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         Metformin Reverts Deleterious Effects of Advanced 
Glycation End-Products (AGEs) on Osteoblastic Cells    

expression and activity, which thus impairs bone 
healing ( Al-Mashat et al., 2006 ). 
 Advanced glycation endproducts (AGEs) are 
implicated in the complications of diabetes and 
ageing ( Brownlee, 2005 ). AGEs can arise from the 
non-enzymatic reaction of free amino groups of 
proteins, lipids or nucleic acids with reducing 
sugars to initially form unstable Schiff bases, and 
then rearrange to form Amadori products that 
fi nally undergo oxidative and non-oxidative 
modifi cations. Long lived proteins such as colla-
gen are targets for AGEs formation. AGEs-medi-
ated collagen overcrosslinking can cause loss of 
fl exibility and elasticity and increased tissue brit-
tleness ( Ulrich and Cerami, 2001 ). 
 We have shown that soluble and matrix-associated 
AGEs can modulate osteoblastic growth and differ-
entiation ( McCarthy et al., 1997 ;  McCarthy et al., 
2001 ). Although initially AGEs induce a stimulation 
of osteoblastic growth, long-term exposition to 
AGEs-modifi ed proteins elicit an inhibition of pro-
liferation, differentiation and mineralization of 
osteoblastic cultures. These effects are probably 
mediated by an increase in intracellular oxida-
tive stress via receptors specifi c for AGEs proteins 
( Cortizo et al., 2003 ;  McCarthy et al., 1999 ;  Mercer 
et al., 2004 ;  Mercer et al., 2007 ). We have reported 

 Introduction 
  &  
 Several studies have demonstrated the deleteri-
ous effects of diabetes on bone ( Bouillon, 1991 ; 
 Carnevale et al., 2004 ;  Schvartz, 2003 ;  Ves-
tergaard, 2007 ). Diabetic patients exhibit an 
increased risk of fracture when compared to the 
non diabetic population. Patients with type 1 
diabetes have low bone mass caused by reduced 
bone formation and impaired fracture healing, 
with reduced number and function of osteo-
blasts. In type 2 diabetes, which is associated 
with an increased bone mineral density, there is 
evidence of increased risk of fracture and 
impaired bone healing ( Schwartz et al., 2001 ; 
 Strotmeyer et al., 2005 ;  Vestergaard et al., 2005 ). 
Other authors have proposed that diabetes is 
associated with a decreased osteoblastic recruit-
ment and function and as a consequence with 
low bone turn-over that retards age-related bone 
loss. This would lead to an accumulation of 
microarchitectural bone damage, which could 
explain the increase in bone fractures observed 
in these patients ( Krakauer et al., 1995 ). In addi-
tion, it has recently been reported that diabetes 
enhances the apoptosis of fi broblasts and osteo-
blasts mainly by activating caspase-8, -9 and -3 
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  Abstract 
  &  
 Advanced glycation endproducts (AGEs) are 
implicated in the complications of diabetes and 
ageing, affecting several tissues, including bone. 
Metformin, an insulin-sensitizer drug, reduces 
the risk of life-threatening macrovascular com-
plications. We have evaluated the hypothesis that 
metformin can abrogate AGE-induced deleteri-
ous effects in osteoblastic cells in culture. In two 
osteoblast-like cell lines (UMR106 and MC3T3E1), 
AGE-modifi ed albumin induced cell death, cas-
pase-3 activity, altered intracellular oxidative 

