
A Quantitative Framework for the Evaluation of Agile Methodologies

Karla Mendes Calo1, Elsa Estevez1,2, Pablo Fillottrani1,3
1Laboratorio de I&D en Ingeniería de Software y Sistemas de Información (LISSI)

Departamento de Ciencias e Ingeniería de la Computación

Universidad Nacional del Sur,

Avenida Alem 1253,

(8000) Bahía Blanca, Argentina

2Center for Electronic Governance at United Nations University

International Institute for Software Development (UNU-IIST)

P.O. Box 3058, Macao SAR, China

3Comisión de Investigaciones Científicas de la Provincia de Buenos Aires

{kmca, ece, prf}@cs.uns.edu.ar

ABSTRACT
The methodologies for agile software development are

fundamentally based on the collaboration with software

users during the entire development process, the simplicity

to adapt the product to changes in requirements, and on

the incremental product delivery. Based on the Agile

Manifesto, they have been accepted and are successfully

used in projects where the detailed requirements are

unknown at first and are identified during the development

process from the interactions with the users and the

feedback thus obtained. In this paper, we propose an

evaluation framework for the methodologies for agile

software development. This framework is applied in detail

to two of them - Scrum and eXtreme Programming (XP).

The definition of this quantitative framework is

innovative, especially because it allows the evaluation of

how the agile methodologies satisfy the basic principles

defined by the Agile Manifesto, thus it can be used when

deciding which methodology to adopt in a particular

project.

Keywords: Agile Manifesto, Agile Methodologies,

SCRUM, XP

INTRODUCTION
Traditionally, the software development processes put a

marked stress on the process control. They define

activities, devices and information to be produced, tools

and notations to be used, orders to execute the activities,

among other definitions. Although there are several

development processes - Unified Process [1], V Process

[2], etc, most of these processes derive from the Waterfall

Model proposed by Boehm [3]. These processes, called

traditional, have proven effective in large scale projects,

particularly in regards to the administration of resources

that can be used and the planning of the development time.

However, the proposed approach by these methods is not

the most adequate for the development of projects where

system requirements change frequently, development

times have to be drastically reduced and, at the same time,

produce high quality products.

The Agile Methodologies appear as an alternative to the

traditional methods of development. Keeping essential

practices of the traditional methodologies, the agile

methodologies focus on other dimensions of the project;

for example: the collaboration with users during all stages

of the development process and the incremental

development of the software with very short iterations that

provide a custom-made solution. The agile practices are

specially indicated for products whose detailed definition

is very hard to obtain from the beginning, or if defined, it

would have a lesser value than if the product is built with a

constant feedback during the development process.

The objective of this paper is to present an evaluation

framework of agile methodologies that allow the

evaluation of how the methodologies reach the values

declared by the Agile Manifesto. The evaluation

framework gives the opportunity to make a more informed

decision when the time comes to select one of the

methodologies. As an example, the framework is applied

to the SCRUM and XP methodologies.

The rest of this work is structured as follows: Section 2

presents the Agile Manifesto and some of the commonly

used agile methodologies. Section 3 explains two

methodologies in detail: SCRUM and XP. After that,

Section 4 presents and explains the evaluation framework,

while Section 5 shows its application to SCRUM and XP.

Finally, Section 6 presents a comparison with related

works, conclusions and future works.

AGILE MANIFESTO AND AGILE DEVELOPMENT

METHODOLOGIES
In February 2001, academics and experts of the software

industry gathered in Utah, United States, in order to

discuss values and principles that would facilitate a

quicker software development and answers to the changes

that might arise during the project. The idea was to offer

an alternative to the processes of traditional development.

As a result of this meeting, the Agile Alliance [4] was

formed. This is a non-profit organization dedicated to

promoting the concepts related to the agile development of

software and helping organizations to adopt said concepts.

The result of this meeting was a document known as the

Agile Manifesto [5]. The Agile Manifesto includes four

postulates and a series of associated principles. The

postulates are:

1) Value the individual and the development team's

interactions above the process and the tools. Three

premises sustain this principle: a) team members are the

main factor of a project's success; b) it's more important to

set up a team than an environment. c) it's better to put a

team together and to let it configure the environment

based on its own needs.

