Accepted Manuscript

A case of intoxication due to a highly cytotoxic *Bacillus cereus* strain isolated from cooked chicken

Ana C. López, Jessica Minnaard, Pablo F. Pérez, Adriana M. Alippi

PII: S0740-0020(14)00204-4

DOI: 10.1016/j.fm.2014.08.005

Reference: YFMIC 2239

- To appear in: Food Microbiology
- Received Date: 31 March 2014
- Revised Date: 11 August 2014
- Accepted Date: 14 August 2014

Please cite this article as: López, A.C, Minnaard, J., Pérez, P.F., Alippi, A.M., A case of intoxication due to a highly cytotoxic *Bacillus cereus* strain isolated from cooked chicken, *Food Microbiology* (2014), doi: 10.1016/j.fm.2014.08.005.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	
2	Short Communication
3	
4	A case of intoxication due to a highly cytotoxic <i>Bacillus cereus</i> strain
5	isolated from cooked chicken
6	
7	López, Ana C ¹ ; Minnaard, Jessica ^{2,4} ; Pérez, Pablo F. ^{2,3} and Alippi, Adriana M. ^{1*}
8	
9	¹ Unidad de Bacteriología, Centro de Investigaciones de Fitopatología, Facultad de Ciencias
10	Agrarias y Forestales, Universidad Nacional de La Plata, cc 31, calle 60 y 119, 1900 La
11	Plata, Argentina.
12	
13	² Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CONICET. La
14	Plata). Calle 47 y 116-B1900AЛ. La Plata-Argentina. Tel/Fax: 54 221 424 9287/ 54 221
15	425 4853
16	$\mathcal{Q}^{(1)}$
17	³ Cátedra de Microbiología. Facultad de Ciencias Exactas, Universidad Nacional de La
18	Plata. Calle 47 y 115-B1900AJI. La Plata-Argentina.
19	
20	⁴ Área Farmacia. Facultad de Ciencias Exactas, Universidad Nacional de La Plata. Calle 47
21	y 115-B1900AJI. La Plata-Argentina.
22 23 24 25 26	* Corresponding author: Tel.: +54 221 4236758 ext. 423; fax +54 221 4352346 E-mail addresses: alippi@biol.unlp.edu.ar adrianaalippi@gmail.com (A.M. Alippi), rodrika@biol.unlp.edu.ar (A.C. López), jm@biol.unlp.edu.ar (J. Minnaard), pfp@biol.unlp.edu.ar (P.F. Pérez)

27 Abstract

20	
29	Outbreaks of Bacillus cereus infection/intoxication are not commonly reported because
30	symptoms are often mild, and the disease is self-limiting. However, hypervirulent strains
31	increase health risks. We report a case, which occurred in Argentina, of severe food
32	poisoning illness on a healthy adult woman associated to Bacillus cereus strain MVL2011.
33	The studied strain was highly cytotoxic, showed high ability to detach Caco-2 cells and was
34	positive for the hblA, hblB, and hblC genes of the hbl complex, bceT, entS and ces. As it is
35	considered that B. cereus emetic cluster evolved from a panmictic population of diarrhoeal
36	strains, B. cereus MVL2011 could constitute an intermediate strain between diarrhoeal and
37	emetic strains.
38	
39	Keywords: Bacillus cereus, ephitelial cells, virulence, genes, detachment, necrosis, food
40	poisoning
41	
42	Introduction
43	L'AND AND AND AND AND AND AND AND AND AND
44	Bacillus cereus is a spore-forming rod-shaped bacterium, commonly present in
45	food. It is an opportunistic microorganism widely recognized as the etiological agent of
46	food-borne outbreaks (emetic and diarrheic syndromes) as well as non-intestinal
47	pathologies (Kramer and Gilbert, 1992; Stenfors Arnesen et al., 2008). Emesis is caused by
48	cereulide (Ehling-Schulz et al, 2005a), whereas diarrhoea probably involves diverse
49	extracellular factors (Stenfors Arnesen et al., 2008). The virulence of B. cereus, whether
50	intestinal or non-intestinal, is intimately associated with the production of tissue