stress and inhibited alkaline phosphatase activ-
ity. Metformin-treatment of osteoblastic cells 
prevented these AGE-induced alterations. We 
also assessed the expression of AGE receptors as 
a possible mechanism by which metformin could 
modulate the action of AGEs. AGEs-treatment 
of osteoblast-like cells enhanced RAGE protein 
expression, and this up-regulation was prevented 
in the presence of metformin. Although the pre-
cise mechanisms involved in metformin signaling 
are still elusive, our data implicate the AGE-RAGE 
interaction in the modulation of growth and dif-
ferentiation of osteoblastic cells.         
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that osteoblastic cell lines express detectable levels of RAGE and 
AGE-R3 / galectin-3. These receptors for AGEs are regulated in a 
time- and dose-dependent manner by AGEs in osteoblasts in 
culture. It has recently been reported that AGEs stimulate osteo-
blast apoptosis through its interaction with RAGE, via the MAP 
kinase signaling pathway and caspase-8 activation of caspase-3 
( Alikhani et al., 2006 ). 
 Metformin is an insulin-sensitizer drug widely used in condi-
tions associated with insulin-resistance such as type 2 diabetes. 
The UK Prospective Diabetes Study (UKPDS) showed that met-
formin treatment reduces the risk of life-threatening macrovas-
cular complications compared to other anti-hyperglycaemic 
agents ( UKPDS 34, 1998 ). A cardioprotective effect has also been 
suggested for the HMG-CoA reductase inhibitor cerivastatin, 
since it lowers the serum levels of carboxymethyl-lysine, and 
established AGE structure ( Scharnagl et al., 2007 ). Metformin 
was shown to inhibit cytosolic and mitochondrial reactive oxy-
gen species production induced by AGEs in endothelial and 
smooth muscle cells ( Bellin et al., 2006 ). We have recently shown 
that metformin induces a dose-dependent increase in cell prolif-
eration, differentiation and mineralization in two osteo blast cell 
lines (UMR106 and MC3T3E1), probably mediated by activation 
and redistribution of ERK 1 / 2 and induction of eNOS and iNOS 
( Cortizo et al., 2006 ). 
 In the present study we have evaluated the hypothesis that met-
formin can abrogate AGE-induced deleterious effects in osteo-
blasts in culture. To address this issue we investigated the effects 
of AGEs with or without metformin on osteoblastic differentia-
tion, apoptosis and oxidative stress in two osteoblastic cell lines. 
We also assessed the expression of AGE receptors as a possible 
mechanism by which metformin could modulate the action of 
AGEs.   

 Materials and Methods 
  &   
 Materials 
 Dulbecco ’ s modifi ed Eagle ’ s medium (DMEM), trypsin-EDTA 
and fetal bovine serum (FBS) were obtained from Gibco (Invitro-
gen, Buenos Aires, Argentina). Tissue culture disposable mate-
rial was from Nunc (Tecnolab, Buenos Aires, Argentina). 
Centricon 10 kDa cutoff fi lter cartridges were purchased from 
Amicon Inc. (Beverly, Mass., USA). Goat polyclonal anti-RAGE 
was from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA). 
The fl uorogenic caspase-3 substrate Ac-DEVD-AFC was pur-
chased from BIOMOL International (L.P., PA, USA). Di-amino-
bencidine (DAB), bovine serum albumin (BSA), ribose and Triton 
X-100 were obtained from Sigma-Aldrich (Buenos Aires, Argen-
tina). Dihydro-rhodamine 123 (DHR), annexin V-FITC and pro-
pidium iodide (PI) were from Molecular Probes (Eugene, OR). 
Metformin was donated by Quimica Montpellier (Buenos Aires, 
Argentina). All other chemicals and reagents were purchased 
from commercial sources and were of analytical grade.   

 Preparation of AGEs 
 AGEs-BSA was produced by incubation of 10   mg / ml BSA with 
100   mM ribose in 150   mM phosphate-buffered saline (PBS), pH 
7.4 at 37    °    C for 3 weeks ( McCarthy et al., 1997 ). Ribose was 
used as the glycating sugar instead of glucose to speed up non-
enzymatic glycosylation. Control BSA was incubated in the same 
conditions without sugar. Unbound sugar was removed by 
centrifugation / fi ltration with Centricon fi lter cartridges. The for-

mation of AGEs was assessed by their characteristic fl uores-
cence-emission maximum at 420   nm upon excitation at 340   nm. 
The estimated levels of AGEs-BSA obtained in this  in vitro  incu-
bation were 18.5    %  relative fl uorescence intensity / mg protein, in 
contrast to 3.2    %  for control-BSA.   

