
Recovering Sequence Diagrams from Object-oriented Code
An ADM Approach

Liliana Martinez1, Claudia Pereira1 and Liliana Favre1,2
1Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco, B7000, Tandil, Argentina

2Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
{lmartine, cpereira, lfavre}@exa.unicen.edu.ar

Keywords: Architecture-Driven Modernization, Reverse Engineering, Model Driven Architecture, Knowledge
Discovery Metamodel.

Abstract: Software modernization is a current research area in the software industry intended to transform an existing
software system to a new one satisfying new demands. The initiative Architecture-Driven Modernization
(ADM) helps software developers in tackling reverse engineering, software evolution and, software
modernization in general. To support modernization problems, the ADM Task Force has defined a set of
metamodels such as KDM (Knowledge Discovery Metamodel), being the Eclipse-MDT MoDisco project
the official support for software modernization. We propose the application of ADM principles to provide
relevant model-based views on legacy systems. We describe a framework to reverse engineering models
from object-oriented code. In this context, we show how to recover UML sequence diagrams from Java
code. We validate our approach by using ADM standards and MoDisco platform. Our research can be
considered a contribution to the MoDisco community; MoDisco does not support reverse engineering of
sequence diagrams and, on the other hand, the MoDisco KDM Discover was used and enriched to obtain the
required information for recovering interaction diagrams.

1 INTRODUCTION

Nowadays, almost all companies are facing the
problematic of having to modernize or replace their
legacy software systems. These old systems have
involved the investment of money, time and other
resources through the ages. Many of them are still
business-critical and there is a high risk in replacing
them. Software modernization refers to the
transformation from an existing software system to a
new one that satisfies new requirements.
Modernization is related to different processes such
as migration, software refactoring, architecture
restructuring, and mainly reverse engineering.

OMG is involved in the definition of standards to
modernize information systems. In this context, a
new approach known as Architecture-Driven
Modernization (ADM) (ADM, 2014) has emerged as
an evolution of MDA and its standards to support
the modernization of systems (MDA, 2014). MDA is
the particular OMG vision of Model Driven
Development (MDD) being its essence the Meta
Object Facility (MOF, 2011). The OMG ADM Task
Force (ADMTF) has defined a set of metamodels

aligned with MOF that allow describing various
aspects of the modernization problems. Metamodels
such as Knowledge Discovery Metamodel (KDM)
and Abstract Syntax Tree Metamodel (ASTM) aim
at improving the process of understanding and
evolving software applications and enabling
architecture-driven reverse engineering (KDM,
2011); (ASTM, 2011). The Eclipse-MDT MoDisco
open source project is considered by ADMTF as the
reference provider for implementations of several of
its standards (MoDisco, 2014).

Reverse engineering techniques allow supporting
an integral part of the software modernization.
Reverse engineering involves (re)discovering the
functional, structural and behavioral semantics of a
given artifact to document, maintain, improve or
migrate them. To support reverse engineering, we
propose an adaptation of traditional software
engineering techniques to the ADM context. We
describe a model driven reverse engineering
framework to reverse engineering platform
independent models, expressed as UML diagrams
(UML, 2011), from object-oriented code. We
propose the use of OMG standards and the MoDisco

platform to validate our approach. Currently,
MoDisco can only recover UML class diagrams
from Java code. In a previous work, we show how to
reverse engineering use case diagrams in the ADM
context (Martinez, Favre and Pereira, 2013). In this
paper, we extend the proposal by means of reverse
engineering sequence diagrams from Java code. To
recover the KDM model, the MoDisco KDM
Discoverer was enriched to obtain the required
information to recover the sequence diagram due to
the transformation provided by MoDisco is not fully
specified, there are elements in the Java model that
were not fully transformed into their corresponding
KDM elements. Then, we implemented a model-to-
model transformation to recover sequence diagrams
from the KDM model. Thus, our research may be
considered a contribution to MoDisco community;
sequence diagrams reverse engineering is not
supported by MoDisco and, on the other hand,
MoDisco KDM Discoverer was enriched to obtain
the required information for recovering sequence
diagrams and other interaction diagrams.