51	destructive/reactive proteins (Bottone, 2010). Two of these virulence factors are protein
52	complexes, i.e. hemolysin BL (HBL) and the non-haemolytic enterotoxin NHE
53	(Guinebretiere et al., 2002). Other virulence factors are single proteins, i. e. entFM
54	(enterotoxin FM), cytK (cytolysin K) and bceT (B. cereus enterotoxin) (Fagerlund et al,
55	2004, Kramer and Gilbert, 1992; Stenfors Arnesen et al., 2008), phosphatidylinositol
56	specific phospholipase (PI-PLC), enterotoxin S (EntS), sphingomyelinase (SMase),
57	cereolysin O (Clo), InhA1, NprA and HlyII (Cadot et al., 2010, Kramer and Gilbert, 1992;
58	Stenfors Arnesen et al., 2008). Moreover, other factors such as adhesion to and invasion of
59	epithelial cells also play a role in the biological effects of B. cereus strains (Minnaard et al.,
60	2004, 2007, 2013).
61	B. cereus symptoms are usually mild (Kramer and Gilbert 1992) and the pathology
62	is not commonly reported. However more severe cases including fatal outcomes have
63	increased in the last few years (Al-Abri et al., 2011; Bottone 2010; Dierick et al., 2005;
64	Mahler et al., 1997; Naranjo et al., 2011; Saito et al., 2010; Shiota et al., 2010). In
65	Argentina, diagnostic testing for B. cereus is not routinely performed for patients with
66	gastrointestinal diseases. Nevertheless, statistical data provided by the Health Ministry
67	(2008-2013) showed 5783 cases of food-borne disease, of which 26 were positive for B .
68	cereus and 9 occurred in 2011 (year of highest incidence).
69	In this context the aim of the present work was the isolation, identification and
70	characterization of the etiologic agent of a food poisoning episode associated to
71	consumption of chicken by a young healthy woman.
72	
73	1. Materials and Methods
74	

75 2.1. Case presentation

76

77	In Buenos Aires, Argentina, a 39-year-old healthy woman was hospitalized due to
78	dehydration. She had purchased chicken stuffed with carrots, eggs, pepper and cheese
79	which had been refrigerated immediately and the following day (for lunch) warmed in the
80	microwave oven. One hour after eating, she left home for sport activities (5 km running).
81	Ten hours after eating, she started vomiting and had 5 episodes of watery diarrhoea. After 3
82	hours from onset, the symptoms had not subsided, and the doctor ordered oral rehydration
83	and rest. However, diarrhoea and vomiting continued for further 5 h, which resulted in
84	severe dehydration and required 7 h hospitalization for reposition of water and electrolytes.
85	Analyses performed on faeces and vomitus did not detect the presence of Escherichia coli,
86	Shigella spp, Staphylococcus aureus or Salmonella spp.
87	The rapid onset of symptoms, in conjunction with the results of the microbiological
88	analysis, suggested Bacillus cereus as the most likely etiological agent for this case.
89	
90	2.2. Isolation of bacteria
91	
92	Two chicken samples (10 g) were diluted 1:10 in sterile distilled water and
93	homogenized. Ten microliters were spread on polymyxin-pyruvate-egg-yolk-mannitol
94	agar (PEMBA) plates (Holbrook and Andersson, 1980), which were incubated at $32 ^{\circ}$ C for
95	48 to 96 h until bacterial growth was detected (Lancette and Harmon, 1980). Gram staining
96	and determination of catalase activities were performed. Colony appearance regarding
97	shape, color, type of growth and presence of opaque halos due to lecithinase activity were
98	also evaluated.

99	
100	2.3. Bacterial identification
101	
102	The identity of the bacterial isolates was confirmed by using API 20E and API
103	50CH strips plus API 50CHB medium (Biomerieux, France) and data base Apiweb
104	(Biomerieux, www.biomerieux.com). In addition, starch hydrolysis, haemolytic activity
105	and production of a discontinuous haemolytic pattern on blood agar plates according to
106	standard protocols (Beecher and Wong 1994) were tested.
107	
108	2.4. Detection of enterotoxin genes
109	
110	Total genomic DNA was isolated from 24h-cultures grown on TSA using the
111	procedure previously described by López and Alippi (2007). Presence of sequence
112	associated to virulence genes were assessed as previously reported (Minnard et al., 2007).
113	Genes encoding for enterotoxin-T (bceT) (Guinebretiere et al., 2002), cytotoxin K (cytk)
114	(Ehling-Schulz et al., 2006), sphingomyelinase (sph), enterotoxin FM (entFM),
115	enterotoxin S (entS), phosphatidylinositol, phospholipase C (piplC) (Ghelardi et al., 2002),
116	the components of HBL (haemolysin BL: hblA, hblB, hblC, hblD) and NHE (non-
117	haemolytic enterotoxin: nheA, nheB, nheC) complexes (Guinebretiere et al., 2002) were
118	studied. In addition, the isolated was assessed for the ces gene related to the production of
119	cereulide (Ehling-Schulz et al., 2005a). DNA amplifications were performed in a thermal
120	cycler (Mastercycler personal; Eppendorf Hamburg, Germany). Amplicons were analyzed
121	by 1.6% (W/V) agarose gel, in TBE buffer, stained with Gel Red ® (Biotium, U.S.A) for 2
122	h at 80 V.

