
Design of an UNDO Framework

Hernán Merlino, Oscar Dieste, Patricia Pesado, Ramón García-Martínez

Grupo de Ingeniería de Software Experimental. Facultad de Informática. UPM

Programa de Doctorado en Ciencias Informáticas. Facultad de Informática. UNLP
Instituto de Investigaciones en Informática LIDI. Facultad de Informática. UNLP - CIC

Laboratorio de Sistemas Inteligentes. Facultad de Ingeniería. UBA
Área Ing. del Software. Lic. en Sistemas. Dep. Desarrollo Productivo y Tecnológico. UNLa.

hmerlino@fi.uba.ar, odieste@fi.upm.es, ppesado@lidi.info.unlp.edu.ar, rgarciamar@fi.uba.ar

Abstract. This paper sets out to provide a highly automated mechanism for an
undo process that can be easily built into a new or existing system. Our
proposal is based on the observation that it is not necessary to store the state of
objects in memory, or the commands executed by the system to perform an
undo, but it is sufficient to store the input data. This greatly simplifies the
design process and undo encapsulate most of the functionality into a framework
similar to those existing in many object oriented programming.

Keywords. UNDO. Framework. Paterns.

1. Introduction

It is hard to build usability into a system. One of the main reasons is that usability
is built into systems at an advanced stage of system development [1], when there is
little time left and the key design decisions have already been taken. Usability
patterns were conceived with the aim of making usable software development simpler
and more predictable [2]. Usability patterns can be defined as mechanisms that could
be used during system design to provide the software with a specific usability feature
[1]. Some usability patterns defined in the literature are: Feedback, Undo/Cancel,
Form/Field Validation, Wizard, User profile and Help [3]. The main stumbling block
for applying these patterns is that there are no frameworks or even just architectural or
design patterns associated with the usability patterns. This means that the pattern has
to be implemented ad hoc in each system. Ultimately, this implies that (1) either the
cost of system development will increase as a result of the heavier workload caused
by the design and implementation of the usability features or, more likely, (2) many
of these usability features (Undo, Wizard, etc.) will be left out in an attempt to cut the
development effort.

The goal of this paper is to develop a framework for one of the above usability
patterns, namely, the undo pattern. As its name suggests, the undo pattern aims to
provide the functionality necessary to undo actions taken by system users.

Several authors have proposed alternative implementations of the undo pattern.
However, these alternatives focus on particular applications remarkably: document
editors [4] [5]. We aim; on the other hand, to set out a highly automated, generic
solution that we believe is easy to build into both new and existing software systems.
Essentially, our proposal is composed of a (partially implementation platform-
dependent) mark-up language. Thanks to a suitable pre-processor, this language can
relate user operations to system objects, so that it is very easy to store the current
system state and return to an earlier (or later) state, if necessary.

This article is structured as follows. Section 2 describes the state of the art
regarding the implementation of undo. Section 3 presents the undo infrastructure,
whereas Section 4 describes the mark-up language. Section 5 shows a proof of
concept of the proposed framework. Finally, Section 6 briefly discusses and presents
the main contributions of our work.

2. Background

Undo is a very widespread feature, and is prominent across the whole range of
graphical or textual editors, like, for example, word processors, spreadsheets, graphics
editors, etc. Not unnaturally a lot of the undo-related work to date has focused on one
or other of the above applications. For example, [5] and [6] have patented two
methods for implementing undo in document editors within single environments.

The problems of undo in multi-user environments have also attracted significant
attention. Both [4] and [7] have proposed mechanisms for using undo in distributed
environments, and [8] propose a formal framework for this field.

The most likely reason for the boom of work on undo in the context of document
editors is its relative simplicity. Conceptually speaking, an editor is a container
accommodating objects with certain properties (shape, position, etc.). Consequently,
undo is relatively easy to implement, as basically it involves storing the state of the
container in time units i, i+1, …, i + n. Then when the undo command is received, the
container runs in reverse i + n, i + n-1, i. In distributed environments, the solution has
to deal with the complexity of updates to shared data (basically, a serialization of
changes).

