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By using the Radon-Wigner transform (RWT), we analyze the temporal selfimaging or Talbot effect for producing well-conformed 
pulse trains with variable repetition rates and duty-cycles. The relationships linking the selfimaging conditions with the fractional orders 
of the RWT are first obtained for unchirped pulse trains. Then, we extend the analysis to chirped pulse sequences by deriving the con
ditions to be fulfilled by an equivalent unchirped pulse train producing the same selfimage irradiances. This result becomes relevant for 
observing well-defined high order fractional selfimaging, which are of interest due to their repetition rate multiplication. Besides, the 
effect of the finite extension of the pulse train on the selfimage quality is analyzed and a condition is found for relating the required min
imum pulse number with the chirp parameter of the pulses.
© 2007 Elsevier B.V. All rights reserved.

The development of techniques for the analysis and 
synthesis of ultrashort optical pulses has become of most 
importance in the field of optical communications, pho­
tonic signal processing and ultrafast optics. The charac­
terization of the optical pulses can be performed from 
direct interferometric measurements in different domains 
such as time (t), frequency (v) or in a combined phase  
space domain (t, v). Signal analysis using phase space rep
resentations, like the Wigner distribution function 
(WDF), has been successfully applied to describe the sys­
tem properties in several spatial optics applications [1 3]. 
Related with the WDF, a formalism based on the frac
tional Fourier transform (FRT) was developed in recent 
years to describe the properties of many optical devices

in the spatial domain [4 10]. The FRT of a given optical 
signal can be also considered as a dual phase space signal 
representation where the fractional order p  varies from 
zero (only space information) to one (pure spatial fre
quency information). Several optical devices were pro­
posed for implementing the spatial FRT, either through 
guided light transmission in a medium having a quadratic 
refractive index profile [4] or by combining lens action and 
free space propagation [5]. Besides, an alternative inter
pretation of the FRT was given in connection with the 
Radon Wigner transform (RWT) [7]. The RWT is 
obtained by performing a phase space coordinate rotation 
of the W DF associated with the signal followed by a pro
jection of this rotated WDF into the spatial frequency 
axis. An optical setup was proposed to implement the 
RWT of a one-dimensional input signal employing a vari
focal lens device [9]. The RWT was successfully applied in 
signal processing as e.g., in the analysis and synthesis of 
multicomponent linear FM signals [11,12] and for enhanc
ing resolution in ultrasound imaging [13].

151

www.elsevier.com/locate/optcom

Abstract

K eyw ords: Pulse propagation; Temporal Talbot effect; Phase-space signal representations

1. Introduction

0030-4018/$ - see front matter © 2007 Elsevier B.V. All rights reserved. 
doi:10.1016/j.optcom.2007.03.021

Corresponding author.
E m ail addresses: daborde@ciop.unlp.edu.ar (C. Cuadrado-Laborde). 

ricardod@dop.unlp.edu.ar (R. Duchowicz), esicre@uade.edu.ar (E.E. 
Sicre).

-

-

-

-
-

­

- - ­
- ­

-
-

- ­
­

­

-
­

http://www.sciencedirect.com
http://www.elsevier.com/locate/optcom
mailto:daborde@ciop.unlp.edu.ar
mailto:ricardod@dop.unlp.edu.ar
mailto:esicre@uade.edu.ar


C. Cuadrado-Laborde et al. /  Optics Communications 275 (2007) 94 103 95

On the other hand, the space-time duality theory was 
developed based on the analogy existing between the prop
erties of quadratic phase filters and Fresnel transforms in 
the spatial domain and the time impulse responses of differ
ent dispersive media and the frequency modulation of time  
varying pulses in guided light transmission [14 18]. In this 
way, well known concepts and experiments developed in 
the framework of spatial optical systems can be transferred 
to the temporal domain thereby providing new ways for 
analyzing and processing time optical signals. Among sev
eral applications (as e.g., spectrum analyzers, temporal 
microscopy and pulse compression), temporal selfimaging 
or Talbot effect was implemented in order to produce peri­
odic pulse trains with minimum distortion and different 
repetition rates [19 26]. Although selfimaging is a linear 
phenomenon, it has been also applied in connection with 
some nonlinear phenomena, such as Raman pulse com
pression [27], soliton generation [28] and cross-phase mod­
ulation [29].