This paper is organized as follows. Section 2
presents OMG standards, tools and work related to
software modernization, particularly reverse
engineering. Section 3 describes a framework for
architecture-driven reverse engineering. Section 4
presents a study case that shows how to reverse
engineering sequence diagrams from Java code.
Section 5 analyses the obtained results. Finally,
Section 6 presents conclusions and future work.

2 BACKGROUND

Software industry constantly evolves to satisfy new
demands. Nowadays, there is an increased demand
for software migration as well as modernization of
legacy systems that are still business-critical to
extend their useful lifetime. The success of system
modernization depends on the existence of technical
frameworks for information integration and tool
interoperability. In this section, we describe OMG
standards for modernization. Next, we discuss about
languages for model transformation. Finally, we
present work related to software modernization,
particularly reverse engineering.

2.1 Standards for Modernization

The purpose of standardization is to achieve well-
defined interfaces and formats for interchange of
information about software models to facilitate
interoperability between the software modernization

tools and services of the adherents of the standard.
This will enable a new generation of solutions to
benefit the whole industry and encourage
collaboration among complementary vendors.

ADMTF is developing a set of standards of
which we are interested in KDM and ASTM. KDM
is the foundation for software modernization. KDM
represents entire enterprise software systems, not
just code. ASTM is a specification for modeling
elements to express abstract syntax trees (AST).
KDM and ASTM are two complementary modeling
specifications. KDM establishes a specification that
allows representing semantic information about a
software system, whereas ASTM establishes a
specification for representing the source code syntax
by means of AST. ASTM acts as the lowest level
foundation for modeling software within the OMG
ecosystem of standards, whereas KDM serves as a
gateway to the higher-level OMG models.

2.2 Model Transformation Languages

Query/View/Transformation is the OMG standard
language to express transformations on MOF models
(QVT, 2011). CASE tools support QVT or at least,
any of the QVT languages. The MMT (Model-to-
Model Transformation) Eclipse project is a
subproject of the top-level Eclipse Modeling Project
that provides a framework for model-to-model
transformation languages. Transformations are
executed by transformation engines plugged into the
Eclipse Modeling infrastructure. ATL is a model
transformation language and a toolkit that provides
ways to produce a set of target models from a set of
source models (ATL, 2014). To date, ATL is the
most used transformation language due to his
maturity degree. It is worth considering that QVT
declarative is in its “incubation” phase and only
provides editing capabilities.

2.3 Modernization and MoDisco

With the emergence of ADM, new tools need to be
developed. To be ADM compliant, these tools
should provide features such as support for
modeling, interoperability and standardization,
automated transformations for both forward and
reverse engineering, access to the definition of these
transformations and, support for traceability.

Today, the most complete technology that
supports ADM is MoDisco which provides a generic
and extensible framework to facilitate the
development of tools to extract models from legacy
systems and use them on use cases of modernization.

As an Eclipse component, MoDisco can be
integrated with plug-ins or technologies available in
the Eclipse environment. The MoDisco project is
working in collaboration with ADMTF. To facilitate
reuse of components between several modernization
solutions, MoDisco is organized in three layers. The
Infrastructure layer contains generic components
independent from any legacy technology such as
EMF implementations of ASTM, KDM, the KDM
Source discoverer, and the KDM to UML converter.
The Technology layer contains component dedicated
to one legacy technology such as metamodels for the
Java language, Java AST and Java Discoverer. The
Use-cases layer contains components providing a
solution for a specific modernization use-case.

2.4 Related Work

Many works have contributed to reverse engineering
object-oriented code. Tonella and Potrich (2005)
provide a relevant overview of techniques that have
been recently investigated and applied in the field of
reverse engineering of object-oriented code. Authors
describe the algorithms involved in the recovery of
UML diagrams from code. Our proposal can be
considered as a formalization of the recovery
processes described at Tonella and Potrich (2005) in
terms of standards involved in ADM.