2) Value the software development that works over an

exhaustive documentation. The principle is based on the

premise that documents can neither replace nor offer the

added value that is achieved with direct communication

between people through the interaction with prototypes.

The use of documentation that generates works and does

not add a direct value to the product must be reduced to

the essential minimum.

3) Value the collaboration with the customer over the

contractual negotiation. In agile development, the

JCS&T Vol. 10 No. 2 June 2010

68

customer is integrated and collaborates with the work

team, just like any other member. The contract itself does

not add value to the product; it is just a formalism that

establishes lines of responsibility among parties.

4) Value the answer to change over the follow up of a

plan. The speedy and constant evolution must be inherent

factors to the development process. The ability to react to

change over the ability to monitor and assure pre-

established plans.

The development cycle applied by Agile Methodologies is

iterative and incremental. This model allows the software

to be delivered in small and usable parts, known as

increments. Each iteration can be considered as a small

project where activities such as requirement, analysis,

design, implementation and testing are carried out with the

objective of producing a subset of the final system. The

process is repeated several times producing a new

increment in ever cycle until the complete product is

finished. Although all the agile methodologies adopt this

cycle, each one of them presents its own characteristics.

The most commonly used agile methodologies are

described as follows:

Scrum [6] – It is suitable for projects with a high ratio of

change in requirements. Its main characteristic is the

definition of sprints – each one of the repetitions of the

process with a maximum duration of 30 days. The result

of each sprint is an executable increment that is shown to

the customer. Another relevant characteristic are the daily

meetings that take place during the project. Said meetings

do not require more than fifteen minutes from the

development team and its objectives are the coordination

and integration of the product to be delivered.

Crystal Methodologies [7] – They are a group of

methodologies for software development characterized by

the value of the people that compose the work team and

the maximum reduction of the number of artefacts

produced. It emphasizes on the efforts to improve the team

members’ skills and to define teamwork policies. The

policies will depend on the size of the team, where a

classification of colours will be established; for example,

Crystal Clear corresponds to teams with 3-8 members and

Crystal Orange to teams with 25-50 members.

Dynamic Systems Development Method (DSDM) [8] –

It fulfils the general characteristics of defining an

incremental and iterative process. It proposes five

development stages: Viability Study, Business Study,

Functional Modelling, Design and Construction, and

Implementation. The iteration is produced during the last

three stages. However, it foresees feedback in all of them.

Adaptive Software Development (ASD) [9] – It is a

repetitive process, tolerant to changes and aimed at the

software components. It defines three stages for the

lifecycle: a) Speculation - the project starts and software

features are planned; b) Collaboration - the product is

developed; and c) Learning - the quality of the product is

controlled and then it is delivered to the customer. The

aim of the revision is to learn from mistakes made and to

start the development cycle again.

Feature-Driven Development (FDD) [10] – It defines an

iterative process with short iterations of two weeks

maximum. The lifecycle consists of five steps: a)

Development of a global model; b) Construction of a list

of features (functions); c) Feature Planning; d) Feature

Design; and e) Feature Construction.

Extreme Programming (XP) [11] – It defines an

incremental and iterative process with continuous unit

tests and frequent deliveries. The customer or a customer's

representative is integrated to the development team. It

recommends that the development of product functions is

carried out by two people in the same post - pair

programming. Before adding a new function, all found

bugs must be corrected. Regression tests are constantly

carried out in order to detect possible mistakes.

SCRUM AND XP – PRINCIPLES, ACTIVITIES,

ROLES AND PRACTICES
The following two sections present the principles,

activities, roles to be covered in the work teams and

recommended Scrum and XP practices in detail.

Scrum
The methodology respects the evolutionary lifecycle and

the iterative incremental delivery. At the beginning of the

project, the functional and non functional requirements are

identified and a list of such requirements called product

backlog is made. The product backlog constitutes the base

artefact to measure the project's progress. The iterations,

called sprints deliver parts of the product called builds.

