the Workshops de Engenharia de Requisitos, Wer’00. 652
Rio de Janeiro, Brazil. 653

Grillo, H., Alemany, M.M.E., Ortiz, A. & Fuertes-Miquel, V.S. (2017). Mathematical modelling 654
of the order-promising process for fruit supply chains considering the perishability and 655
subtypes of products. Applied Mathematical Modelling 49: 255–278. 656

Grossmann, I. (2005). Enterprise-wide optimization: A new frontier in process systems 657
engineering. American Institute of Chemical Engineers 51(7): 1846–1857. 658

Gruber, T. (1993). A translation approach to portable ontology specifications. Knowledge 659
Acquisition 5(2): 199–220. 660

Gruber T. (1995). Toward principles for the design of ontologies used for knowledge sharing. 661
International Journal of Human-Computer Studies 43(43): 907–928. 662

Hernández, J.E., Mula, J., Ferriols, F.J. & Poler, R. (2008). A conceptual model for the production 663
and transport planning process: An application to the automobile sector. Computers in 664
Industry 59(8): 842–852. Retrieved from 665
https://www.sciencedirect.com/science/article/pii/S0166361508000778 666

Jain, R., Malangmeih, L., Raju, S.S., Srivastava, S.K., Immaneulraj, K. & Kaur, A.P. (2018). 667
Optimization techniques for crop planning: A review. Indian Journal of Agricultural 668
Sciences 88(12): 1826–1835. Retrieved from 669
https://www.researchgate.net/publication/329736318 670

Kaplan, G., Hadad, G., Doorn, J. & Leite, J.C.S.P. (2000). Inspección del léxico extendido del 671
lenguaje. In Proceedings of theWorkshops de Engenharia de Requisitos, Wer’00. Rio de 672
Janeiro, Brazil. 673

Laporti, V., Borges, M.R.S. & Braganholo, V. (2009). Athena: A collaborative approach to 674
requirements elicitation. Computers in Industry 60(6): 367–380. 675

Leite, J.C.S.P. & Franco, A.P.M. (1993). A strategy for conceptual model acquisition. In 676
Proceedings of IEEE International Symposium on Requirements Engineering, 1993. San 677
Diego, California: IEEE Computer Society Press. 678

Leite, J.C.S.P., Hadad, G., Doorn, J. & Kaplan, G. (2000). A Scenario Construction Process. 679
Requirements Engineering Journal 5(1): 38–61. Retrieved from 680
http://link.springer.com/article/10.1007/PL00010342 681

Lenat, D.B. (1995). CYC: A large-scale investment in knowledge infrastructure. Communications 682
of the ACM 38(11): 33–38. 683

Lesh, R, Landau, M. & Hamilton, E. (1983). Conceptual models in applied mathematical problem 684
solving research. In R. Lesh and M. Landau (ed.), Acquisition of Mathematics Concepts and 685

35

Processes. NY: Academic Press. 686
Lesh, Richard. (1981). Applied mathematical problem solving. Educational Studies in 687

Mathematics 12(2): 235–264. Retrieved from https://doi.org/10.1007/BF00305624 688
Lezoche, M., Yahia, E., Aubry, A., Panetto, H. & Zdravković, M. (2012). Conceptualising and 689

structuring semantics in cooperative enterprise information systems models. Computers in 690
Industry 63(8): 775–787. Retrieved from 691
https://www.sciencedirect.com/science/article/pii/S016636151200125X 692

Liu, L., Wang, H. & Xing, S. (2019). Optimization of distribution planning for agricultural 693
products in logistics based on degree of maturity. Computers and Electronics in Agriculture 694
160: 1–7. 695

Miller, G.A. (1995). WordNet: a lexical database for English. Communications of the ACM 696
38(11): 39–41. 697

Miller, W.A., Leung, L.C., Azhar, T.M. & Sargent, S. (1997). Fuzzy production planning model 698
for fresh tomato packing. International Journal of Production Economics 53(3): 227–238. 699
Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0925527397001102 700

Mir, S.A., Qasim, M., Arfat, Y., Mubarak, T., Bhat, Z.A., Bhat, J.A., … Sofi, T.A. (2015). 701
Decision support systems in a global agricultural perspective-a comprehensive review. 702
Journal of Agriculture Sciences 7(1): 403–415. 703

Moskaliuk, J., Kimmerle, J. & Cress, U. (2009). Wiki-supported learning and knowledge building: 704
effects of incongruity between knowledge and information. Journal of Computer Assisted 705
Learning 25(6): 549–561. 706

Mula, J., Poler, R., García-Sabater, J.P. & Lario, F.C. (2006). Models for production planning 707
under uncertainty: A review. International Journal of Production Economics 103(1): 271–708
285. Retrieved from https://www.sciencedirect.com/science/article/pii/S0925527306000041 709