Among the works related to MDD-based reverse
engineering but not in the ADM context, it is worth
mentioning (Izquierdo and Molina, 2009a) and
(Deissenboeck and Ratiu, 2006).

With the emergence of ADM, new approaches
and tools are being developed. Martinez, Favre and
Pereira (2013) describe the state of the art in the
model-driven modernization area and discuss about
existing tools and future trends. A process to extract
models that conform to KDM is presented in
(Cánovas Izquierdo and García Molina, 2009b). This
approach does not recovery UML models. Barbier et
al., (2011) describe a model driven reverse
engineering method and illustrate it with two
COBOL legacy systems. Authors explain the future
actions to generalize it by using KDM.

Several tools support the recovering of sequence
diagrams from object-oriented code. Most of them
are not based on the principles of MDA and ADM,
recent examples are Visual Paradigm (Visual
Paradigm, 2014), Java Call Tracer (Java Call Tracer,
2014) and RevEng (Tonella and Potrich, 2005). Blu
Age follows the principles of MDA and ADM
through Eclipse (Blu Age Reverse Modeling, 2014).
This tool has been targeting the modernization of
COBOL in particular, to facilitate the transferring of

legacy code towards object-oriented technologies of
the JEE or .Net type. Our approach has been
targeting with a different aim, the modernization of
object-oriented code to facilitate the adaptation of
legacy applications to mobile platforms.

3 A FRAMEWORK FOR ADM

Three main steps in software modernization: Model
Discovery, Model Understanding and Model (Re)
Generation are distinguished in (Brambilla et al.,
2012). The first phase “discovers” a set of initial
models that represent the legacy system at the same
abstraction level. The second phase employs query
and transformation techniques that built models in a
higher-level of abstraction, which are the source
models in the Model (Re) Generation phase. The
present work describes a framework for architecture-
driven reverse engineering (ADRE) to recover
models from object-oriented code that focus on the
first two above-mentioned steps of the
modernization (Figure 1). In the MDD context, the
reverse engineering process extracts elements from
existing systems and represents them into Platform
Specific Models (PSMs), and subsequently Platform
Independent Models (PIMs) are obtained from the
PSMs. In the ADM context, KDM is the support for
representing PSMs by using AST as intermediate
representation of a software system. In particular, we
describe how to recover models that represent an
abstract view of existing systems from its code in the
ADM context.

The model level includes code models
(Implementation Specific Model - ISM), KDM
models (PSM) and UML models (PIM). The last
ones provide a uniform representation of the system
in the ADM context and include class, use case,
activity, interaction, and state diagrams.

The metamodel level includes metamodels
defined via MOF that are the foundation to describe
the transformations at model level. The metamodel
level includes ASTM that describes AST models,
KDM that describes families of PSM models and the
UML metamodel that describes families of PIMs.

The models at PIM level are built applying
successive transformations from source code. For
each transformation, source and target metamodels
are specified.

The reverse engineering process at metamodel
level consists of two major steps:

1. Model Discovery: a code model is obtained by
applying a text-to-model (T2M) transformation
from source code; it is transformed into an

abstract syntax tree that conforms to ASTM.
2. Model Understanding: the aim is to raise the

abstraction levels generating UML models by
using model-to-model (M2M) transformations
implemented in ATL. This step involves two
successive transformations:

2.1. M2M transformation to discover KDM models
from code model.

2.2. M2M transformation to discover UML models
from KDM models.

Figure 1: Framework for ADRE.

4 REVERSE ENGINEERING OF
SEQUENCE DIAGRAMS

Interaction diagrams are not only important for
modeling the expected behavior of a system during
forward engineering but also for understanding the
system behavior during reverse engineering. In this
section, we exemplify a reverse engineering process
at metamodel level to recover sequence diagrams
from code by using the same case study used in
Tonella and Potrich (2005), the Java program eLib
that support the main library functions. The Java
code is partially shown in Figure 2. It supposes an
archive of documents of different categories (books,
journals and technical reports). Each document is
uniquely identified and library users can request
document for loan. To borrow a document, a user
must be identified by the librarian. While books are

available for loan to any user, journals can be
borrowed only by internal users, and technical
reports can be consulted but not borrowed.