 Cell culture and incubations 
 UMR106 rat osteosarcoma cells and MC3T3E1 mouse calvaria-
derived cells were grown in DMEM containing 10    %  FBS, 100   U / ml 
penicillin and 100    k g / ml streptomycin at 37    °    C in a 5    %  CO 2  
atmosphere ( McCarthy et al., 1997 ). Cells were seeded on 75   cm 2  
fl asks, sub-cultured using trypsin-EDTA and replated on multi-
well plates. The UMR106 cell line has been shown to conserve 
certain characteristics of differentiated osteoblastic phenotype 
( Partridge et al., 1983 ). In the case of non-transformed MC3T3E1 
cells, previous studies have demonstrated that expression of 
osteoblastic markers begins after culturing the cells with 
medium supplemented by 5   mM  b -glycerol-phosphate ( b GP) 
and 25    k g / ml ascorbic acid (AA) ( Quarles et al., 1992 ). Under 
these culture conditions, alkaline phosphatase activity (ALP) 
begins to be expressed after 1 week and reaches a maximum 
after 2 weeks, while mineralization is achieved after extending 
the culture to 3 weeks. However, the cells only undergo active 
replication during the fi rst 5 days of incubation. For apoptosis 
and oxidative stress experiments in both cell lines, and differen-
tiation experiments with UMR106 osteoblasts, cells seeded on 
multi-well plates were incubated in DMEM medium with differ-
ent doses of BSA or AGEs-BSA with or without metformin, dur-
ing the periods of time indicated in the legends of fi gures. For 
ALP expression experiments with MC3T3E1 osteoblasts, cells 
were cultured for 2 weeks in DMEM / FBS supplemented with  b -
glycerol-phosphate and ascorbic acid changing the medium 
every 2 days, after which they were serum-starved and incu-
bated in DMEM with or without different doses of BSA or AGEs-
BSA with or without metformin, for an additional 72 hours.   

 Assays for osteoblast differentiation 
 Osteoblastic differentiation was evaluated by measuring alka-
line phosphatase activity (ALP). ALP was assayed as we have pre-
viously described ( Cortizo and Etcheverry, 1995 ;  Molinuevo 
et al., 2004 ). Briefl y, the cell layer was washed with PBS and 
solubilized in 0.5   ml 0.1    %  Triton X-100. Aliquots of the total cell 
extract were used for protein determination by the Bradford 
technique ( Bradford, 1976 ). Measurement of ALP was carried out 
by spectrophotometric determination of initial rates of hydroly-
sis of  para -nitrophenyl-phosphate (p-NPP) to  para -nitrophenol 
(p-NP) at 37    °    C for 10   min. The production of p-NP was deter-
mined by absorbance at 405   nm. Under our experimental condi-
tions p-NP formation was linear for 15   min.   

 Evaluation of cell death 
 Apoptosis induced by AGEs-BSA was evaluated using an annexin 
V-FITC / propidium iodide (PI) assay as we have previously 
described ( Molinuevo et al., 2004 ). Early apoptotic stages were 
characterized by annexin V-FITC-positive / PI-negative (V     +      / PI     −     ) 
staining, while apoptotic / necrotic stages were V     +      / PI     +     . The per-
centage of apoptotic and necrotic osteoblasts was determined 
by counting the cells per fi eld in 20 fi elds per coverslip. To evalu-
ate possible pathways involved in osteoblastic cell death, cas-
pase-3 activity was measured by determining the degradation of 
the fl uorogenic substrate Ac-DEVD-AFC as previously described 
( Plotkin et al., 1999 ). Briefl y, after incubation with BSA or AGEs-
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BSA with or without 500    k M Metformin for 24   h, cells were lysed 
and protein content assessed by the Bradford technique ( Brad-
ford, 1976 ). Lysates (100    k g protein) were incubated with Ac-
DEVD-AFC for 1   h at 37    °    C. The released fl uorescent product AFC 
was measured with a spectrofl uorometer (excitation wavelength 
400   nm, emission wavelength 482   nm).   

 Determination of reactive oxygen species (ROS) 
formation 
 Intracellular ROS generation in osteoblastic cells was measured 
by oxidation of dihydro-rhodamine 123 (DHR) to rhodamine as 
we have previously described ( McCarthy et al., 2001 ). Osteoblas-
tic cell monolayers growing in 24-well plates were submitted to 
various culture conditions. Medium was replaced by phenol red-
free DMEM with 10    k M DHR and the cells were further incubated 
for 4 hours. After washing with PBS, the monolayer was lysated 
in 0.1    %  Triton X-100. The oxidised product present in the cell 
extract (rhodamine), was analysed by measuring fl uorescence 
(excitation wavelength 495   nm, emission wavelength 532   nm).   

 Western blot analysis of RAGE 
 We evaluated the expression of RAGE by both cell lines, the 
effect of osteoblastic exposure to AGEs-modifi ed BSA on their 
expression of RAGE, as well as the possible effect of metformin. 
In these experiments, osteoblastic cells grown for different peri-
ods of time with control-BSA or AGEs-modifi ed BSA, with or 
without metformin, were lysated in Laemmli ’ s buffer ( Laemmli, 
1970 ), and the protein content was evaluated by the method of 
Lowry ( Lowry et al., 1951 ). These lysates were heated at 100    °    C 
for 3   min and 30    k g of protein subjected to 12    %  SDS-PAGE. The 
separated proteins were then transferred to PVDF membranes. 
After washing and blocking, the membranes were incubated 
with anti-RAGE polyclonal antibodies for 24   h at 4    °    C. Blots were 
developed using DAB-peroxidase staining. The intensity of the 
specifi c bands was quantifi ed by densitometry after scanning 
of the membrane. Images were analysed using the Scion-beta 2 
program.   