123 2.5 Culture of epithelial cells

124

125	Caco-2 cells (Fogh and Orfeo, 1977) were routinely grown in Dulbecco's modified
126	Eagle's minimum essential medium (DMEM) (25 mM glucose) (Life Technologies, Cergy,
127	France), supplemented with 15% (v/v) heat-inactivated (30 min, 56° C) fetal calf serum
128	(FCS) (PAA Laboratories GmbH, Pasching, Austria) and 1% (v/v) non-essential amino
129	acids (Life Technologies, Cergy, France). Monolayers were prepared in 24-tissue culture
130	plates (Greiner Bio One, Frickenhausen, Germany) by seeding $2.5 \ge 10^4$ cells per well.
131	Experiments and cell maintenance were carried out at 37° C in a 5% CO ₂ / 95% air
132	atmosphere. Cells at late post confluence (15 days in culture) were used.
133	Hep-2 cells were routinely grown in Dulbecco's modified Eagle's medium (DMEM,
134	25 mM glucose, Life Technologies, Carlsbad, CA, USA), supplemented with $10 \% (v/v)$
135	heat-inactivated (56 °C, 30 min) fetal calf serum (FCS, PAA Laboratories, Pasching,
136	Austria), 12 IU/ml penicillin-12 μ g/ml streptomycin (Life Technologies) and 1 % (v/v)
137	non-essential amino acids (Life Technologies). Cells were seeded at 6.2×10^4 cells per well
138	in 48-well tissue culture plates (Greiner Bio One, Frickenhausen, Germany) and incubated
139	for 48 h at 37 °C in 5% CO ₂ .
140	
141	2.6 Detachment of Caco-2 cells
142	

142

Detachment of enterocyte-like cells was performed as previously reported (Minnaard et al., 2001). Briefly, differentiated Caco-2 monolayers were incubated at 37 °C for 1 h with 0.5 ml of serial dilutions of culture filtrate supernatants (CFS, pH 6.8) from 16 h-old

146	bacteria cultures at $32 ^{\circ}\text{C}$ in BHIG (BHI broth (BIOKAR Diagnostics) supplemented with
147	0.1% (w/v) glucose). Cells were washed twice with phosphate buffered saline (PBS) (pH
148	7.2), fixed at room temperature for 1 min with 2 % (v/v) formaldehyde in PBS and washed
149	again with PBS. Afterwards, cells were stained by incubating for 20 min at room
150	temperature with 500 μ l of a crystal violet solution (0.13 % (w/v) crystal violet, 5 % (v/v)
151	ethanol and 2 % (v/v) formaldehyde in PBS). After washing to remove stain excess,
152	samples were treated with freshly prepared 50 % (v/v) ethanol at room temperature for 1 h.
153	Absorbance was measured in a microplate reader at 620 nm (Biotek Instruments, Winooski,
154	USA). Percentage of cell detachment was calculated as follows:
155	Cell detachment % = 100 X (Ac – As)/Ac, where Ac: A_{620} of control cells and As:
156	A ₆₂₀ of sample cells.
157	
158	2.7. Necrosis.
159	
160	Assessment of necrosis was performed as reported previously (López et al., 2013).
161	Briefly, Caco-2 monolayers were incubated with serial dilutions of CFS as describe above.
162	After 1 h of incubation, wells with monolayer not detached were washed twice with
163	binding buffer containing 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
164	(HEPES), 125 mM NaCl, 2.5 mM CaCl ₂ , (pH 7.2), and 0,2 % (p/v) gelatin. Afterwards, 1
165	μ g of propidium iodide was added in 100 μ l of binding buffer per well, and cells were
166	incubated on ice for 15 min. Then, samples were mounted in 50 % (v/v) glycerol in PBS

167 and analyzed by conventional fluorescence microscopy using a Leica DMLB microscope

168 coupled to a Leica DC 100 camera (Leica Microscopy Systems, Heerbrugg, Switzerland).

169

- 170 2.8. Mitochondrial dehydrogenase activity
- 171

Activity of mitochondrial dehydrogenases was determined by assessing the 172 173 reduction of 3-(4, 5-dimethylthiazol-2-vl)-2,5 diphenyl tetrazolium (MTT) by means of modification of a previously reported protocol (Finlay et al., 1999; Minnaard et al, 2007). 174 175 Briefly, autoclaved (15 min at 121°C) or non-heated CFS diluted in DMEM with 176 2% methanol were added to each well of Hep-2 cells and incubated 24 h at 37°C in 5% 177 CO2. CFS (autoclaved or non-heated) from a ces (-) B. cereus strain (B10502) were also evaluated. The medium was removed and DMEM (without phenol red) containing 0.5 178 179 mg/ml of MTT was added to each well; plates were incubated at 37 °C for 4 h and then, the 180 medium was removed. Intracellular formazan was solubilized with 0.25 ml of isopropyl 181 alcohol/0.1N HCl and absorbance at 570 nm was measured in a microtiter plate reader 182 (Bioteck Instruments, Winooski, USA).