Although they do not include all system functions, they

constitute operational executables. Every iteration starts

with an adapted planning guided by the customer and it

ends with a demonstration of the customer's build. Every

sprint can last a maximum of 30 days. In every sprint, the

development team selects a group of higher priority items

from the product backlog that turns into the development

objective. The methodology proposes three stages:

1) Planning Phase – it is subdivided in: a) Planning - the

development system, tools and the project team is defined

and the product backlog is created with the list of

requirements known at that time; priorities for the

requirements are defined and the effort to carry out the

implementation of those requirements is estimated; and b)

the product architecture that allows the implementation of

the specified requirements is defined.

2) Development Phase – it is the agile part, where the

system is developed in sprints. Every sprint includes the

traditional software development phases – requirements,

analysis, design, implementation and delivery.

3) Closure Phase – it includes integration, testing and

documentation. It indicates the implementation of all

requirements, leaving the product backlog empty and the

system ready to enter into production phase.

The methodology proposes the creation of self-managed

and self-organized work teams, suggesting small teams

that maximize the communication between its members.

Within the work team, some roles are indentified, like the

Scrum Master - responsible for assuring that the project is

carried out based on Scrum rules, values and practices; the

Product Owner - responsible for the project, administers,

controls, maintains and publishes the product backlog; the

Team Members - they have the authority to decide on the

actions to take place and organize them in a way that

allows the objectives of all sprints to be reached; and the

Customer - it participates in the requirement-related tasks

of the product to be developed, it provides ideas,

suggestions and new needs.

Scrum foresees the following practices:

1) Sprint Planning Meeting – organized by the Scrum

Master, it is divided in two stages. In the first stage, the

customers, the owner of the product and the team

members meet to decide about the objectives and

functions of the new sprint. The second stage of the

meeting takes place between the Scrum Master and the

work team and it focuses on how the growth of the

JCS&T Vol. 10 No. 2 June 2010

69

product will be implemented during the process.

2) Sprint – it is a list of selected requirements to be

implemented in the next repetition. The requirements are

selected by the work team, together with the Scrum Master

and the owner of the product during the meeting of the

sprint planning. When all sprint items are completed, new

system iteration is delivered.

3) Scrum Daily Meetings – they are run by the Scrum

Master. They are basically organized in order to maintain

a constant revision of the project progress. The members

answer three questions: 1) What has been completed since

the last meeting; 2) What obstacles or problems have been

detected; and 3) What functions of the backlog are

planned to be completed for the next meeting.

4) Scrum Review Meeting – the work team and the Scrum

Master present the results of the sprint to the customer.

5) Scrum Retrospective Meeting – it takes place after

finishing a product backlog and the revision of the sprint.

The work team checks the fulfilment of the marked

objectives at the start of the sprint. The necessary changes

and adjustments will be analyzed and applied when

necessary, the positive aspects will be stressed and the

negative aspects will be changed, if possible in order to

avoid repeating them in the next sprint.

eXtreme Programming

XP, formulated by Kent Beck, differs from the rest of the

methodologies due to its stress on adaptability. The

methodology is designed to offer the software that the user

needs and when he needs it. The success of the

methodology is based on boosting interpersonal

relationships, promoting teamwork, continuous learning of

the developers and a friendly working environment. The

five basic principles of XP include:

1) Simplicity - simplify the design to speed up the

development and to facilitate the maintenance through the

updating of the code; 2) Communication - it encourages

communication: written - like a self-documented code and

joint tests, recommending the documentation of the class

objectives and the functionality provided by methods; and

oral - among programmers and with customers,

recommending that both communication between both

parties should be constant and fluent; 3) Feedback - it

promotes the customer's constant feedback through short

delivery cycles and demonstrations of the delivered

functions; 4) Courage - to maintain simplicity by allowing

the deference of design decisions; to communicate with

others, even when this enables to show the lack of one’s

own knowledge, and to receive feedback during the

development; and 5) Respect – should be instilled among

team members - the developers cannot make changes that

may cause the existing tests to fail or delay the work of

fellow team members, and towards the work - the team

members' main objective is to achieve a high quality

product with an ideal design.

The development process consists on three stages:

1) Interaction with the customer – the customer

permanently interacts with the work team. The initial

requirement recollection phase is thus eliminated, and

requirements are incorporated in an orderly fashion

throughout the development. The methodology proposes

using the User Story technique through which the user

specifies function and non-function requirements of the

product. Each history must be sufficiently atomic and

understandable in order for the developers to implement

the requirements in one iteration.