Several papers have provided insight on internal aspects of undo, such us [9], who
attempted to describe the undo process features. In [10] created an undo infrastructure
and in [11] defined a selective undo.

Also, patents have been registered, like the method for building an undo and redo
process into a system [12]. Remarkably, this paper presents the opposite of an undo
process, namely redo, which does again what the undo previously reverted. Other
author’s addresses the complexities of undo/redo as well. Thus, for example, [13]
define a mechanism for managing a multi-level undo/redo system, [14] describe an
Undo and Redo algorithm and [15] wrote about a method for graphically
administering Undo and Redo, based primarily on the undo method graphical
interface.

The biggest problem with the above works is that, again, they are hard to adopt in
software development processes outside the document editor domain. The only

noteworthy exception to this is a design-level mechanism called Memento [16]. This
pattern restores an object to a previous state and provides an implementation-
independent mechanism that can be easily integrated into a system. The downside is
that this pattern is not easy to build into an existing system. Additionally, Memento
only restores an object to a previous state; it does not consider any of the other
options that an undo pattern should include.

3. UNDO Pattern

Before introducing our proposal for the implementation of the undo pattern, we
will describe it in detail, identifying all the undo’s prominent characteristics (for
example, when and how undo can be invoked, what we can expect from undo’s
application, etc.). This should provide a baseline for defining a set of requirements for
the implementation of the undo, that is, for the undo process.

3.1 Common features

As viewed by an end user, the undo process has some fairly stereotype features,
indisputably motivated by how commercial software implements this functionality.
Essentially, the user can invoke undo at any time, and it has an immediate effect (for
example, the contents of a particular field change from their value at time t+1 to their
value at time t). Some applications, like MS Word, can undo not just the last change,
but also the latest k or even all changes made.

3.2 Problem issues surrounding UNDO

Although at first glance this looks like a sound description of the undo process, a
more thorough analysis shows that this description is incomplete. It fails to consider
many aspects that are extremely important for defining a really useful
implementation:
• First, the undo process cannot be invoked at any time. In actual fact, in none of the

applications known to us is within-process undo possible invocation (that is, when
the system is processing a user command); they offer only between-process
invocation (that is, when the system is waiting for a user input). For example,
suppose that an application is enacting a time-consuming process, such as increasing
the prices of all items in a large database by 10%. The undo process cannot be
invoked while the update process is executing. But, as most processes do not take
too long, the user has the impression that undo is always available. Even so, in a
competitive undo implementation we should be possible to stop the ongoing process
and return to the state immediately before the operation was invoked (DB update,
for example). Note that, in this case, undo is very similar to HCI’s cancel pattern.

• Applications limit the possibility of undoing actions in long/complex processes.
Database updates like the above are a very common case in point. Typically, once
the DB transactions have been committed, undo is no longer available (all previous

states are deleted). Any implementation aiming for widespread use should take into
account this type of system operations.

• Undo is mostly linear (that is, the actions taken are undone in strictly reverse order),
even if the work completed by the user is not. A fairly common example is when a
word processor user makes a change to paragraph X, goes on to modify paragraph Y
and then tries to undo the changes in X. This is impossible unless you also undo the
changes made to Y. A flexible undo implementation should account for this
possibility.

• Finally, undo is often applied in single-user applications, which is the case, for
example, of most text editors, spreadsheets, graphical editors, etc. However, undo
should be equally applicable to multi-user applications, where any user can modify
shared data at any time. Think, for example, of the Google Docs editor. It looks like
this type of applications will be increasingly important in the near future.

3.3 UNDO process requirements

The above sections suggest a set of features that a comprehensive undo
implementation should have. These features are listed in table 1.

Table 1. Undo features

No. Feature Detail
Within-processes 1 Invocation time Between-processes
User 2 Invocation source System
Total
Partial (limited) 3 Scope of the action to be undone
Last change
Linear 4 Application mode Non-linear (selective)
Low (idempotent) 5 Complexity of undoing the change High (command)
Single-user 6 Environment Multi-user

1. Invocation time: this feature refers to the process time at which the UNDO can be

invoked (executed). Ideally, undo should be able to be executed at any time,
although it could be best to reduce this flexibility under some circumstances (for
example, to reduce the undo framework’s system overhead).