183

184 2.9. Cell association assays

185

186 Bacterial from a 3 h-old cultures (32 °C) in BHIG were centrifuged and pellets were 187 suspended in DMEM containing 100 µg/ml chloramphenicol. As reported (Minnaard et al., 2004), in these conditions bacterial viability is preserved but no bacterial growth occurs. 188 189 Cell monolayers were washed twice with PBS before the infection assays and bacterial 190 suspensions were added to the monolayers (Multiplicity of infection, MOI = 100 bacteria 191 per cell) and incubated for 2 h at 37°C in a 5% CO₂/ 95% air atmosphere. To evaluate 192 association (adhering plus invading bacteria), monolayers were exhaustively washed with 193 PBS and incubated with 1 ml distilled water per well to lyse eukaryotic cells. Serial

194	dilutions of the samples were plated onto nutrient agar (BIOKAR Diagnostics, Beauvais,
195	France) and incubated at 37 °C for 16 h. Invasion was assessed by the aminoglycoside
196	protection assay as previously reported (Minnaard et al., 2004). All the infection assays
197	were performed in DMEM FCS-free.
198	R
199	2. Results
200	
201	After 48 h of incubation, typical mannitol negative and lecithinase positive colonies
202	were observed in PEMBA plates. Gram staining showed Gram-positive rods with
203	subterminal spores and no significant swelling of the sporangia. The isolate was named
204	MVL2011. Using the API 20E and API 50 CH strips and data base Apiweb, MVL2011
205	matched as Bacillus cereus. In addition, the strain hydrolyzed starch and lead to a
206	discontinuous haemolytic pattern.
207	The presence of sequences related to genes associated to the virulence of Bacillus
208	cereus was determined. As compared with 4 well characterized B. cereus strains, the strain
209	under study shows a very different pattern of virulence genes (table 1). Strain MVL2011
210	was positive for the sequence corresponding to the genes bceT, cytK, sph, entFM, entS, ces
211	and <i>piplC</i> (Table 1); moreover it presented 3 of the sequences of the hemolyisn BL (<i>hbl A</i> ,
212	B and C) and one of the sequences of the non hemolytic enterotoxin (<i>nhe B</i>) (Table 1). All
213	the genes gave amplification fragments of the expected sizes.
214	Biological activity of the strain MVL2011 was studied on epithelial cells.
215	Coincubation of Caco-2 monolayers with CFS of MVL2011 leads to cell detachment and
216	dose-response behaviour was observed (Fig. 1). Low doses of CFS did not detach cells but
217	led to significant necrosis as assessed by propidium iodide staining (Fig. 2). Interestingly,

when CFS was heated for 15 min at 121°C, the ability to detach Caco-2 cells was abrogated
(data not shown).

220 Hep-2 bioassay has been employed to analyzed cereulide. Results showed that, after 221 thermal treatment, 80 % of the biological activity was retained as compared to non-heated 222 CFS. In contrast, biological activity of CFS from strain B10502 was completely abolished 223 after thermal treatment. Infection of enterocyte-like Caco-2 cells was performed with vegetative culture of 224 MVL2011. Association and invasion values were $1.16 \pm 0.03 \times 10^6$ cfu/ml and 1.15 ± 0.07 225 x 10^2 cfu/ml, respectively. The ratio of associated/initial bacteria was 0.01 ± 0.003 and 226 invading/associated bacteria was $9.95 \pm 0.61 \times 10^{-5}$. 227 228

229 **3. Discussion**

230

Results presented in this case study provided evidence that B. cereus strain 231 MVL2011 isolated from cooked chicken and related to a case of serious food poisoning in 232 233 a healthy adult woman, was highly cytotoxic and unable to invade Caco-2 cells in spite of 234 adhesion ability similar to other B. cereus strains. Along with the clinical symptoms, 235 evidence suggest that the strain is an emetic isolate since it is positive for this sequences in 236 the PCR assay and the biological activity of the extracellular factors on Hep-2 cells is not 237 completely abrogated by thermal treatment (Stark et al., 2013). Even though levels of 238 cereulide lower than 8 µg/Kg body weight can be lowered with proper hydration, these 239 concentrations can be fatal in children (Saito et al., 2010). Some strains of B. cereus are 240 psychrotropic since they lead to the highest production of the emetic toxin between 12 °C 241 and 15 °C (Dierick et al., 2005). Fatal outcomes have been reported for these emetic strains