Figure 2: eLib program.

4.1 Model Discovery

The first step of the reverse engineering process at
metamodel level consists in discovering models
from the existing system. The eLib program is
written in Java language, thus, we use the JavaAST
Discoverer provided by MoDisco to obtain its
corresponding AST model. This discoverer creates
Java models from Java source code contained in a
Java project. This transformation was used as it is
provided by MoDisco, with no modification.

4.2 Model Understanding

The second step of the reverse engineering process
consists in the transformation of the software model
into UML models by two successive transformations
described in the next subsections.

4.2.1 Recovering KDM Model

The KDM models are instances of the KDM
metamodel that is partially shown in Figure 3. The
main metaclasses are Segment, KDMModel,
KDMEntity and KDMRelationship. Segment is a

class Library {
 Map documents... Map users...Collection loans...
 public boolean addUser(User user) {...}
 private void addLoan(Loan loan) {...}

 public boolean borrowDocument(User user,Document doc)
 {if (user.numberOfLoans()<MAX_NUMBER_OF_LOANS&&
 doc.isAvailable()&&doc.authorizedLoan(user)){
 Loan loan = new Loan(user, doc);
 addLoan(loan); return true;}
 return false; } ...}

class Document {
 int documentCode; Loan loan = null;...
 public boolean isAvailable(){return loan==null;}
 public boolean authorizedLoan(User u){return true;}…}

class Book extends Document {...}

class Journal extends Document { ...
 public boolean authorizedLoan(User user) {
 return user.authorizedUser();} ...}

class TechnicalReport extends Document{...
 public boolean authorizedLoan(User user){...} ...}

class User { int userCode; Collection loans ...
 public boolean authorizedUser(){return false;}
 public void addLoan(Loan loan){loans.add(loan);} ...}

class InternalUser extends User { ...
 public boolean authorizedUser() {return true;} ...}

class Loan { User user; Document document;
 public Loan(User usr, Document doc) {...} ...}

container for information about an existing software
system. A segment includes KDMModel instances
representing one architectural view of the system. A
KDMModel instance owns entities that are named
elements that represent an artifact of existing
software systems such as packages and classes. A
KDM entity owns elements and relationships.
KDMRelationship element is an abstraction that
specifies relationships between entities. Each
instance of KDMRelationship, such as Calls has
exactly one target and exactly one origin.

Figure 3: KDM metamodel.

To obtain the KDM model from the code model
generated in the first stage, we use the KDM
discoverer provided by MoDisco, although it was
necessary to adapt it. This discoverer, implemented
as a M2M ATL transformation, creates models that
conform to KDM from the Java model. This
transformation was enhanced to obtain the required
information to recover sequence diagrams. The
transformation provided by MoDisco is not fully
specified, there are elements in the Java model that
are not fully transformed into their corresponding
KDM elements which results in loss of information.
Some considerations are the followings:
• in a method invocation expression, arguments of

the method that are simple variables, such as
local variables or parameters, are missing in the
KDM model;

• in a method invocation expression, if the object

on which the method is invoked is a simple
variable, it is not present in the corresponding
KDM model and therefore the relationship
between this variable and the method invocation
is also missing;

• in infix expressions, operands that are simple
variables are missing in the KDM model.

To solve these problems we added new ATL helpers
and modified some rules of the discoverer provided
by MoDisco. The outcome of this transformation
applied to the eLib program model is the KDM
model partially depicted in Figure 4.

Figure 4: KDM model of the eLib program.