2. Invocation source: this feature refers to where the undo process can be invoked.
This source can be a user operating the application, or another system requesting
the undo process invocation.

3. Scope of the action to be undone: this feature defines the extent to which the
executed action will be undone. Actions can be fully or partially reverted. Partial
undo is the reversal of the last or latest x executed steps of the action.

4. Application mode: this refers to how the changes will be reverted. If they are
executed in the opposite order to which they were made, undo is referred to as
linear, whereas if it is possible to select which change to apply, it is known as non-
linear undo.

5. Complexity of undoing the change: this feature is designed to catalogue the undo
processes according to their complexity or their features. Undoing a DB change is
a complex process which requires a completely different strategy than take back,
for example, the assignment of a new value to an object’s attribute.

6. Environment: this feature catalogues the undo process according to whether it is
applied in a single- or multi-user environment.

4. UNDO framework

In this section we describe our proposal on the design of the undo. Specifically, we
created a framework (set of classes) that implements the six characteristics described
in the previous section. In what follows, I will describe the structure and functioning
of the framework, but for simplicity associated with the extension of the paper, it will
develop features, 1 and 6, which discusses only briefly in the conclusions, and only
part of the face feature 5.

4.1 Context of the UNDO framework

The most common alternative to develop a process to undo is to save the states of
objects that are likely to be applied to undo a process before they undergo any
operation that alters the value of any of its attributes. This method has one obvious
advantage: you can go back the system without the need for a particular process for
this; it is only necessary to evict the objects that are now in memory and replace it
with objects that have been previously saved.

This approach represents a simple mechanism for the implementation of the undo,
but it brings some disadvantages: Firstly, to save all objects that can be used to undo a
process could generate an excessive workload for the system. On the other hand if the
system already exists and you want to undo facility, you should have a very detailed
knowledge of the application to find out what objects are to preserve and what not.

A second alternative to implement a process by storing undo the operations
performed by the system rather than object’s changes. In this case, the undo would
run in reverse order of the inverse operations.

The approach we propose is based on the latter strategy, but with a particularity
that greatly simplifies the design. The key is: the only command processed by an
arbitrary system software and that are relevant to undo the process, are the updates
that cause the data model (e.g., the introduction of an entry in a field of a form that
causes the update of an attribute of an object, the introduction of a backspace
character as to cause the removal of one letter in a document object, etc.). In the vast
majority of cases, these updates are idempotent, e.g., the effects of the entry do not
depend on the history of states. This is the example of the form above (though not, for
example, the word processor). When the updates are idempotent, it is not necessary to
store the state of the object model or operations, but only the list of entries in the
system. In cases where the characteristics are not idempotent (as the example of the
word processor), this strategy is not valid and must be used in the original strategy
(store the command and apply the inverse in the case of undo). However, it seems

clear that the vast majority of the commands are executed by a system of the first
type, while the second is rather the exception.

Therefore the approach we propose has several advantages: (1) The simple data
entry can be treated in a completely automatic and transparent (2) is not necessary to
handle the complexity of objects in memory (3) is only necessary to know the logic of
the system for the command and (4) Finally, our approach allows the design of an
undo framework as described in the next section, quite independent of the application
and therefore highly reusable.

4.2 Undo framework

In this paragraph describe the process raised by the implementation of undo. For
simplicity, we will focus on idempotent operations, but also discuss how to undo
commands. Our intention is to create a redistributable package and friendly, like the
existing frameworks so often used in object oriented development.

4.2.1 Application’s Architecture
This application is based on a set of layers. We try to build a common application,

with the use of a chain of filters to perform common operations of the user interface
and a controller to unify the user requests a single point. In figure 1 shows a sequence
diagram that represents the application which will be added to the Undo Framework.