242 (Dierick et al., 2005). Note that the meal had been refrigerated for 24 h after being 243 purchased, and the same food had been eaten 24 h before without symptoms of food-244 poisoning. Usually B. cereus symptoms are mild (Kramer et al., 1992) and the pathology is 245 not commonly reported. However cases involving more serious health risks and fatal outcomes (Al-Abri, et al. 2011; Dierick et al., 2005; Mahler et al., 1997; Naranjo et al., 246 247 2011; Saito et al., 2010, Shiota et al., 2010) have increased in the last few years (Bottone 248 2010). 249 In Argentina, diagnostic test for B. cereus is not routinely performed for patients 250 with gastrointestinal diseases. As compared with other non-invasive B. cereus strains previously studied (Minnaard et al., 2007) stated in Table 1, strain MVL2011 is the sole 251 strain showing high ability to detach Caco-2 cells. In addition, it is positive for the hblA, 252 253 hblB and hblC genes of the hbl complex, bceT, entS and ces (cereulide synthase). 254 According to our results and the clinical presentation of the case, B. cereus MVL2011 is an emetic strain. In early reports on strains positive for the gene ces it has been proposed that, 255 256 on the basis of gene analysis, they belong to a well-defined "emetic cluster" (Ehling-Schulz 257 et al., 2005b). Noteworthy, our strain is positive for 3 out of 4 genes of the hbl complex that 258 is common in non-emetic strains (Ehling-Schulz et al., 2005b). These apparently 259 contradictory findings are in agreement with current knowledge on the virulence of B. 260 cereus (Castiaux et al., 2014; Messelhäusser et al., 2014). Indeed, it has been demonstrated 261 that the distribution of the ces gene is not homogeneus along B. cereus populations and 262 strains positive both for ces and hbl complex have been isolated (Kim et al., 2010; Rahmati, 263 T. and Labbe, R., 2008). 264

265 4. Conclusion

267	Results presented in this case study provided evidence that B. cereus strain
268	MVL2011 was involved in serious food poisoning based on symptoms, microbiological
269	analysis of patient's samples and the presence of B. cereus in the implicated food. It has
270	been proposed that B. cereus emetic cluster evolved from a panmictic population of
271	diarrhoeal strains. In this context and according to the results of the present study and the
272	current knowledge on the distribution of virulence traits of B. cereus, strain MVL2011
273	belongs to the sub-population of strains positive for several virulence genes. These
274	characteristics could correlate with the high biological activity of the strain under study.
275	
276	Acknowledgments
277	
278	This work was financed by Agencia Nacional de Promoción Científica y
278 279	This work was financed by Agencia Nacional de Promoción Científica y Tecnológica, Argentina (ANPCyT, PICT: 0760/08), CONICET (PIP 0708- 2009 and PIP
279	Tecnológica, Argentina (ANPCyT, PICT: 0760/08), CONICET (PIP 0708- 2009 and PIP
279 280	Tecnológica, Argentina (ANPCyT, PICT: 0760/08), CONICET (PIP 0708- 2009 and PIP 0407-2011), Universidad Nacional de La Plata (X574), and Facultad de Ciencias Exactas
279 280 281	Tecnológica, Argentina (ANPCyT, PICT: 0760/08), CONICET (PIP 0708- 2009 and PIP 0407-2011), Universidad Nacional de La Plata (X574), and Facultad de Ciencias Exactas
279 280 281 282	Tecnológica, Argentina (ANPCyT, PICT: 0760/08), CONICET (PIP 0708- 2009 and PIP 0407-2011), Universidad Nacional de La Plata (X574), and Facultad de Ciencias Exactas (Universidad Nacional de La Plata, Argentina).
279 280 281 282 283	Tecnológica, Argentina (ANPCyT, PICT: 0760/08), CONICET (PIP 0708- 2009 and PIP 0407-2011), Universidad Nacional de La Plata (X574), and Facultad de Ciencias Exactas (Universidad Nacional de La Plata, Argentina).
 279 280 281 282 283 284 	Tecnológica, Argentina (ANPCyT, PICT: 0760/08), CONICET (PIP 0708- 2009 and PIP 0407-2011), Universidad Nacional de La Plata (X574), and Facultad de Ciencias Exactas (Universidad Nacional de La Plata, Argentina). Figure Captions
 279 280 281 282 283 284 285 	Tecnológica, Argentina (ANPCyT, PICT: 0760/08), CONICET (PIP 0708- 2009 and PIP 0407-2011), Universidad Nacional de La Plata (X574), and Facultad de Ciencias Exactas (Universidad Nacional de La Plata, Argentina). Figure Captions Fig. 1: Detachment of enterocyte-like cells (Caco-2) after incubation with different