The KDM model consists of one Segment that
owns three models each representing one
architectural view of the system. The model
eLibrary owns one instance of Package called
LibraryPackage. It contains eight instances of
UnitClass that represent user-defined classes in the
program eLib such as Library and Book. The
ClassUnit Library owns StorableUnits that represent
variables and MethodUnits that represent member
functions. The MethodUnit borrowDocument owns
one Signature that represents the procedure
signature and one BlockUnit that represents logically
and physically related blocks of ActionElements
(basic unit of behavior), for instance blocks of
statements. The BlockUnit contain ActionElements

such as if, method invocation and return statements.

4.2.2 Recovering PIM Model

The KDM model of the eLib program is the starting
point to recover PIM models by means of a KDM to
UML discoverer implemented as an ATL M2M
transformation that takes an input model conforming
to KDM and produces an output model conforming
to UML. The source metamodel corresponds to
KDM, partially shown in Figure 3. The target
metamodel corresponds to the UML metamodel of
interactions that is partially shown in Figure 5.

An Interaction owns lifelines, messages and
fragments. A lifeline represents an individual
participant in the interaction. A message defines a
communication between lifelines. A fragment may
be an Interaction, an ExecutionSpecification or
OccurrenceSpecification. An ExecutionSpecification
specifies the execution of a unit of behavior or
action within the lifeline. OccurrenceSpecifications,
ordered along a lifeline, are the basic semantic unit

of interactions. The sequences of occurrences
specified by them are the meanings of Interactions.
A GeneralOrdering represents a binary relation
between two occurrence specifications which
describes that one occurrence specification must
occur before the other in a valid trace.

Figure 5: UML metamodel of interaction diagram.

Figure 6: KDM2interaction transformation.

module kdm2interaction;
create OUT : UML from IN : KDM;
-- --- R U L E S ---
rule method2Interaction {
from m:MM!MethodUnit (m.is_relevantPublicMethod())
to interact:MM1!Interaction (
 name <- m.get_ContainerClass().name + '::' + m.name
 ,lifeline <- thisModule.createLifeline(m)
 ,lifeline <- m.get_Variables()->collect(v|thisModule.object2Lifeline(v))
 ,message <- m.get_calls()
 ,generalOrdering <- thisModule.CreateGeneralOrdering_Initial(m)
 ,generalOrdering <- m.get_pairsOfCalls()->collect (p | thisModule.CreateGeneralOrdering(p->at(1)))
 ,generalOrdering <- thisModule.CreateGeneralOrdering_Finish(m))
}
rule methodInvocation2message {
from call:MM!Calls (call.is_relevantCall()) to msj:MM1!Message (
 name <- if(call.to.kind= #constructor)then call.get_ContainerClass().name+ '::'+'create_'+ call.to.name
 else call.get_ContainerClass().name + '::' + call.to.name endif
 ,argument <-call.get_Arguments()->collect(name|thisModule.createArgument(name))
 ,sendEvent<- send
 ,receiveEvent <- receive)
 ,send: MM1!MessageOccurrenceSpecification (...)
 ,receive: MM1!MessageOccurrenceSpecification(...)
}
unique lazy rule createLifeline {
from m:MM!MethodUnit to obj:MM1!Lifeline (
 name <- m.get_ContainerClass().name.toLower()+': ' +m.get_ContainerClass().name
 ,coveredBy <-thisModule.createActionExecutionSpecification(m,m.get_ContainerClass().name.toLower()))
}
unique lazy rule object2Lifeline {
from d:MM!DataElement
to obj:MM1!Lifeline (name <- d.name + ': ' + d.type.name)
}
unique lazy rule CreateGeneralOrdering {
from call:M1!Calls to genOrdering: MM1!GeneralOrdering(
 name <- call.to.name + '->' + call.get_ContainerMethod().nextTo(call).to.name
 ,before <- thisModule.resolveTemp(call, 'receive')
 ,after<- thisModule.resolveTemp(call.get_ContainerMethod().nextTo(call),'send'))
}
unique lazy rule createActionExecutionSpecification {
from m:MM!MethodUnit ,name:MM!StringType to exeSpec:MM1!ActionExecutionSpecification ()...}

The transformation KDM2interaction, partially
depicted in Figure 6, specifies the way to produce
interaction diagrams (target model) from KDM
models (source model). Source and target models
must conform to the KDM metamodel and the UML
metamodel respectively. The most relevant rules that
carry out the transformation are described below.