In this paper we analyze the pulse trains conformation, 
which is produced from a proper combination of dispersive 
transmission and phase modulation applied to a periodic 
input signal, by employing an approach based on the tem
poral RWT and its connection with temporal selfimaging. 
To this end, we generalize a previously reported optical 
implementation of the RWT that is based on the space- 
time analogy and the theory of temporal imaging [30]. In 
that work, a relationship for obtaining the fractional orders 
p  for which the FRT’s coincide with a certain selfimaging 
condition was derived for the particular case of unchirped 
periodic pulse trains. Now, we extend the RWT signal 
description for analyzing pulse train conformation in the 
more realistic case of finite periodic pulse trains where 
the individual pulses are frequency chirped. The new condi
tions, for obtaining the fractional orders for which self  
images can be found, are derived by performing the 
analogy between our chirped pulse train and the equivalent 
unchirped pulse train, which would produce the same 
RWT at the specific fractional orders associated with selfi
maging. The role of this unchirped pulse train is rather sim
ilar to the equivalent dispersion line which was used by 
Chantada et al. [31] in the spectral analysis of the temporal 
Talbot effect, without considering time lens action. We also 
investigate the relation between the number of pulses N  
that is required for obtaining a well defined selfimage and 
the spectral content of the pulse trains. It is derived a rela
tionship between N  and the pulse chirp parameter which is 
corroborated in the numerical simulations.

In Section 2, we summarize the basic definitions of the 
FRT and the RWT in the spatial domain, together with 
the link between the FRT and the general spatial selfimag
ing. In Section 3, we introduce an optical definition of the 
RWT in the temporal domain. In Section 4, we analyze the 
temporal selfimaging by using the RWT formalism. The 
general relationships for producing integer and fractional 
selfimages of a finite, periodic chirped pulse train are 
obtained here. In Section 5, some numerical simulations

the WDF associated to the input signal, which is a dual sig­
nal representation defined in a phase space: spatial coordi
nate (x) vs. spatial frequency (v). In Eq. (1), R<p is the 
rotation operator acting on the W DF which changes 
( j c , v) > (jc7, v')  (xcos 0  v sin vcos (j) +  x sin </>), being 
(f)  p n / 2. Thus, the FRT modulus squared of uo(x) is ob­
tained: (i) by passing to the WDF domain, (ii) rotating the 
W DF by an angle (f> and (iii) by performing a projection 
into the spatial frequency axis. As these two last steps rep
resent the Radon transform of a signal, |mp(x)|2 is also 
called the Radon Wigner transform (RWT) of Mo(x).

The FRT of a given one-dimensional space signal Uo(x) 
can be optically implemented by properly combining lens 
action and light propagation. This combination can be per
formed either in a distributed or in a tandem way. In the 
first case, light transmission in a guided medium having a 
quadratic refractive index profile (like a G R IN  medium) 
originate the successive FRT’s of increasing fractional 
order p  [4]. We focus our attention in the second approach 
where Lohmann proposed two simple setups for obtaining 
the FRT [5]. In one of them, the input signal u0(x) is illumi
nated by a monochromatic plane wave of wavelength X, 
then interacts with a first lens of focal length /, then it prop­
agates by a distance z, and it again interacts with a second 
lens having the same focal length /. The amplitude distribu­
tion after the second lens, which can be expressed as a 
proper scaled Fresnel integral, becomes the FRT of the 
input object being denoted as up(x)  3^{u0(x)} where 
0</?<  1. The geometrical parameters are related with p  as
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are shown which illustrate the derived results. As we shall 
see, the previously found relationship between p  and selfi  
maging, for the case of unchirped pulses, can be approxi­
mately applied for obtaining integer selfimages of an 
input chirped pulse train with small distortions. However, 
for the case of fractional selfimaging (which is of interest 
due to its repetition rate multiplication capability), the gen
eral relationships obtained here should be used for observ
ing well conformed pulse trains.

being

(1)

(2)

2. F R T  and selfim aging: definitions and basic relationships 

in the spatial dom ain

The FRT can be defined explicitly in standard notation 
as an integral transform [4,5,10] as well as in several differ
ent ways [10]. We prefer to use the definition which 
involves a given rotation in the phase space plane of the 
W DF [7,10]. The FRT of a given signal uq(x ) can be found 
by performing the following steps
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where uR{x\z) is the Fresnel pattern diffracted by wo(*) a 
distance z  f 0 sm (p iz/2) when the object is illuminated 
with a spherical wave of radius R f   /0/tan(p7r/4). 
In the particular case of a periodic object u0(x)  t(x; d) 
(being d  the spatial period), if t[x \d), located at z  0, is 
illuminated with a spherical wave converging to z  R, 
selfimages appear at the distances z   sM d2/X, being 
M   (R   z ) /R  and s  n /m , where n and m  are integers 
(see e.g., [21]). Two kind of selfimaging should be distin
guished: (i) integer or Talbot selfimages, for which s  n 
(i.e., m  1), having periods M  x d, and (ii) fractional or 
sub-Talbot selfimages, for which n and m  are coprime 
integers and m ^ 2, having periods M  x d /m . From these 
Talbot conditions, and by taking into account Eq. (4), the 
relationship between the selfimage patterns of t(x] d) and 
the FRT is obtained as