289	Fig. 2 Fluorescence microscopy of Caco-2 cells co-incubated with culture filtered
290	supernatants of Bacillus cereus MVL2001 (A) and control co-incubated with BHIG
291	medium (B). Cells were labeled with propidium iodide indicating red nuclei in necrotic
292	cells.
293	R'
294	
295	
296	References
297	
298	Al-Abri, S. S., Al-Jardania, A. K. , Al-Hosnia, M. S., Kurupb, P. J., Al-Busaidi. S., &
299	Beeching, N. J. (2011). A hospital acquired outbreak of Bacillus cereus gastroenteritis,
300	Oman. Journal of Infection and Public Health, 4, 180-186.
301	
202	Decelor D. J. & Wang A. C. I. (1004) Identification of hemolygin DI producing
302	Beecher, D. J., & Wong, A. C. L. (1994). Identification of hemolysin BL-producing
302	Beecher, D. J., & Wong, A. C. L. (1994). Identification of hemolysin BL-producing Bacillus cereus by a discontinuous hemolytic pattern in blood agar. Applied and
303	Bacillus cereus by a discontinuous hemolytic pattern in blood agar. Applied and
303 304	Bacillus cereus by a discontinuous hemolytic pattern in blood agar. Applied and
303 304 305	<i>Bacillus cereus</i> by a discontinuous hemolytic pattern in blood agar. Applied and Environmental Microbiology, 60, 1646–1651.
303304305306	Bacillus cereus by a discontinuous hemolytic pattern in blood agar. Applied and Environmental Microbiology, 60, 1646–1651. Bottone, E. J. (2010). Bacillus cereus, a Volatile Human Pathogen. Clinical Microbiology
 303 304 305 306 307 	Bacillus cereus by a discontinuous hemolytic pattern in blood agar. Applied and Environmental Microbiology, 60, 1646–1651. Bottone, E. J. (2010). Bacillus cereus, a Volatile Human Pathogen. Clinical Microbiology
 303 304 305 306 307 308 	 Bacillus cereus by a discontinuous hemolytic pattern in blood agar. Applied and Environmental Microbiology, 60, 1646–1651. Bottone, E. J. (2010). Bacillus cereus, a Volatile Human Pathogen. Clinical Microbiology Reviews, 23, 382-398.
 303 304 305 306 307 308 309 	 Bacillus cereus by a discontinuous hemolytic pattern in blood agar. Applied and Environmental Microbiology, 60, 1646–1651. Bottone, E. J. (2010). Bacillus cereus, a Volatile Human Pathogen. Clinical Microbiology Reviews, 23, 382-398. Cadot, C., Tran, S., Vignaud, M., De Buyser, M., Kolstø, A., Brisabois, A., Nguyen-Thé,

313

- 314 Castiaux, V., N'guessan, E., Swiecicka, I., Delbrassinne, L., Dierick, K. and Mahillon J.
- 315 (2014). Diversity of pulsed-field gel electrophoresis patterns of cereulide-producing isolates
- 316 of Bacillus cereus and Bacillus weihenstephanensis. FEMS Microbiology Letters, 353(2),
- 317 124-31. doi: 10.1111/1574-6968. 12423.

318

- 319 Dierick, K., Van Coillie, E., Swiecicka, I., Meyfroidt, G., Devlieger, H., Meulemans, A.,
- 320 Hoedemaekers, G., Fourie, L., Heyndrickx, M., & Mahillon, J. (2005). Fatal family
- 321 outbreak of Bacillus cereus-associated food poisoning. Journal of Clinical Microbiology,
- 322 43, 4277-4279.

- 324 Ehling-Schulz, M., Guinebretiere, M. H., Monthán, A., Berge, O., Fricker, M., & Svensson,
- 325 B. 1. (2006). Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS
- 326 Microbiology, 260, 232-240
- 327
- 328 Ehling-Schulz, M., Vukov, N., Schulz, A., Shaheen, R., Andersson, M., Märtlbauer, E., &
- 329 Scherer, S. (2005a). Identification and Partial Characterization of the Nonribosomal Peptide
- 330 Synthetase Gene Responsible for Cereulide Production in Emetic Bacillus cereus. Applied
- and Environmental Microbiology, 71, 105-113
- 332
- 333 Ehling-Schulz, M., Svensson, S., Guinebretiere, M., Lindback, T., Andersson, M., Schulz,
- 334 A., Fricker, M., Christiansson, A., Granum, P. E., Martlbauer, E., Nguyen-Thé, C.,
- 335 Salkinoja-Salonen, M., & Scherer, S. (2005b). Emetic toxin formation of Bacillus cereus

- restricted to a single evolutionary lineage of closely related strains. Microbiology, 151,
 183–197.
- 338
- 339 Fagerlund, A., Ween, O., Lund, T., Hardy, S. P., Granum, P. E. (2004). Genetic and
- 340 functional analysis of the cytK family of genes in Bacillus cereus. Microbiology, 150,
- 341 2689-2697.