The rule method2Interaction transforms each
public method that is relevant into an interaction
whose name is formed by the method name
preceded by the class name that owns that method.
The first lifeline corresponds to the object that is an
instance of the class that owns the method. The other
lifelines are obtained from the local variables and
parameters of the method that are object references
on which a method is invoked. The messages of the
interaction are obtained from the calls of the method.
A partial order between the messages is stated by
generalOrderings created from lazy rules. The
fragments owned by the interaction are set in the
other rules by means of the opposite links.

The rule methodInvocation2message transforms
each instance of Calls into a message. If the method
invocation kind is ‘constructor’, the message name
is the method name preceded by the string ‘create’.
In all other cases, the message name is the invoked
method name preceded by the name of the class that
owns this method. This rule states the sender and the
receiver of the message.

The rule CreateGeneralOrdering creates an
instance of GeneralOrdering from a call. Its name is
formed by the message name corresponding to the
call followed by the method name corresponding to
the next call, separated by ‘->’ indicating the order
between the messages. Before and after, instances of
MessageOccurrenceSpecification, specify the order
between them.

The rule createLifeline creates a lifeline from the
class that owns the method from which the
interaction is created. The rule object2Lifeline
creates a lifeline from a variable.

The rule createActionExecutionSpecification
creates a control focus (execution occurrence) from
a method and a lifeline name. The start and the
finish, instances of ExecutionOccurrence-
Specification are created from lazy rules.

Figure 7 shows the model resulting from the
transformation KDM2interaction when it is applied
to the KDM model corresponding to eLib program,
in particular the model of the sequence diagram that
represents the message interchange among objects
triggered by the execution of the method
borrowDocument inside the class Library.

Figure 7: The sequence diagram.

5 ANALYSIS OF RESULTS

The proposed recovery process allows obtaining
interaction diagrams that describe invocation
resolution for relevant methods, that is to say,
complex methods that involve many method
invocations. It makes no sense to draw just one huge
diagram for the whole functioning of the system
because the size may exceed the cognitive abilities
of human even for small systems. Therefore, it is
better to split it up according to the most important
sub-computations and focus the view on the most
important methods, thus following the natural
approach to the construction of these diagrams
(Tonella and Potrich, 2005). Besides, to simplify the
diagram, only the calls made directly from the
method of interest are resolved as shown in Figure 7.

We validated our approach by using the open
source application platform Eclipse EMF that is the
core technology in Eclipse for model-driven
development. The Eclipse-MDT MoDisco project
provide model discoverers, generators and
transformation languages such as ATL, we used
them to discover sequence diagrams from Java code.

Our results can also be considered as a
contribution to MoDisco community since they do
not provide support for reverse engineering
sequence diagrams. To achieve this, the MoDisco
KDM Discoverer was extended in order to obtain
the required information for recovering sequence
diagrams and other interaction diagrams.

The example used along this paper, the Java
program eLib, allowed us to compare the results
with the ones obtained in (Tonella and Potrich,
2005), thereby validating our approach.

6 CONCLUSION AND FUTURE
WORK

This paper proposes an approach for software

modernization based on the integration of traditional
reverse engineering techniques to the ADM context.
We describe how to extract higher-level models
expressed in terms of UML diagrams from object-
oriented code. We believe that ADRE approach
provides benefits with respect to processes based
only on traditional reverse engineering techniques.
Interoperability between the tools and services of the
adherents of the standards is facilitated achieving
well-defined interfaces and well-defined formats for
interchange of information about software models
used by the software modernization tools.

Our case study shows how to recover sequence
diagrams that describe invocation resolution for
relevant methods obtaining diagrams that only show
the calls made directly from the method of interest.
Currently, we are extending the KDM2interaction
transformation to obtain more complete diagrams.