2) Project Planning – the work team estimates the

required effort for implementing the user story. Each story

must be implemented in a period of three weeks. Those

stories that require more time are subdivided in order to be

atomic and that they can be developed within the deadline.

3) Design and Development of Tests – the implementation

is conducted by unit tests. Every time a function is going

to be implemented, first the test must be defined and then

the code to satisfy it. Once the code successfully

completes the test, it is augmented and thereafter it

continues. As the user stories are implemented, the small

code fragments are integrated. In this way, a constant

integration takes place, avoiding a more costly integration

at the end of the project. XP promotes the programming in

pairs, where the development is carried out by a pair of

programmers. The pairs have to change periodically so

that the knowledge can be acquired by the entire

development group.

The defined roles for the team members include

Programmer - in charge of writing single tests and

producing the code; Customer - writes user stories and

functional tests, assigns priorities to user stories and

decides which ones will be implemented in each iteration;

Tester - is responsible for tests, helps the customer to write

functional tests, executes them, informs results to the rest

of the team and maintains the support tool used to carry

out tests; Tracker - provides feedback, verifies the degree

of correctness of the project estimations and controls the

project progress; Coach - is responsible for the whole

process, guides the team for respecting XP practices and

for executing the process correctly; Consultant - an

external member of the team with specific knowledge of

some subject necessary to solve problems that may arise

during the project; and the Solicitor (big boss) - the link

between the customer and the developers. He helps the

team work effectively. His main task is coordination.

Among others, XP defines the following practices:

1) Planning Game – the team estimates the required

efforts for implementing user stories.

2) Updating – ongoing activity for restructuring code. Its

main objective is to remove code duplication, improve

legibility and increase flexibility to facilitate changes.

3) Pair Programming – the development is carried out by

a pair of developers.

4) Constant Integration – the code is integrated once it is

available.

5) In-situ Customer – the customer must be present and

available at all times.

EVALUATION FRAMEWORK
The proposed evaluation framework measures how agile

methodologies fulfill the Agile Manifesto postulates

described in Section 2. For this purpose, the framework

defines measures that satisfy the measurement

representational theory [12]. The measures are defined by

using an interval scale [13].

The framework provides measurements for the four

postulates presented in Section 2. These postulates (Pi,

i=1..4) were expressed as the assessment of two attributes

(Pi.1 y Pi.2). The measure of each postulate is defined as

the sum of the measures of the related attributes,

formulated as follows:

m(Pi) = m(Pi.1) + m(Pi.2) i=1..4

For example, Postulate 1 (P1) - Value the individual and

interactions of the development team over the process and

the tools, it's measured adding the measure of how the

JCS&T Vol. 10 No. 2 June 2010

70

methodology values the individual and the team

interactions (P1.1) and the measure of how it values the

process and the tools (P1.2).

The attribute that the principles try to stress (positive

attribute) is measured in a scale of 0 to 5 and the other

attribute (negative attribute) in a scale of -5 to 0.

Therefore, each principle might obtain a measure of -5 –

in case both attributes take the worst value (-5, the

negative attribute and 0, the positive attribute), and 5 – in

case both attributes take the best value (0, the negative

attribute and 5, the positive attribute). If the result is a

value of 0 or close to 0, it means that the methodology

does not significantly value the positive attribute over the

negative, which means that the Agile Manifesto postulate

is not completely satisfied. The framework, the attributes

and its measures are presented in Table 1.

Table 1. Evaluation Framework for Agile Methodologies
P1 Value the individual and the team interactions over the process and the tools.

P1.1 Value the individual and the interactions P1.2 Value the process and the tools

value description value description

0 It does not define roles for individuals. -5 It defines activities, deliverables, development and

management tools.

1 Clear definition of roles for individuals. -3 It defines activities, deliverables and development tools.

2 Clear definition of roles and responsibilities -2 It defines activities and deliverables

3 Clear definition of roles, responsibilities and technical

knowledge.

-1 It defines activities for each iteration.

5 Clear definition of roles, responsibilities, technical knowledge
and interactions between members of the work team.

0 It defines project activities but not at the iteration level.

P2 Value the software development that works over an exhaustive documentation.