342

- 343 Finlay, W. J. J., Logan, N. A., & Sutherland, A. D. (1999). Semiautomated metabolic
- 344 staining assay for Bacillus cereus emetic toxin. Applied and Environmental Microbiology,
- 345 65, 1811-1812.

- Fogh, J. M., & Orfeo, T. (1977). One Hundred And Twenty-Seven Cultured Human Tumor
 Cell Lines Producing Tumors In Nude Mice. Journal of the National Cancer Institute, 59,
 221-226.
- 350
- 351 Ghelardi, E., Celandroni, F., Salvetti, S., Barsotti, C., Baggiani, A., & Senesi, S. (2002).
- 352 Identification and characterization of toxigenic Bacillus cereus isolates responsible for two
- 353 food-poisoning outbreaks. FEMS Microbiology Letters. 208, 129-134
- 354
- 355 Guinebretiere, M. H., Broussolle, V., & Nguyen-Thé, C. (2002). Enterotoxigenic profiles of
- 356 food-poisoning and food-borne Bacillus cereus Strains. Journal of Clinical Microbiology,
- 40, 3053-3056.
- 358

359	Kim, Jung-Beom; Kim, Jai-Moung; Kim, So-Yeong; Kim, Jong-Hyun; Park, Yong-Bae;
360	Choi, Na-Jung and Oh, Deog-Hwan. (2010). Comparison of Enterotoxin Production and
361	Phenotypic Characteristics Between Emetic and Enterotoxic Bacillus cereus. Journal of
362	Food Protection, 73: 1219–1224
363	R'
364	Kramer, J. M., & Gilbert, R. J. (1992). Bacillus cereus gastroenteritis. In Food Poisoning.
365	Handbook of Natural Toxins. Volume 7. Ed. by A. T. Tu. New York: Marcel Dekker, Inc.
366	
367	Lancette, G.A. and Harmon, S.M. (1980). Enumeration and confirmation of Bacillus
368	cereus in foods: collaborative study. Journal of the Association of Official Analytical
369	Chemists 63: 581- 586.
370	
371	Lopez, A. C., & Alippi, A. M. (2007). Phenotypic and genotypic diversity of Bacillus 208
372	cereus isolates recovered from honey. International Journal of Food Microbiology, 117,
373	175–184.
374	O Y
375	López, A. C., Minnaard, J., Perez, P. F., & Alippi, A. M. (2013). In vitro interaction
376	between Bacillus megaterium strains and Caco-2 cells. International Microbiology, 16, 27-
377	33 doi: 10.2436/20.1501.01.177
378	
379	Mahler, H., Pasi, A., Kraner, J. M., Schulte, P., Scoging, A. C., Bar, W., & Krahenbuhl, S.
380	(1997). Fulminant liver failure in association with the emetic toxin of Bacillus cereus. New

- 381 England Journal of Medicine, 336, 1142-8.
- 382

383	Messelhäusser U, Frenzel E, Blöchinger C, Zucker R, Kämpf P, Ehling-Schulz M. (2014).
384	Emetic Bacillus cereus are more volatile than thought: recent foodborne outbreaks and
385	prevalence studies in Bavaria (2007-2013). Biomed Research Interntional, 2014:465603.
386	doi: 10.1155/2014/465603
387	\mathcal{R}^{\prime}
388	Minnaard, J., Rolny, I. S., and Perez, P. F. (2013). Interaction between Bacillus cereus and
389	cultured human enterocytes: effect of calcium, cell differentiation, and bacterial
390	extracellular factors. Journal of Food Protection, 76, 820-826.
391	
392	Minnaard, J., Humen, M., & Pérez, P.F. (2001). Effect of Bacillus cereus exocellular
393	factors on human intestinal epithelial cell. Journal of Food Protection, 64, 1535-1541.
394	
395	Minnaard, J., Lievin-Le Moal, V., Coconnier, M., Servin, A., & Pérez, P. F. (2004).
396	Disassembly of F-Actin cytoskeleton after interaction of Bacillus cereus with fully
397	differentiates human intestinal caco-2 cells. Infection and Immunity, 72, 3106-3112.
398	Q
399	Minnaard, J., Delfederico, L., Vasseur, V., Hollmann, A., Rolny, I., Semorile, L., & Perez,
400	P. F. (2007). Virulence of <i>Bacillus cereus</i> : a multivariate analysis. International Journal of
401	Food Microbiology, 116, 197-206.
402	
403	Naranjo, M., Denayer, S., Botteldoorn, N., Delbrassinne, L., Veys, J., Waegenaere, J.,
404	Sirtaine, N., Driesen, R. B., Sipido, K. R., Mahillon, J., & Dierick, K. (2011). Sudden

- 405 Death of a Young Adult Associated with *Bacillus cereus* Food Poisoning. Journal of
- 406 Clinical Microbiology, 12, 4379–4381.