 Immunofl uorescent evaluation of RAGE 
 Sub-confl uent osteoblasts grown on glass coverslips were 
washed in PBS and fi xed with 4    %  paraformaldehyde in PBS 
(10   min at room temperature) ( Mercer et al., 2004 ). Non-specifi c 
binding sites were blocked with 1    %  BSA in PBS for 2   h. Cells were 
then incubated with goat polyclonal anti-RAGE antibodies 
(1:100 in blocking buffer) overnight at 4    °    C. After washing, cells 
were exposed to a rabbit anti-goat IgG-FITC (1:200) for 1   h at 
room temperature. Cells were mounted in 80    %  glycerol in PBS 
and observed under a Nikon-5000 fl uorescence microscope. All 

fl uorescence microscopy evaluations were performed by the 
same operator, and 20 representative fi elds were evaluated per 
coverslip.   

 Statistical analysis 
 The results are expressed as the mean    ±    SEM and were obtained 
from three separate experiments performed in triplicate. Differ-
ences between the groups were assessed by Oneway ANOVA 
with Tukey post-hoc test. For non normal distributed data, non 
parametrical Kruskal Wallis with Dunn post-hoc test was per-
formed using GraphPad In Stat version 3.00 (Graph Pad Soft-
ware, San Diego, California, USA). A p value     <    0.05 was considered 
signifi cant for all statistical analyses.    

 Results 
  &   
 Effect of AGEs and metformin on osteoblastic death and 
differentiation 
 To investigate the effects of AGEs on apoptosis and differentia-
tion of osteoblasts, two osteoblast-like cell lines (MC3T3E1 and 
UMR106) were used. The effect of different doses of control-BSA 
or AGEs-modifi ed BSA on apoptosis and alkaline phosphatase 
activity were measured after 24 – 72   h in osteoblastic cells. 
 Early apoptosis (annexin-V     +      / PI     −     ) was estimated by FITC-
annexin-V binding to externalized phosphatydyl serine, while 
cell death by late apoptosis / necrosis (annexin-V     +      / PI     +     ) was eval-
uated by additional nuclear staining with PI. After 24   h incuba-
tion, 100 and 200    k g / ml AGEs-BSA induced an increase in the 
number of apoptotic (  Table 1  ) as well as necrotic cells (  Table 2  ) 
in both osteoblastic lines. This effect was dose-dependent in the 
case of late apoptosis / necrosis. No effects were observed in the 
presence of lower (50    k g / ml) doses of AGEs-BSA (data not 
shown). The co-incubation of 500    k M metformin with BSA for 
24   h did not affect the proportion of necrotic osteoblasts; how-
ever this drug blunted the AGEs-induced increase in cell death 
in the osteoblastic cultures. 
 To confi rm these results, and evaluate possible pathways 
involved in osteoblastic cell death, we performed a fl uorogenic 
assay to measure the activity of caspase-3 in different experi-
mental conditions. As can be seen in     d  c     Fig. 1  , AGEs-BSA induced 
a dose-dependent increase of caspase-3 activity in both cell 
lines. This pro-apoptotic effect was totally reverted by 500    k M 
metformin in UMR106 cells and 200    k g / ml AGE-BSA-treated 
MC3T3E1 cells. Metformin partially reverted the effect of higher 
doses of AGE-BSA in the MC3T3E1 line. 
 In order to examine the effect of AGEs and metformin on osteo-
blast differentiation, alkaline phosphatase activity was evalu-

  Table 1       Effects of AGE and metformin on the apoptosis of osteoblasts. Cells were cultured in DMEM with unmodifi ed BSA or AGEs-BSA with or without 
500    k M metformin for 24 hours, and then evaluated using an annexin V-FITC / propidium iodide (PI) assay. Early apoptotic osteoblasts were characterized by 
annexin V-FITC-positive / PI-negative (V     +      / PI     −     ) staining 

 Dose [ k g / ml]  BSA  BSA    +    Met  AGE  AGE    +    Met 

 MC3T3E1 
 100  100    ±    16  178    ±    6  134    ±    15 *   109    ±    13 
 200  100    ±    14  76    ±    6  125    ±    16 *   75    ±    12 
     UMR106     
 100  100    ±    11  82    ±    19  144    ±    11 *   103    ±    10 
 200  100    ±    9  109    ±    13  131    ±    10 *   75    ±    8 