P2.1 Value the software development that works P2.2 Value an exhaustive doncumentation

value description value description

0 Generate a deliverable at the end of the project. -5 It requires detailed documentation at the beginning of the
project.

3 Generate a deliverable with satisfactory testing at the end of

each iteration.

-2 It only requires necessary documentation at the beginning

of each iteration.

5 Generate a deliverable with satisfactory testing and integrated
with the rest of the functions at the end of the iteration.

0 It does not require documentation to start implementing
the functionality defined for an iteration.

P3 Value the collaboration with the customer over the contractual negotiation

P3.1 Value the collaboration with the customer P3.2 Value the contractual negotiation

value description value description

0 The customer collaborates at the team’s request. -5 There exists a detailed contract and no changes are
accepted.

3 The customer is part of the team. He answers to questions and

plans the iterations.

-2 The contract demands considering changes during the

project.

5 The customer is a team member, answers questions, plans
iterations and collaborates in writing requirements and tests.

0 The contract does not add any value for the construction
of the project products.

P4 Value the answer to change over the monitoring of a plan

P4.1 Value the answer to change P4.2 Value the monitoring of a plan

value description value description

0 N changes are allowed during project execution. -5 It defines a detailed plan at the beginning of the project.

1 Only high priority changes can be introduced during project
execution.

-3 It defines a detailed plan of iterations and it does not
accept changes during an iteration.

4 Evolution and change is recommended to be considered

during iterations.

-2 It defines a detailed plan for each iteration, which can be

modified.

5 Changes can be introduced during project iterations. 0 It defines no planning whatsoever.

FRAMEWORK APPLICATION
The application of the framework is shown in Table 2 and

explained below.

Postulate P1. Scrum and XP obtain 5 in attribute P1.1

since both methodologies value the individual, define roles

and responsibilities, and recognize the importance and

promote the training of team members. Scrum obtains -3

in attribute P1.2 because it defines activities, deliverables

and development tools; while XP obtains -2 because it

only defines activities and deliverables. Conclusion:

Scrum obtains 2 points and XP 3. Scrum satisfies P1 worst

than XP since it defines development tools.

Postulate P2. Scrum obtains 3 points and XP 5 in the P1.2

attribute. The difference is that XP also considers partial

integration of the software at the end of every iteration.

Both methodologies are evaluated with a value of -2 for

attribute P2.2 since both only require documentation for

the planned iteration. Scrum and XP obtain a positive

value for the P2 principle, with XP surpassing Scrum by 1

point. Conclusion: XP satisfies P2 better than Scrum

because it requires the delivered increments to be

constantly integrated with the rest of the functions.

Postulate P3. Both methodologies obtain the highest

value in both attributes – 5 points for P3.1 and 0 for P3.2.

Both consider the customer as a member of the team,

someone who collaborates from the iteration planning, to

the writing of requirements and functional tests. None of

them use the contractual relationship to add value to the

product. Conclusion: Both satisfy P3 in an optimum way.

Postulate P4. In attribute P4.1, Scrum obtains a value of 4

because even though it allows changes, they are not

recommended during the current sprint. If a change in the

current sprint is a priority, the required effort needs to be

estimated again and, if necessary, remove tasks from the

planned sprint. XP obtains the maximum value since

changes can be incorporated during iterations. Due to a

similar focus taking place with the planning, Scrum

obtains a value of -3 and XP -2. Conclusion: XP obtains 3

points and Scrum 1. XP satisfies P4 better than Scrum.

JCS&T Vol. 10 No. 2 June 2010

71

Table 2. Applying the Framework to Scrum and XP

Postulates P1 P2 P3 P4

Methodology P1.1 P1.2 total P2.1 P2.2 total P3.1 P3.2 total P4.1 P4.2 total

Scrum 5 -3 2 4 -2 2 5 0 3 4 -3 1

XP 5 -2 3 5 -2 3 5 0 5 5 -2 3

RELATED WORK

In literature there are several works that compare agile

methodologies. In regards to our knowledge, they are all

based on qualitative comparisons. Abrahamsson et al [14]

defines a list of key works and assesses several

methodologies based on such list. The key words include:

development state of the method, important points, special

characteristics, adoption and the grade of support of the

methodology for traditional activities of the development

process. Iacovelli and Souveyet [15] define an assessment

framework based on four high level attributes: capability

to agility, use, applicability, and process and products.