where the specific values p   p s for which Eq. (5) is satis­
fied are given by

and the selfimage period dT results as

The space-time duality theory is based on the mathe
matical analogy existing between the impulse response 
functions associated with spatial and temporal optical 
components. By using this analogy, pulse transmission 
devices can be developed having the same properties in 
the time domain that those having the amplitude distribu­
tions produced by the “analogue” or spatial counterparts 
[14 17]. In the temporal domain, a time lens introduces a 
quadratic-phase modulation into the time-varying signal. 
Besides, a dispersive medium (up to the first order) has 
associated a quadratic phase spectral response with a 
mathematical expression similar to that found in spatial 
Fresnel diffraction. In this way, through a suitable combi­
nation of dispersion and quadratic phase modulation into 
the propagating pulses, time domain analogues of a spatial 
imaging system can be synthesized. The equivalencies 
between spatial optics experiments and guided pulse prop­
agation in dispersive media can be established in the fol­
lowing way

In Eq. (8), z and /  are the free space propagation distance 
and the focal length, respectively, of the spatial optical sys­
tem. Besides, <P2o is the second order dispersion coefficient 
of the medium where the pulses are transmitted (specified 
at the working central frequency co  co0) and (f>2o is the 
quadratic phase modulation factor associated with the time 
lens. The symbol < > means that the magnitudes of the 
left side (spatial parameters) should be replaced by the 
magnitudes of the right side (time parameters) in order to 
produce the same impulse response (in case of spatial and 
time lenses) or the same transfer function (in case of Fres­
nel diffraction and dispersive pulse transmission).

The optical production of the spatial RWT was discussed 
in Section 2. By using Eq. (8), a photonic device for obtain­
ing the temporal RWT associated with a time-varying signal 
uo(t) is shown in Fig. 1. The input light pulse first interacts
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being /o  a scaling factor. If p   0 the FRT becomes u q (x ), 
and if p   1 the FRT becomes the normal Fourier trans­
form of m0(x). For other values of p , the FRT exhibits both, 
mixed space and spatial frequency information about the 
input signal. As we are mainly interested in the light irradi
ance, !«/,(*) |2 is the magnitude to be considered. As it was 
proved in [7], \up{x )^  displayed in a two-dimensional do
main (x,p) becomes the RWT of the object Hq {x ). The 
RWT is a bilinear, phase space signal description which 
is very useful in signal processing [11 13], Thus, if a 
RWT display is obtained for 0 < p  < 1, the information 
about the input signal u0(x) continuously changes from a 
spatial representation (p  0) to a pure spatial frequency 
description (p  1).

The free space diffraction originated by an input object 
under spherical illumination is closely related to the FRT 
production, as it was demonstrated in [9]. In the FRT setup 
described above, the first lens generates the spherical wave 
being the only difference with free space diffraction the 
second lens action introducing a quadratic phase factor. 
However, this effect is not relevant since the irradiance is 
the magnitude to be analyzed. Thus, if we choose the out­
put plane placed immediately behind the second lens and 
we select the radius of the illuminating spherical wave 
R f  and the propagation distance z accordingly with 
Eq. (3), the output irradiance 7„ut(x) can be written as

(3a)

(3b)

(7)

3. Tem poral Radon W igner Transform  (R W T )

Eqs. (5)-(7) include both fractional and integer selfimaging. 
The fractional orders associated with the integer selfimage 
conditions are derived from Eq. (6) by placing m  1. Thus, 
for the fractional orders obtained from Eq. (6), the irradi­
ance of the FRT (or equivalently, the RWT) becomes iden
tical to demagnified replicas of the input periodic object 
with a period dT given by Eq. (7). In the next section, we 
extend the RWT definition to the temporal domain for 
analyzing pulse train transmission in dispersive media 
using the space time optical analogy. Pulse trains having 
a constant repetition rate are the equivalent time signals 
to the periodic objects of the spatial domain.

(4)

(8a)

(8b)

(5)

(6)
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display (0 < p  < 1) for signal analysis purposes and, when 
a particular value p   p 0 is selected depending on the pulse 
transmission required application, the optical device is only 
once implemented with the parameters $2o and (f>2o 
obtained from Eq. (9) by replacing p   p 0.