4.2.2 Undo Framework Architecture.
The structure of the Undo Framework is based on the implementation of the

Intercepting Filter pattern and Command. The first of these patterns can create a chain
of filters to perform common independent tasks for pre and post-processing and
provides a simple mechanism through a filter to recognize when a user requests an
undo. Command pattern avoids coupling between the UI and the pattern, allowing
you to work with multiple objects that share the same command and facilitating future
modifications and extensions of the system. In figures 2 and 3 is described the
framework of Undo can be viewed as patterns are used Intercepting Filter and
Command. Here you can see how different filters have been added for different types
of actions that can be treated by the markup meta-language. This design decision has
been taken for the following reasons: (a) to add a filter for each new way to go back
an action and, (b) allow optimize the performance of the system through the choice of
filter to apply. When the filters are evaluated, control passes to the standard command
for execution. The pattern ends when the command adds a record in the temporary
persistence mechanism for handling Undo. For reasons of simplicity has avoided
detailed mechanism of persistence. Figure 4 details as it is presented to the user
requesting an Undo process, the information available to restore.

Fig. 1. Sequence Diagram. Common
Application

Fig. 2. Class Diagram Undo Framework

Fig. 3. Sequence diagram. Undo Framework Fig. 4. Sequence Diagram. Undo Request.

The diagram shows the addition of the filter "" <<filter>> Display "to the chain of
filters. This filter is responsible for recognizing the meta-language associated with the
ruling request Undo from the user. Once acknowledged this request, control passes to
the standard command that is responsible for creating the command to get information
stored in it temporarily persistence mechanism and sends the user the defamation in
the corresponding view.

4.2.3 Connection between Undo Framework and Application

Figure 5 shows the aggregate of the existing application (see Figure 1) by including a
specialized filter ("<<filter>> Undo Framework") in the existing chain of filters in
implementation.

Fig. 5. Sequence Diagram. Undo Framework in Application.

4.3 Identification of input data

The design proposed in the previous section has one major deficiency: no way to
determine what input data correspond to which input field and then to re-enter data to
undo. We must implement a mechanism by which the framework of undo can
automatically recognize the source of the data entering the system to store them
properly indexed. The proposed design, which is undo implemented in a filter added
to the chain of input filters, provides a fairly simple strategy to achieve this goal.
Simply add to the input of any sign that identifies its origin. That label would be
recognized by undo the filter, which would store the data associated in the mechanism
of persistent undo. Subsequently, the label would be removed from the input data, so
all the subsequent process will run as usual without the business layer of the
application.

5. Proof of Concept

To perform a proof of concept has been implemented Undo process in a grid of
data (very simplified) which can be shared between users. Figure 6 shows a snapshot
of this application. The grid lets you enter numbers and perform simple calculations,
following the usual conventions of a spreadsheet. This application has been made on
the Google App Engine platform. In this application, communication between the
interface layer and the business is conducted by exchanging data in XML format. The
interface has a function “sendData” implemented in JavaScript on the client side,
which takes all the values are loaded into the grid, add in an XML document and
sends to the server. The XML document can have any format. In this proof of
concept, we used a very simple format that is shown in Figure 7.

<spreadsheet>

<column>
<row >...<row/>
...
<column/>

<spreadsheet/>
Fig. 6. Application’s screen. Fig. 7. XML Document

In the application server all the requirements (XML documents) are served by the
function “webapp.WSGIApplication” (see Figure 8) that acts as a controller of an
MVC pattern. This function is responsible for distributing the notice to the
appropriate business layer (in this case, GridExample). Then, this function takes
control and performs the necessary operations (see Figure 9) to meet the requirement
of the client.

application = webapp.WSGIApplication(
[('/', MainPage),
 ('/grid', GridExample),
debug=True)

class
GridExample(webapp.RequestHandler):
 def __init__(self):
 webapp.RequestHandler.__init__(self)
 self.methods = RPCMethods()
 def post(self):
 args =
simplexml.loads(self.request.body)
 . . .