At present, we are testing our approach on a
Customer Relationship Management (CRM)
application. We are adapting an existing desktop
CRM application to mobile platforms achieving
interoperability with multiple mobile platforms. The
idea is to use different layers of abstraction that can
map a ‘write once’ application into native executable
programs that will run on multiple platforms. To
achieve this, a metamodel for the Haxe language
was specified.

Other future activities in reverse engineering
should push towards a tight integration of dynamic
analysis and human feedback into automatic reverse
engineering techniques. The idea is to learn from
expert feedback to automatically produce results.

REFERENCES

ADM 2014. Architecture-Driven Modernization Task
Force. http://www.omgwiki.org/admtf/doku.php

ASTM 2011. Abstract Syntax Tree Metamodel, version
1.0, OMG Document Number: formal/2011-01-05.
http://www.omg.org/spec/ASTM

ATL 2014. Atlas Transformation Language (ATL).
http://www.eclipse.org/atl/documentation/

Barbier, F., Deltombe, G., Parisy, O., and Youbi, K. 2011.
Model Driven Engineering: Increasing Legacy
Technology Independence. In 2nd India Workshop on
Reverse Engineering in The 4th India Software
Engineering Conference (pp. 5-10). India: CSI ed.

Blu Age Reverse Modeling 2014. http://bluage.com
/en/en_product/en_ba_rev_modeling.html

Brambilla, M., Cabot, J., and Wimmer, M. 2012. Model-
Driven Software Engineering in Practice. Synthesis
Lectures on Software Engineering. Morgan &
Claypool Publishers.

Cánovas Izquierdo, J., and García Molina, J. 2009a. A

domain specific language for extracting models in
software modernization. Model Driven Architecture -
Foundations and Applications, Lecture Notes in
Computer Science, 2009 (Volume 5562, pp. 82-97).
Berlin, Heidelberg: Springer-Verlag.

Cánovas Izquierdo, J., and García Molina, J. 2009b.
Extracción de modelos en una modernización basada
en ADM. Actas de los Talleres de las Jornadas de
Ingeniería de Software y BBDD, (Vol 3, issue 2, pp.
41-50). http://www.sistedes.es/ficheros/actas-talleres-
JISBD/Vol-3/No-2/DSDM09.pdf

Deissenboeck, F., and Ratiu, D. 2006. A Unified Meta
Model for Concept-Based Reverse Engineering. In 3rd
International Workshop on Metamodels, Schemes,
Grammars, and Ontologies for Reverse Engineering.
http://planet-de.org/atem2006/atem06Proceedings.pdf

Java Call Tracer 2014. http://sourceforge.net/projects/java
calltracer/

KDM 2011. Knowledge Discovery Metamodel, version
1.3, OMG Document Number: formal/2011-08-04.
http://www.omg.org/spec/KDM/1.3

MDA 2014. The Model-Driven Architecture.
http://www.omg.org/mda/

Martinez, L., Favre, L., and Pereira C. 2013. Architecture-
Driven Modernization for Software Reverse
Engineering Technologies. In Progressions and
Innovations in Model-Driven Software Engineering.
IGI Global, pp 288-307.

MoDisco 2014. Model Discovery. http://www.eclipse.org/
MoDisco

MOF 2011. Meta Object Facility (MOF) Core
Specification Version 2.4.1, formal/2011-08-07.
http://www.omg.org/spec/MOF/2.4.1

QVT 2011. QVT: MOF 2.0 Query, View, Transformation.
Version 1.1, OMG Document Number: formal/2011-
01-01. http://www.omg.org/spec/QVT/1.1/

Tonella, P., and Potrich, A. 2005. Reverse Engineering of
Object Oriented Code. Monographs in Computer
Science. Heidelberg: Springer-Verlag.

UML 2011. Unified Modeling Language: Infrastructure.
Version 2.4.1, OMG Specification formal/2011-08-05.
http://www.omg.org/spec/UML/2.4.1/

Visual Paradigm 2014. http://www.visual-
paradigm.com/solution/visualtrace/