Fig. 1. Scheme of the optical device proposed to implement the temporal 
RWT. The input signal uq{í) is first phase modulated by l(t) and then it is 
transmitted by the dispersive component having the transfer function 
H(a>)  exp(ii,2otu2/2). The output optical power is \up(t)\2.

Finally, two features should be kept in mind in the obser
vation of the RWT displays of this work. First, since the 
set up parameters should be continuously changed to ob
tain P 0ui(t)  \up{ t)^ , for varying p , the temporal RWT 
of the input signal is sequentially produced. Second, there 
is a pulse delay effect that directly depends with p  (through 
<P20, see Eq. (9a)) which, if it is not compensated, would 
originate a shear display of the RWT [30]. Therefore, to 
facilitate the comparison between different fractional or
ders p , all RWT displays of this work were temporally 
aligned with the input, and thus they do not show this 
shear effect.

If the complete temporal RWT is to be photonically 
realized, it should be taken into account that the setup 
parameters <P2o and (f>2o are continuously changed accord
ingly with Eq. (9) for obtaining P o M   Wp(t)\2 for vary­
ing p . Therefore, the complete RWT display of the input 
signal can only be sequentially produced and it would 
require a dispersive medium with a well-controlled sec
ond-order coefficient and time lenses with different phase 
modulation factors. By this reason, we propose a numerical 
implementation of the RWT in order to achieve the whole

A  very important application related with the spatial  
temporal analogy is the temporal selfimaging or Talbot 
effect where conformation of periodic pulse trains having 
different repetition rates can be achieved by properly com
bining signal phase modulation (or time lens action) with 
pulse transmission in guided dispersive media [19 29]. 
Although this subject was extensively treated by many 
authors, there are several features that can be conveniently 
analyzed employing the RWT approach.

By using the photonic device sketched in Fig. 1, and by 
considering as input signal u0(t) a sequence of N  pulses hav
ing a pulse width T0 and a repetition period T \, the output 
optical power becomes Pout(i)  p^{wo(0}|2> whenever 
the setup parameters <#2o and <j>2o are related with p  in 
accordance with Eq. (9). Besides, by taking into account 
Eqs. (5) (7) linking the selfimage patterns and the FRT 
of a periodic spatial object, a temporal analogue condition 
can be found as
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with a quadratic phase modulator (having a phase modula
tion factor (j)20) and then with a dispersive medium having a 
second order dispersion coefficient <P2o, after which the 
resulting pulse is detected as P out(0  |wp(0|2 It should be 
noted that as we are only interested in the signal irradiance 
(for producing the RWT), the second time lens that would 
be required for correcting the phase term of the FRT is 
not needed. Now, by applying Eqs. (3) and (8), the time  
domain relationships linking the setup parameters <P2o 
and (¿2 0  with the fractional order p  of \u J t ) I2  
|3W{«o(0}|2 result as

where o0 is a scaling factor having dimensions of ps2/ 
nm rad. Thus, if the setup parameters <P20 and (f>20 are var­
ied accordingly with Eq. (9), FRT modulus squared with a 
varying fractional order p are obtained from Po\ll(t), i C.,

(9a)

(9b)

where, as m the spatial case, s  n, with n  1,2,3,..., for 
the integer or Talbot selfimages and s  n /m  (being n and 
m  coprime integers and m ^ 2) for the fractional or sub  
Talbot selfimages. The main difference between integer 
and fractional selfimaging, as replicas of the input pulse 
train, are: (i) the repetition rates are T \xco s{p sn /2 ) and 
T i/m x c o s (p sn /2 ) for integer and fractional selfimages, 
respectively, and (ii) the duty cycle T q/ T i remains un
changed for the integer selfimages while it is multiplied 
by m  for the fractional selfimages. In this way, if the whole 
RWT display is generated from a given input pulse train 
u0(t), output pulse trains having different repetition rates, 
and equal or different duty cycles, can be produced by 
choosing the setup parameters <P20 and (f>20 in accordance 
with the selected values of p s .