     Met : 500    k M metformin   

     Results are expressed as     %  of basal (mean    ±    SEM).  * p    <    0.05   
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ated. Pre-osteoblastic MC3T3E1 cells were differentiated in the 
presence of ascorbic acid and  b -glycerol phosphate for 2 weeks. 
Then, differentiated MC3T3E1 or UMR106 osteoblastic cells 
were treated with different doses of control-BSA or AGEs-BSA 
with or without 500    k M metformin for 72   h.     d  c     Fig.   2A   shows 
that 500    k g / ml AGEs-BSA induced a statistically signifi cant inhi-
bition in the ALP of MC3T3E1 cells. In the case of UMR106 cells, 
100    k g / ml AGEs-BSA elicited a signifi cant inhibition of ALP 
(    d  c     Fig.   2B  ), while a non-signifi cant tendency to decrease was 
also observed at 200 and 500    k g / ml AGEs-BSA. The co-incuba-
tion of AGEs with 500    k M metformin completely prevented the 
AGEs-induced decrease in osteoblastic ALP activity, in both cell 
lines.   

 Effect of metformin on AGEs-induced oxidative stress in 
osteoblasts 
 The induction of oxidative stress in osteoblasts in culture was 
evaluated by the DHR123 fl uorogenic assay. In this assay, DHR 
taken up by osteoblasts can be oxidized by intracellular ROS to 
the fl uorophore rhodamine. 
 In the MC3T3E1 cells, 100 – 200    k g / ml AGEs-BSA signifi cantly 
inhibited rhodamine-associated fl uorescence after 24   h incuba-
tion (    d  c     Fig   3A  ). On the contrary, the same doses of AGEs 
enhanced intracellular oxidative stress in the osteosarcoma 
UMR106 cell line (    d  c     Fig.   3B  ). When cells were incubated in the 
presence of 100 – 200    k g / ml AGEs-BSA and 500    k M metformin, 
this anti-diabetic drug abolished the AGEs-induced effect on 
intracellular oxidative stress in both osteoblastic lines.   

 Effect of metformin on AGEs receptor protein 
expression 
 The above studies provide evidence that metformin can prevent 
deleterious effects induced by AGEs in osteoblasts. We next per-
formed studies to investigate the possible involvement of the 
receptor for AGEs, RAGE. The effects of metformin on RAGE 
expression in osteoblasts were evaluated by Western immuno-
blot and by immunofl uorescence using specifi c anti-RAGE anti-
bodies.     d  c     Fig. 4   shows that 48 h-treatment with 200    k g / ml 
AGEs-BSA increased RAGE protein expression as measured by 
immunoblot, in both MC3T3E1 and UMR106 osteoblasts. How-
ever, when cells were co-incubated with 500    k M metformin, the 
AGEs-induced up-regulation of RAGE was abrogated in both 
osteoblastic lines (    d  c     Fig. 4  ). Treatment of osteoblastic cells with 
metformin in the presence of unmodifi ed-BSA (basal condition), 
did not affect RAGE expression. 
 RAGE-associated immunofl uorescence was present in both cell 
lines with a diffuse staining pattern (    d  c     Fig.   5A,B  ). Both osteo-
blastic cell lines which had previously been exposed to AGEs-
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  Fig. 1           Effect of AGEs and metformin on osteoblastic Caspase-3 activity. 
After incubation with BSA or AGEs-BSA with or without 500    k M metformin 
for 24   h, MC3T3E1 ( A ) or UMR106 ( B ) osteoblastic cells were lysed and 
protein content determined. Lysates (100    k g protein) were incubated 
with Ac-DEVD-AFC for 1   h at 37    °    C. The released fl uorescent product AFC 
was measured with a spectrofl uorometer (excitation wavelength 400   nm, 
emission wavelength 482   nm). Results are expressed as     %  of basal. Each 
bar represents the mean    ±    SEM;  *  p     <    0.05.  