Mula, Josefa, Peidro, D., Díaz-Madroñero, M. & Vicens, E. (2010). Mathematical programming 710
models for supply chain production and transport planning. European Journal of Operational 711
Research 204(3): 377–390. Retrieved from http://dx.doi.org/10.1016/j.ejor.2009.09.008 712

Mundi, I., Alemany, M., Boza, A. & Poler, R. (2013). A model-driven decision support system 713
for the master planning of ceramic supply chains with non-uniformity of finished goods. 714
Studies in Informatics and Control 22(2): 153–16. Retrieved from 715
https://doi.org/10.24846/v22i2y201305 716

Munir, K. & Sheraz Anjum, M. (2018). The use of ontologies for effective knowledge modelling 717
and information retrieval. Applied Computing and Informatics 14(2): 116–126. Retrieved 718
from https://www.sciencedirect.com/science/article/pii/S2210832717300649#b0035 719

Oliveira, A. de P.A., Leite, J.C.S. do P., Cysneiros, L.M. & Cappelli, C. (2007). Eliciting Multi-720
Agent Systems Intentionality: from Language Extended Lexicon to i* Models. In XXVI 721
International Conference of the Chilean Society of Computer Science (SCCC’07). IEEE. 722
Retrieved from http://ieeexplore.ieee.org/document/4396976/ 723

Pérez, D., Lario, F.C. & Alemany, M.M.E. (2010). Descripción detallada de las Variables de 724
Decisión en Modelos basados en Programación Matemática en un contexto de Planificación 725
Colaborativa de una Red de Suministro/Distribución (RdS/D). In 4th Int. Conf. on Industrial 726
Engineering and Industrial Management; XIV Congreso de Ingeniería de Organización. 727
Donostia - San Sebastián. 728

Pérez Perales, D., Lario, F.C., Alemany, M.M.E. & Hernández, J. (2012). Framework for 729
Modelling the Decision. International Journal of Decision Support System Technology 4(2): 730
59–77. Retrieved from http://services.igi-731
global.com/resolvedoi/resolve.aspx?doi=10.4018/jdsst.2012040104 732

Pesic, M. & van der Aalst, W.M.P. (2005). Towards a reference model for work ditstribution in 733
workflow management systems. In & M. N. E. Kindler (ed.), Proceedings of the First 734

36

International Workshop on Business Process Reference Models (BPRM,05). Nancy: 735
University Henri Poincaré. 736

Raghunathan, S. (1996). A structured modeling based methodology to design decision support 737
systems. Decision Support Systems 17(4): 299–312. 738

Saranya, S. & Amudha, T. (2017). Crop planning optimization research - A detailed investigation. 739
In 2016 IEEE International Conference on Advances in Computer Applications, ICACA 740
2016. Institute of Electrical and Electronics Engineers Inc. 741

Schneeweiss, C. (2003a). Distributed decision making in supply chain management. International 742
Journal of Production Economics 84(1): 71–83. Retrieved from 743
https://www.sciencedirect.com/science/article/pii/S092552730200381X 744

Schneeweiss, C. (2003b). Distributed decision making––a unified approach. European Journal of 745
Operational Research 150(2): 237–252. Retrieved from 746
https://www.sciencedirect.com/science/article/abs/pii/S0377221702005015 747

Schön, E.-M., Thomaschewski, J. & Escalona, M.J. (2017). Agile Requirements Engineering: A 748
systematic literature review. Computer Standards & Interfaces 49: 79–91. Retrieved from 749
https://www.sciencedirect.com/science/article/abs/pii/S0920548916300708 750

Shapiro, J.F. (1993). Chapter 8 Mathematical programming models and methods for production 751
planning and scheduling. Handbooks in Operations Research and Management Science 4: 752
371–443. Retrieved from 753
https://www.sciencedirect.com/science/article/abs/pii/S0927050705801884 754

Siau, K. (2004). Evaluating the Usability of A Group Support System Using Co-Discovery. 755
Journal of Computer Information Systems 44(2): 17–28. Retrieved from 756
https://www.tandfonline.com/doi/abs/10.1080/08874417.2004.11647563 757

Soto-Silva, W.E., Nadal-Roig, E., González-Araya, M.C. & Pla-Aragones, L.M. (2016, June 1). 758
Operational research models applied to the fresh fruit supply chain. European Journal of 759
Operational Research. Elsevier B.V. 760

Swartout, B., Patil, R., Knight, K. & Russ, T. (1996). Toward distributed use of large-scale 761
ontologies. In Proc. of the Tenth Workshop on Knowledge Acquisition for Knowledge-Based 762
Systems. Banff, Canada. 763