For establishing the spatial-temporal selfimaging anal­
ogy, periodicity becomes an essential condition. In the spa
tial domain, a finite object may easily have N  s  103

where the selfimage magnification factor M  is given by

The specific values p p s for which the FRT becomes a 
temporal selfimage, as given by Eq. (11), can be found by 
transforming Eq. (6) to the time domain, so resulting

( 12)

(13)

4. Periodic pulse train conform ation with different 

repetition rates

( 11)

(10)
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where s  n /m  characterizes the selfimage. Basically, this 
relation states that N 0 should be large enough as compared 
with the reciprocal of the pulse train duty cycle. We here 
analyze this question choosing as periodic input signal 
Uo(t) a pulse train of N  Gaussian-profile pulses, with repe
tition rate T\, which can be expressed as

(15)

where A 0 is the pulse maximum amplitude, T0 is the half  
width (measured at 1/e decay in power), C is the chirp 
parameter and rect(f/At)  1 in a time interval A t  N T \. 
The Fourier coefficients aq become

(16)

In the spatial selfimaging, the so-called “walk-off’ effect or 
lack of in phase interference due to the spatial separation 
of the several diffracted orders, determines the maximum 
number of observable selfimages. Basically, the maximum 
selfimage distance z T is limited by the relationship 
tanac  N d /z T  qck /d , being N d  the spatial extent of the 
finite periodic object, qc the maximum diffracted order that 
is present in the selfimage and ac the angle subtended with 
the optical axis which satisfies the grating condition 
d  sin ac  qcL  By translating this result to the temporal do
main, by using Eqs. (8a) and (9a), we obtain

|a9c/«o|2  0.1, i.e., we neglect all the orders q > qc having 
optical powers lower than 10% of that associated with the 
zero order. This criterion yields to different results depend
ing on the shape of the individual pulses but it becomes 
adequate for slow-varying functions like Gaussians. Thus, 
qc can be derived, by using Eq. (16), from the condition

(18)

For a duty cycle Tq/ T i  0.05, it can be obtained qc  5 
for C  0 and qc  30 for C  6. This means that the 
pulse number N  of the chirped pulse train should be in­
creased by a factor |C| as compared with the unchirped 
pulse train for obtaining the same selfimage quality. This 
fact will be further illustrated in the next section where 
some examples were presented. Now, we are interested in 
deeper analyze the selfimage formation when pulse chirping 
is present by taking advantage of the RWT formalism. As 
the procedure for obtaining the RWT, as shown in Fig. 1, 
consists of a quadratic phase modulation of the input sig­
nal m0(î; C) by a time lens /(/) followed by dispersive prop­
agation (which is mathematically equivalent to delay the 
signal spectrum by a quadratic transference function 
H(w)), we can express the output amplitude as

being h(t)  3 ]{H(a>)} the impulse response associated 
with the dispersive component and <S> denotes convolution. 
By calculating Eq. (19), it can be written as

(20)

where K  is a complex constant and the approximation 
A t  N Ti >  To was used. Thus, the RWT associated with 
the chirped pulse train can be obtained from Eq. (20) as

( 21)

being

(22a)

(22b)
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diffracting lines, being its space-bandwidth product large 
enough for considering it as a periodic object. In this case, 
a large number of well defined selfimages can be observed. 
The situation is completely different in the temporal 
domain. Although pulse trains having constant repetition 
rate and time duration long enough as to be considered a 
periodic time signal can be implemented, the actual number 
N  of consecutive pulses which can be phase modulated by a 
practical time lens and/or spectral overlapped by the 
employed dispersive medium is rather limited. By this rea
son, it is very important to establish the minimum number 
of pulses N   No in order to obtain well-formed temporal 
selfimages. This question was first analyzed by Azana
[26]. By considering the total time bandwidth product Kenv 
associated with the envelope of the pulse train, the selfi
maging conditions and the relation N  «  Aienv/Ti, being 
Aienv the total temporal duration of the pulse train, they 
derive the following inequality

As |aq\ is the optical power of the ^ diffracted order, we 
limit the infinite Fourier expansion of Eq. (15) to a finite 
Fourier series up to a maximum order qc such as

(19)

(14)

(17)
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and the parameters $2o and (f>2o are varied accordingly 
with Eq. (9) for obtaining the whole RWT display for
0 < p  < 1.

Let us now investigate the relationship between the 
RWT, as given by Eq. (21), and the selfimaging formation. 
For the particular case of an unchirped pulse train, this 
relationship was previously given by Eqs. (11) (13). Thus, 
we reformulate the problem in the following way. We ana
lyze the properties of the unchirped pulse train it0(t; C  0) 
that would produce the same RWT for selfimaging as it is 
given by the output irradiance of Eq. (21). If T\ and T 0 
denote the repetition rate and pulse width of u0(i; C  0), 
then the output irradiance can be obtained by properly 
using Eqs. (21) and (22) with C  0, i.e.,

(23)

(24a)

(24b)

where the unknown values of $20, &20, T  i and T 0 are to be 
determined by equalizing Eqs. (23) and (21), since the same 
output irradiance was required. From this condition, we 
derive the following three relationships

(25a)

(25b)

(25c)