Strode [16] defines a comparison framework that includes

the following attributes: methodology philosophy, models,

techniques, tools, deliverables, practice and the degree of

adaptability to a situation. Visconti and Cook [17] analyze

how XP and Scrum satisfy the principles of the agile

manifesto. After concluding that none of them completely

satisfy the principles, they propose a methodology

combining aspects of both. Despite almost all these

frameworks somehow include an analysis about the way in

which the methodologies fulfil the Agile Manifesto, all of

them follow a qualitative approach.

Other studies take agile methodologies as references, and

according to different approaches, provide frameworks

that assess or measure different relevant aspects of the

agile methodologies; for instance, the study using the

Framework for Agile Method Classification [15] as

reference. The approach used in this investigation intends

to build a framework to classify agile methodologies

through four views:

o Usage - why to use an agile methodology;

o Capability to Agility - What part of the agility is

included in the method;

o Applicability - when the environment is favourable to

use agile methodologies; and

o Products and Process - how the agility is expressed.

The views represent an aspect of an agile methodology

that supports the selection of the method. Every method

has been represented in the framework, taking into

consideration the four previously presented views, plus a

set of attributes for each view. This framework was

applied to the most known methods, and the justification

of their evaluation is completely documented in [21]. Its

approach was based on which are the benefits of the

presented aspects and what a favourable context would be

like for its application in each compared methodology.

Regarding the framework evaluation and the comparison

of the methodologies, methods of similar characteristics

were identified, based on the common attributes in some

agile methodologies. Of these common characteristics

derived from the framework, the agile methodologies were

classified in three big classes: Software Development

Practices Oriented Methods (Agile Modelling, Extreme

Programming), Project Management Oriented Methods

(Adaptive Software Development, Cristal Methodologies,

Dynamic System Development Method, Scrum) and

Hybrid Methods (Feature Driven Development).

Another proposal presented by Tsun Chow y Dac-Buu

Cao is a survey study of critical success factors in agile

software projects [18]. Its objective is to identify and

provide information about critical success factors that will

help software development projects to successfully use

agile methodologies. It proposes a preliminary list of

twelve possible identified critical success factors for each

one of the four categories of the project's success -

Quality, Scope, Time and Cost. This study was carried out

throughout 109 agile software projects in 25 countries

across the world, with organizations that also varied in

size. These companies provided empirical information for

an analysis that will lead to relevant conclusions. The

contribution of this study is the reduction of the amount of

anecdotic factors of success. According to this study, the

only factors that could be called critical success factors

are: (a) a correct delivery strategy, (b) an appropriate

practice of agile software engineering techniques, (c) a

high-calibrated team, (d) a good management of the agile

development process, and (e) the active participation of

the client in the project.

CONCLUSIONS
The main contribution of this paper is the definition of a

quantitative evaluation framework to assess in which way

agile methodologies satisfy Agile Manifesto postulates.

Agile methodologies have their own characteristics and

each emphasizes on specific aspects. Both selected

methodologies promote such matters as teamwork,

favouring interpersonal relationships among its members,

boosting the fluent relationship with the client and

generating the minimum documentation that contribute

value to the project. Out of these resulting values, as we

can see in Figure 2, we conclude that XP satisfies agile

postulates better than Scrum. This framework allows us to

quantify the adherence that both selected agile

methodologies have for their comparison with each Agile

Manifesto postulate.

This proposal differs from Framework for Agile Method

Classification [15] because this one focuses on evaluating

certain attributes, finding those that are common in both

referenced agile methodologies, such as the size of the

iterations, the size of the teams, and interactions with final

users among other things, and from them, regrouping or

classifying the methodologies in relevant classes to

provide a support to select the best method, according to

the context of the project. On the other hand, this proposed

framework measures how the agile methodologies satisfy

the Agile Manifesto postulates, no matter the context. If

we complement both works, we could select the

methodologies most suitable for a project based on the its

environment, and from this set, the methodologies with

higher adherence to the Agile Manifesto postulates.