Fig. 8. Function webapp.WSGIApplication Fig. 9. Function GridExample

To add functionality to undo this application only two changes are necessary. The

first is to add labels to identify the input fields, in line with the specifications in
section 4.3. In this proof of concept, these signs (which we implemented as named
parameters item) can be added easily, since the interface-business communication is
done via XML documents and these documents are easily adaptable, as shown in
figure 10. Since the XML document is composed on the basis sendData function, only
be necessary to slightly modify the code for this function. The second change is to
link the framework to undo the application, put the filter in the corresponding data
path. To do it is necessary to make a simple addition to the GridExample function, as
shown in figure 11. FilterUNDO function takes the XML document, store the values
of the entries and fields and rebuilt document to original version, so the application
can continue its normal course.

<spreadsheet>

<column>
<row item=”cell_1”>...<row/>
...
<column/>

<spreadsheet/>

class
GridExample(webapp.RequestHandler):
 def __init__(self):
 webapp.RequestHandler.__init__(self)
 self.methods = RPCMethods()
 def post(self):
 rawData =
simplexml.loads(self.request.body)
 args = filterUNDO(rawData)
 . . .

Fig. 10. XML Document with label Fig. 11. GridExample function modified

The above modifications allow the marking of input data, so as to allow their
recognition and storage of the undo filter. Commands may be marked in a similar
way. Finally, it is only necessary to re-enter information previously entered by the
user in the application at the instant t-2, as described above.

6. Conclusions

In this paper we proposed the design of a framework for incorporating
functionality into applications software undo arbitrary. One of the salient features of

this framework is the type of information stored to be able to undo the operations
performed by users. Instead of storing the state of objects in memory, or the
commands executed by the system, store data, which simplifies greatly the impact
that the incorporation of exercise in the application framework.

There are two aspects that we have not addressed in this article, which features are
the 1 and 6 of Table 1. The reason is the complexity of these features, which requires
a long explanation. However, both are perfectly implemented within the framework
exposed. The features 1 require only the possibility of stopping a process during
execution and reverse the changes made. This can be achieved easily using modern
control structures such as catch and try-threaded processes; although depending on the
architecture used complications arise that must be solved case by case basis.

7. Reference

1. Ferre, X., Juristo, N., Moreno, A., Sanchez, I. 2003. A Software Architectural View of
Usability Patterns. 2nd Workshop on Software and Usability Cross-Pollination (at
INTERACT'03) Zurich (Switzerland)

2. Ferre, X; Juristo, N; and Moreno, A. 2004. Framework for Integrating Usability Practices
into the Software Process. Universidad Politécnica de Madrid.

3. Juristo, N; Moreno, A; Sanchez-Segura, M; Davis, A. 2005. Gathering Usability
Information through Elicitation Patterns.

4. Qin, X. y Sun, C. 2001. Efficient Recovery algorithm in Real-Time and Fault-Tolerant
Collaborative Editing Systems. School of computing and Information Technology Griffith
Univesity Australia.

5. Bates, C. y Ryan, M. 2000. Method and system for Undoing edits with selected portion of
electronic documents. PN: 6.108.668 US.

6. Baker, B. y Storisteanu, A. 2001. Text edit system with enhanced Undo user interface. PN:
6.185.591 US.

7. Abrams, S. y Oppenheim, D. 2001. Method and apparatus for combining Undo and redo
contexts in a distributed access environment. PN: 6.192.378 US.

8. Abowd, G.; Dix, A. 1991. Giving UNDO attention. University of York.
9. Mancini, R., Dix, A., Levialdi, S. 1996. Reflections on Undo. Universidad de Roma.
10. Burke, S. 2007. UNDO infrastructure. PN: 7.207.034 US.
11. Korenshtein, R. 2003. Selective UNDO. PN: 6.523.134 US.
12. Keane, P. y Mitchell, K. 1996. Method of and system for providing application programs

with an UNDO/redo function. PN:5.481.710 US.
13. Nakajima, S. y Wash, B. 1997. Multiple level Undo/Redo mechanism. PN: 5.659.747 US.
14. Li, C. 2006. UNDO/redo algorithm for a computer program. PN: 7.003.695 US.
15. Martinez, A. y Rhan, M. 2000. Graphical Undo/Redo manager and method. PN:

6.111.575 US.
16. Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1994. Design Patterns: Elements of

Reusable Object-Oriented Software, Addison- Wesley.