By using Eq. (25), we intend to solve the following ques
tion. We have two different pulse trains: (i) one chirped 
uo(t] C) having known parameters {T\, T0, C /  0) for which 
the fractional orders p s associated to the selfimages are un­
known; (ii) a second unchirped pulse train u0(/; C  0), 
with T  i and To as unknown parameters, for which the frac
tional order ps corresponding to a selfimage condition can 
be obtained from Eq. (13) (since C  0), i.e.,

and (25c), together with Eq. (9), we derive the following 
relationship to found the values of p s

(27)

Finally, from Eq. (25b) it results

(28)

Thus, we arrive to the following result: The selfimages 
produced by a chirped Gaussian pulse train u0(t; C), with 
pulse width T0 and repetition rate 7j, which are observed 
at p   p s in its RWT display, are the same selfimages 
originated by an unchirped Gaussian pulse train 
zio(i;C 0), having the same repetition rate T\  T\ 
and pulse width T0  T0/ \ / 1 + C2, obtained at p p s  

(derived from Eq. (26) with T\  T\) in its corresponding 
RWT display. The relationship linking p s  and p s  is given 
by Eq. (27) being their main difference the term involving 
CT20/a 02(l + C2). As we shall see in the next section, for 
the first selfimage (j   1) and its associated fractional self  
images (s  1 /m , with m ^ 2), with C  6, a0  1.42 
ps2/nm rad and X  1550 nm, from Eq. (27) it can be ob­
tained p   l.OOlps. However, this slight variation in the 
selected fractional order of the RWT becomes very impor­
tant for observing or not fractional selfimaging of high 
repetition rate multiplication (m > 10). As a final remark, 
Chantada et al. recently presented a spectral analysis of 
the temporal Talbot effect by only employing fiber disper
sive lines [31]. The relationships we obtained between <P20 
and $ 2 0  (as given by Eq. (25c)) (or equivalently, between 
P s  and p s  as given by Eq. (27)) using the tandem time 
lens dispersive line of Fig. 1, reduce to the equivalent 
dispersion defined in Eq. (5) of [31], when unitary magni
fication M   M   1 is considered. For this particular 
case, from Eq. (25a) it results Ti  T \ and the relation
ships given by Eqs. (27) and (28) are obtained without 
any approximation.

5. Num erical results

We now illustrate the selfimaging formation properties, 
discussed in the previous section, by analyzing the RWT of 
the three following Gaussian periodic pulse trains, all of 
them having a constant repetition rate T\  40 ps, pulse 
width To  2 ps and a mean wavelength A  1550 nm: (i) 
N   21 pulses, C  0; (ii) N   21 pulses, C   6; (iii) 
N   129 pulses, C  6. Accordingly with the analysis 
done after deriving Eqs. (17) and (18), the pulse train 
(iii), having a pulse number |C| times greater than (ii), 
should originate the same selfimage quality as compared 
with the non-chirped pulse train (i). Following the proce
dure described in Section 3, we numerically compute the 
RWT for the three pulse trains and the results are shown 
in Fig. 2a c as gray level displays. In order to better visu­
alize the behavior of the pulse trains, a time interval of 
lOOps is shown for which only three consecutive central
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Unfortunately, Eq. (26) can not be solved since T  i is un­
known. However, by returning to the previous heuristic 
analysis (Eqs. (15) (18)), we conclude that the main differ
ence between chirped and unchirped pulse trains for pro
ducing selfimaging lies in the number of required Fourier 
coefficients rather than periodicity. Hence, we introduce 
the condition T \  T i, approximation which is to be justi
fied from the results shown in the next section. Now, we 
can solve Eq. (26) for obtaining p s . By using Eqs. (25a)

(26)
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Fig. 2. Gray level displays of the RWT associated with three periodic 
pulse trains, all of them having a constant repetition rate T\  40 ps, a 
pulse width T0  2 ps and a mean wavelength X  1550 nm. In (a) N   2\ 
pulses, C  0; in (b) N   21 pulses, C   6; and in (c) N  129 pulses, 
C   6. In the three displays, the temporal and fractional order 
resolutions are At  0.06 ps and Ap  0.001, respectively. For sake of 
clarity, only three central pulses of the input are shown.