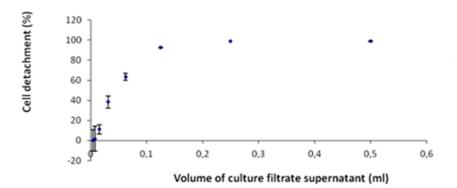
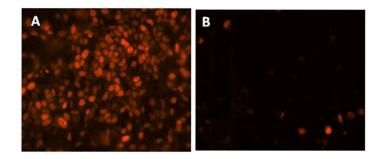

408	Rahmati, T. and Labbe, R. (2008). Levels and toxigenicity of Bacillus cereus and
409	Clostridium perfringens from retail seafood. Journal of Food Protection, 71, 1178-1185
410	
411	Saito, M., Takahashi, N., Ueda, S., Kuwabara, Y., Komiyama, M., Koike, Y., Yada, Y.,
412	Honma, Y., & Momoi, M. Y. (2010). Cytokine profile in a premature infant with systemic
413	Bacillus cereus infection. Pediatrics International, 52:e34-e36 doi: 10.1111/j.1442-
414	200X.2009.02987.x.
415	
416	Shiota, M., Saitou, K., Mizumoto, H., Matsusaka, M., Agata, N., Nakayama, M., Kage, M.,
417	Tatsumi, S., Okamoto, A., Yamaguchi, S., Ohta, M., & Hata, D. (2010). Rapid
418	Detoxification of Cereulide in Bacillus cereus Food Poisoning. Pediatrics, 125, 951-958.
419	Y
420	Stenfors Arnesen, L. P., Fagerlund, A., & Granum P.E. (2008). From soil to gut: Bacillus
421	cereus and its food poisoning toxins. FEMS Microbiology Reviews, 32, 579-606.
422	O Y
423	Stark, T., Marxen, S., Rütschle, A., Lücking, G., Scherer, S., Ehling-Schulz, M., &
424	Hofmann, T. (2013). Mass spectrometric profiling of Bacillus cereus strains and
425	quantitation of the emetic toxin cerculide by means of stable isotope dilution analysis and
426	HEp-2 bioassay. Analytical and Bioanalytical Chemistry,405:191–201 DOI
427	10.1007/s00216-012-6485-6.
428	

Table 1


Screening by PCR of genes encoding for components of HBL (haemolysin BL: *hblA*, *hblB*, *hblC*, *hblD*) and NHE (non-haemolytic enterotoxin: *nheA*, *nheB*, *nheC*) complex; enterotoxin-T (*bceT*); cytotoxin K (*cytk*); sphingomyelinase (*sph*); enterotoxin FM (*entFM*); enterotoxin S (*entS*); cereulide(*ces*) and phosphatidylinositol phospholipase C(*piplC*)^a

	Origin	<i>hbl</i> complex			nhe complex			Q_'								
Strain				122040			194627		bceT	ctyK	sph	entFM	entS	ces	piplC	Reference
		hblA	hblB	hblC	$hbl\mathbf{D}$	nheA	nheB	nheC								
MVL2011	Chicken (food-	+	+	+	-	-	+		4	-	+	+	+	+	+	This study
	borne illness)							1	\mathbf{n}							
B10502	Food-borne illness	-	-	-	-	+	-	2	<u> </u>		+	+	-	-	+	Minnaard et al,
																2004 and 2007
T1	Unknown	+	÷	+	+	+	+	\bigtriangledown	+	+	+	+	Ŧ	-	+	Minnaard et al,
																2007
2	Skim milk powder	=	-	-	+	-	A-	* +	+	+	+		-	-	-	Minnaard et al,
M2	Skim milk powder	-	-	-	-	- /	+ Y	-	-	-	+	+	-	-	+	2001 and 2007

^a Toxin gene presence was assessed by PCR analysis. The "+" and "-" symbols refer to the presence and absence of the gene, respectively.

CER AN

CER CER

Highlights

A *Bacillus cereus* strain (MVL2011) isolated from cooked chicken caused severe poisoning in a healthy woman

The woman was hospitalized due to severe dehydration

B. cereus MVL2011 was highly cytotoxic and unable to invade Caco-2 cells in spite of adhesion ability

Strain MVL2011 could belong to the "emetic cluster"