Udias, A., Pastori, M., Dondeynaz, C., Carmona Moreno, C., Ali, A., Cattaneo, L. & Cano, J. 764
(2018). A decision support tool to enhance agricultural growth in the Mékrou river basin 765
(West Africa). Computers and Electronics in Agriculture 154: 467–481. 766

Vicens, E., Alemany, M.., Andrés, C. & Guarch, J.. (2001). A design and application methodology 767
for hierarchical production planning decision support systems in an enterprise integration 768
context. International Journal of Production Economics 74(1–3): 5–20. Retrieved from 769
https://www.sciencedirect.com/science/article/pii/S0925527301001037 770

Young, R. (2004). The Requirements Engineering Handbook. Artech HouseISBN: 978-1-58053-771
266-2. 772

 773

	Using LEL and scenarios to derive mathematical programming models. Application in a fresh tomato packing problem
	Abstract
	1. Introduction
	2. Literature review
	3. Methodology for mathematical programming model derivation
	3.1. Conceptual model construction and methodology overview
	This section presents the rules that allow deriving a mathematical programming model from a conceptual model composed of LEL + scenarios. Below we present a detailed description of each derivation rule, listed by its rule number. Note that rule number...
	Rule 1. The main actor of the base scenario becomes the decision maker in the mathematical programming model
	Main actors are those who execute actions in the domain, in this case, those making decisions. We consider the main actors to be a single person or several persons playing the same role, i.e., making a centralized decision. There will be a base scenar...
	Rule 2. The time period of the planning horizon defined in the temporal location, inside the context of the base scenario, becomes an index of the mathematical programming model. Moreover, other data objects related to time in the temporal location co...
	The base scenario should specify the temporal location in its context attribute. Particularly, the time period specifies the regular intervals in the time horizon at which different decisions are to be made. If such time period exists, Rule 2 is appli...
	Rule 3. Scenarios’ actors that have multiple instances become indexes of the mathematical programming model
	Actors in scenarios are derived from LEL subjects. A subject in LEL could denote a specific person or a role. If it is a role, which is filled by several persons, there should be an index in the mathematical programming model to represent them. If the...
	Rule 4. Scenarios’ resources that have multiple instances become indexes of the mathematical programming model
	Resources represent relevant physical elements or information used by scenarios’ actors to achieve their goal. Resources derive from LEL’s objects. Objects can be singletons (a single instance) or denote a class of elements. When an object denotes a c...
	Rule 5. Actors and/or resources which are related by a notion in the LEL become sets in the mathematical programming model when their relation denotes a restriction
	Two or more actors and/or resources are related when they appear in the same notion. In the case where the relation among them is restricted for some cases, this restriction should be defined as a set. Conversely, if the relation is many-to-many, it w...
	Rule 6. The number of instances of the indexes could become parameters in the mathematical programming model
	An actor that becomes an index derives from a LEL subject with multiple instances. The number of instances of an index is known, and therefore, it could become a parameter of the mathematical programming model, although this is not always the case. Th...
	Rule 7. Attributes of scenarios’ actors and attributes of scenarios’ resources and attributes of their relationship with known values become parameters of the mathematical programming model. Each parameter is indexed by those indexes related to it by ...
	In the case of attributes that did not become indexes by Rule 4 and denote a known value, by this rule they become parameters of the mathematical programming model. Moreover, a parameter derived by this rule should be indexed by the indexes that are r...
	Rule 8. Attributes of scenarios’ actors and attributes of scenarios’ resources and attributes of their relationship that have unknown values become decision variables of the mathematical programming model. Each decision variable is indexed by those in...
	This rule is similar to Rule 7 but for unknown values. That is, attributes that appear in the notion of actors or resources, which values should be assigned in the decision process, become decision variables. Moreover, decision variables should take t...
	Rule 9. The goal of the base scenario contains the objective function
	The base scenario should specify in its goal attribute, the purpose of the main actor (which becomes the decision maker by Rule 1) in executing the scenario. This goal is specified as a complex sentence with a relative clause that starts with “so as t...
	Rule 10. The set of context sentences of all scenarios become the set of constraints of the mathematical programming model
	Scenarios should specify in its context attribute, the conditions to comply. These conditions are described in natural language, as sentences that relate to the actors and resources of each scenario. Experts in mathematical programming modeling should...
	4. Application
	5. Semantic mediawiki construction for the LEL and scenarios definition
	A domain ontology is proposed to attain the shared and agreed definition of a semantic model for the LEL and scenarios. Moreover, ontology-based information retrieval allows us to formulate queries based on our derivation rules, which will help in the...
	5.1 Ontology Model
	5.2 Semantic queries
	5.3 Mediawiki implementation

	6. Conclusions
	References