pulses of the input trains can be observed. Besides, for pro­
ducing well defined selfimages we restrict the selfimaging 
orders to be analyzed to the range 0 < p  < p x, being p x 
the fractional order associated with the first integer selfim
age (s  1). For obtaining repetition rate multiplication 
capability, fractional selfimages are to be also considered 
for these values of p . For the unchirped pulse train (i), it 
can be obtained from Eq. (13) p x « 0.4004. By considering 
this value of p , the RWT displays of Fig. 2 are only shown 
for 0 < p  < 0.5. Next, we analyze the selfimage irradiances 
for certain values of the fractional order p. In Fig. 3, the 
output irradiances \up(t)\2 obtained from each RWT dis
play are shown for p   p x. As it is expected, it can be seen 
in (a) a well formed selfimage of the pulse train (i) having 
the repetition period T x  T\ x cos(npx/2 ) «  32.4 ps 
(accordingly with Eq. (12)) and a duty cycle of 0.05 identi­
cal to the input pulse train. In (b), a small distortion in the 
selfimage of the chirped pulse train (ii) can be observed. 
Two different distorting effects are present here: the num
ber of pulses should be increased for obtaining a selfimage 
quality similar to the unchirped case, and the fractional 
order should be corrected, as it is established by Eq. (27), 
for chirped pulses. However, as it is shown in (c), the self  
image irradiance of the pulse train (iii), for which the num
ber of pulses is increased by |C|  6, becomes identical to 
(a) and the mismatch effect in p  (due to pulse chirping) is

Fig. 3. Output optica] powers, associated with the first integer selfimage, 
obtained from the slices at p  «  0.4004 of each one of the RWT shown in 
Fig. 2a c.
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negligible. Now, we analyze the irradiances of \up{ t)^  for 
p  æ 0.0289. As it can be derived from Eq. (13), this value 
of p  corresponds to the fractional selfimage s  1/16 (i.e., 
m  16) of the unchirped pulse train (i). The three irradi­
ances are shown in Fig. 4. In (a), the irradiance resembles 
the input pulse train with a certain distortion level. In this 
case, the small amount of dispersion <P2o required to obtain 
p  « 0.0289 is not enough to spectrally overlap the pulses. 
By inspection of Fig. 2a, it can be concluded that fractional 
unchirped sefimages can only be observed for p  ^ 0.1. In 
Fig. 4b and c, the fractional selfimages corresponding to 
the chirped pulse trains (ii) and (iii) appear severely 
distorted. In (c), although N  is increased by |C| as 
compared with (b), the mismatch effect in the selection of 
p  (by using Eq. (13) instead of Eq. (27)) becomes relevant. 
However, as it was discussed after deriving Eqs. (27) and 
(28), there is an unchirped equivalent pulse train, with rep
etition period T\  T\  40 ps and pulse width T 0  
2 ps/\/1 + C2 æ 0.33 ps, which originates the same selfim
age irradiances as (ii) and (iii). The RWT of this equivalent 
pulse train is shown in Fig. 5a, where it can be observed 
that this display is almost identical to the RWT associated 
with (iii) (shown in Fig. 2c). To corroborate this equiva

Fig. 4. Output optical powers obtained from the slices at p  «  0.0289 of 
each one of the RWT shown in Fig. 2a c. This value o fp  is associated with 
the fractional selfimage m  16 of the unchirped pulse train. It can not be 
observed in (a) (due to the low amount o f dispersion $ 2o associated with 
this p), and it is not formed in (b) and (c) due to the shifting effect in the 
selection of p  that should be done for chirped pulses.

Fig. 5. (a) Gray level display of the RWT corresponding to the equivalent 
unchirped pulse train (associated with the chirped pulse trains of Fig. 2b 
and c), having a repetition rate T\  40 ps and a pulse width To  0.33 ps. 
The temporal and fractional order resolutions are the same as in Fig. 2 
and, for sake of clarity; only three central pulses of the input are shown, 
(b) Output optical power which can be obtained either from the slice at 
p  «  0.0289 of the RWT shown in (a) or from the slice at the corrected 
value p  «  0.0301 of the RWT shown in Fig. 2c. Now, a well-defined 
fractional selfimage m  16 can be observed.