Regarding the work A Survey Study of Critical Success

Factors in Agile Software Projects [18], it concludes that

the revealed critical factors in the study, obtained through

JCS&T Vol. 10 No. 2 June 2010

72

empirical information, determine that independently from

the used agile methodology, the list of attributes

denominated as critical comprise part of the values

declared by the Agile Manifesto and its postulates, and all

lead to project success. The main difference with our

framework is that this one groups or classifies critical

success factors in six dimensions: correct delivery

strategy, proper practice of agile software engineering

techniques, team capacity, project processes, style of team

work, and the client's participation as another team

member - all of them in terms of Quality, Scope, Time and

Cost. These critical success factors do not evaluate their

impact on different agile methodologies.

Our future work includes extending the framework to

measure the fulfilment of the Agile Manifesto principles,

applying the framework to other agile methodologies and

defining attributes to facilitate the choice of the most

suitable methodology. In addition, we plan to extend this

work by proposing the use of agile components on

traditional methodologies. Thus, allowing the adaptation

of favourable points of agile methodologies to traditional

methodologies, making the latter more appropriate,

flexible and scalable in projects where there might be

certain risks due to change of requirements or impacts on

predetermined business rules.

REFERENCES
[1] Jacobson, I., et al, The Unified Software Development

Process, Addison-Wesley (1999).

[2] IABG, The V-Model, http://www.v-modell.iabg.de/.

[3] Boehm, B., Software Engineering, IEEE Transactions

on Computers, 1226-1241 (1976).

[4] Agile Alliance, http://www.agilealliance.org/.

[5] Beck, K., et.al, Manifesto for Agile Software

Development, http://agilemanifesto.org/.

[6] Scrum Alliance, http://www.scrumaliance.org

[7] Cockburn, A, Crystal Clear a Human-powered

Methodology for Small Teams, (2004).

[8] Stapleton J. “DSDM Dynamic Systems Development

Method: The Method in Practice”. Addison-Wesley,

(1997).

[9] Highsmith J., Orr K. Adaptive Software Development.

A Collaborative Approach to Managing Complex

Systems, Dorset House (2000).

[10] Feature Driven Development, http://www.feature

drivendevelopment.com.

[11] Beck, K. Extreme Programming Explained.

Embrace Change, Pearson Education, 1999.

[12] Berka, K., Measurement: Its Concepts, Theories and

Problems (Boston Studies in the Philosophy of Science),

Kluwer, Vol. 72 (1982).

[13] Fenton, N, Pfleeger, S.L., Software Metrics: A

Rigorous and Practical Approach, 2nd Edition, PWS

Publishing Co, EEUU, ISBN 0534954251 (1998).

[14] Abrahansson, P., Salo, O., Ronkainen, J.,Warsta, J.,

Agile Software Development Methods, Review and

Analysis, VTT Publications, 478 (2002).

[15] Iacovelli, A., Souveyet, C., Framework for Agile

Methods Classification, Workshop on Model Driven

Information Systems Engineering: Enterprise, User and

System Models (2008).

[16] Strode, D.E., The Agile Methods: An Analytical

Comparison of Five Agile Methods and an Investigation

of Their Target Environment, MSc Thesis in Information

Systems, Massey University, Palmerstin North, Nueva

Zelanda (2005).

[17] Visconti, M., Cook, C., An Ideal Process Model for

Agile Methods, LNCS, ISBN 978-3-540-21421-2, Vol

3009, pp.439-441 (2004).

[18] Tsun Chow, Dac-Buu Cao, A Survey Study of

Critical Success Factors in Agile Software Projects,

School of Business and Technology, Capella University,

Minneapolis, MN 55402, USA (2007).

[19] Schatz, B., Abdelshafi, I., 2005. Primavera Gets

Agile: A Successful Transition to Agile Development.

IEEE Software 22.

[20] Karlstrom, D., Runeson, P., 2005. Combining Agile

Methods with StarGate Project Management. IEEE

Software.

[21] Iacovelli, A.: Introduction de l’Agilit´e dans les

Methodes. Master thesis, University Paris 1 Pantheon

Sorbonne (2007).

JCS&T Vol. 10 No. 2 June 2010

73