lence, we derive from Eq. (13) (or equivalently from Eq. 
(26)) the fractional order for s  1/16 resulting 
Ps  0.0289 (that is the same p  as it was used in Fig. 4). 
By employing Eq. (27), the corrected fractional order asso­
ciated with s  1/16 for the chirped pulse train results as 
p s  0.0301. Fig. 5b shows the output irradiance obtained 
either from the RWT of the chirped pulse train (iii) (shown 
in Fig. 2c) for p  «  0.0301 or from the RWT of the equiva­
lent unchirped pulse train (shown in Fig. 5a) for 
p   0.0289, so verifying the results found in Section 4. In 
order to better illustrate the pulse conformation effect, 
for the chirped and the equivalent unchirped pulse trains, 
we show in Fig. 6, a small range 0.2218 ^ p  ^ 0.2245 of 
the two RWT of Figs. 2c and 5a. This p range corresponds
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to the fractional selfimage s   1/2 (i.e., m  2). By direct 
inspection of Figs. 2c and 5a there is no perceptible differ
ence between both RWT displays in the neighborhood of 
p  ̂  0.22. However, it can be seen in Fig. 6 that both 
RWT becomes identical (and so, the associated selfimage 
irradiances) only for p s ss 0.2232 (left display, chirped 
pulses) and p s  0.2221 (right display, unchirped equiva
lent pulses). For other values of p  (no satisfying a selfimag
ing condition), both RWT of Fig. 6 become slightly 
different. In summary, it can be observed that an additional 
dispersion is required to observe a selfimage when each 
optical pulse of the input is chirped, i.e. from p$ « 0.2221 
(for C  0) to p s « 0.2232 (for C  6). This is so, because 
when the chirp parameter and the dispersion have opposite 
signs, the length of the medium can be split in two positive 
contributions, i.e. L  L c + L j, assuming that an optic 
fiber is used as the dispersive medium. The first length of 
the line (Lc) is used to compress the pulses in the input 
train individually, and the remaining length of the fiber 
(Lt ) produces the corresponding Talbot selfimage of the 
compressed pulses train [31].
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selfimages with high fractional order) becomes enhanced 
by a multiplicative factor (|C|), when the input train is 
chirped. Regarding with the finite extension of the pulse 
trains, it was found that for obtaining the same selfimage 
definition, the pulse number of the chirped pulse train 
should be multiplied by the chirp parameter as compared 
with the pulse number of the unchirped pulse train. The 
general relationships linking the pulse train parameters 
with the fractional orders for which selfimages appear in 
the RWT were developed for both, unchirped and chirped 
periodic pulse trains. These results become relevant when 
fractional selfimages, having high repetition rates, are to 
be produced since in this case the chirped pulse trains are 
strongly distorted if they are originated employing the 
setup parameters associated with the fractional orders cor
responding to the similar unchirped condition.
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Fig. 6. Enlarged view  o f  the gray level displays o f  the R W T  o f  Figs. 2c 
(left side) and 5a (right side). The output optical power corresponding to  
the fractional selfimage s   1 / 2  (m  2) can be obtained either from the 
slice at p  0.2221 o f  the R W T  (right side) or from  the slice at the 
corrected value p   0.2231 o f  the R W T  (left side).

We have presented a method of signal analysis and pro
cessing in the time domain based on the RWT description. 
By employing the space temporal analogy, a photonic 
device for producing the temporal RWT was proposed 
which can be used to originate optical pulses having certain 
predetermined properties which are of interest in pulse 
transmission applications in different dispersive media. 
This approach was applied to analyze several features of 
the temporal selfimaging or Talbot effect. It was compared 
the selfimage formation of unchirped and chirped periodic 
pulse trains. The possibility to obtain, from a certain input 
periodic train, an output with a higher repetition rate (i.e.

6. Conclusions

-

­ 

— = 

~ 

-
= = 

­ - ­

~ ­ 
­ 

= = ­

= 

­ 

- 



C. Cuadr ado-Labor de et al. / Optics Communications 275 (2007) 94 103 103

[23] J. Lands, J. Caraquitena, P. Andrés, M.A. Muriel, Opt. Commun. 
253 (2005) 156.

[24] C. Cuadrado-Laborde, P.A. Costanzo Caso, R. Duchowicz, E.E. 
Sicre, Opt. Commun. 260 (2006) 528.

[25] S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, B. 
Agogliati, L. Arcangeli, V. Pruneri, M.N. Zervas, M. Ibsen, Opt. 
Lett. 25 (2000) 1481.

[26] J. Azana, J. Opt. Soc. Am. B 20 (2003) 83.

[27] D.A. Chestnut, C.J.S. de Matos, J.R. Taylor, Opt. Lett. 27 (2002) 1262.
[28] C.J.S. de Matos, J.R. Taylor, Appl. Phys. Lett. 83 (2003) 5356.
[29] J.A. Bogler, P. Hu, J.T. Mok, J.L. Blows, B.J. Eggleton, Opt. 

Commun. 249 (2005) 431.
[30] C. Cuadrado-Laborde, P.A. Costanzo Caso, R. Duchowicz, E.E. 

Sicre, Opt. Commun. 266 (2006) 32.
[31] L. Chantada, C.R. Femandez-Pousa, C. Gomez-Reino, J. Light. 

Technol. 24 (2006) 2015.

160

— 

-

-