  Table 2       Effects of AGE and metformin on the late apoptosis / necrosis of osteoblastic cells. Cells were cultured in DMEM with unmodifi ed BSA or AGEs-BSA with 
or without 500    k M metformin for 24 hours, and then evaluated using an annexin V-FITC / propidium iodide (PI) assay. Late apoptotic  / necrotic osteoblasts were 
characterized by annexin V-FITC-positive / PI-positive (V     +      / PI     +     ) staining 

 Dose [ k g / ml]  BSA  BSA    +    Met  AGE  AGE    +    Met 

 MC3T3E1         
 100  100    ±    26  51    ±    10  161    ±    37  60    ±    15 
 200  100    ±    24  82    ±    14  251    ±    33 *   73    ±    17 
     UMR106     
 100  100    ±    12  111    ±    31  118    ±    12 *   65    ±    8 
 200  100    ±    15  86    ±    29  213    ±    32 *   122    ±    26 

     Met : 500    k M metformin   

     Results are expressed as     %  of basal (mean    ±    SEM).  * p    <    0.05   
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BSA showed an increase in cell-surface RAGE-associated 
immunofl uorescence, when compared with osteoblasts incu-
bated with BSA alone, BSA plus metformin (data not shown), or 
AGEs-BSA plus metformin. These observations further support 
the idea that metformin prevents the up-regulation of RAGE 
induced by treatment with AGEs.    

 Discussion 
  &  
 Chronic complications of Diabetes are multifactorial in origin 
( Forbes et al., 2007 ). However, excess formation of AGEs is 

believed to play a predominant role in their pathogenesis. AGEs 
accumulate in various tissues in patients with diabetes and in 
aged individuals, and have been implicated in chronic compli-
cations, including diminished bone formation and turnover 
( Brownlee, 2005 ;  Odetti et al., 2006 ;  Hein et al., 2006 ;  Hein 
et al., 2003 ). However, the mechanisms by which AGEs affect 
bone are not completely known. We have previously shown that 
AGEs can directly affect growth and differentiation of osteo blasts 
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   Fig. 2          Effect of AGEs and metformin on osteoblastic differentiation. ( A ) 
MC3T3E1 cells were grown and differentiated for 15 days in DMEM – 10    %  
FBS, ascorbic acid (25    k g / ml) and  b -glycerophosphate (5   mM). Then, cells 
were treated with different doses of unmodifi ed-BSA or AGE-BSA with 
or without 500    k M metformin for 72   h. ( B ) UMR106 cells were seeded at 
50 – 60    %  density and grown for 24   h in DMEM – 10    %  FBS. Cells then were 
incubated in DMEM medium in the presence of different doses of BSA or 
AGE-BSA with or without 500    k M metformin for 48   h. Alkaline phosphatase 
specifi c activity was determined as described in Materials and methods 
and is expressed as     %  of basal. Each bar represents the mean    ±    SEM; 
 *  p     <    0.05.  
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   Fig. 3           Effect of AGEs and metformin on intracellular oxidative stress. 
MC3T3E1 ( A ) or UMR106 ( B ) cells were seeded at 70 – 80    %  density in 
24-well plates and grown for 24   h. Cells were then incubated in DMEM 
medium with different doses of unmodifi ed-BSA or AGEs-BSA with or 
without 500    k M metformin. After 24 hours, media were replaced by 
phenol red-free DMEM with 10    k M dihydro-rhodamine, and cells were 
incubated for an additional 4 hours. At the end of this incubation the cell 
monolayers were washed with PBS and lysated with 0.1    %  Triton X-100, 
and the levels of the oxidation product rhodamine were measured in the 
lysates by determination of fl uorescence intensity (excitation wavelength 
495   nm, emission wavelength 532   nm). Results are expressed as     %  of basal. 
Each bar represents the mean    ±    SEM;  *  p     <    0.05.  
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( McCarthy et al., 1997 ;  McCarthy et al., 2001 ). These actions 
seem to be mediated through the activation of specifi c receptors 
for AGEs such as RAGE and galectin-3, which are present in osteo-
blasts ( Cortizo et al., 2003 ;  Mercer et al., 2004 ;  Mercer et al., 
2007 ). Recently, it has been demonstrated that AGEs-modifi ed 
proteins induce apoptosis in osteoblasts ( Alikhani et al., 2006 ) 

and mesenchymal stem cells ( Kume et al., 2005 ). It has also been 
shown that the inhibition of diabetes-associated osteoblastic 
apoptosis signifi cantly improves new bone formation, suggest-
ing that this mechanism is physiologically relevant ( Al-Mashat 
et al., 2006 ). 
 Metformin is an insulin sensitizing agent widely used in patients 
with diabetes and metabolic syndrome. We have recently shown 
that this drug exerts direct effects on osteoblasts in culture, 
enhancing their proliferation, differentiation and mineralization 
( Cortizo et al., 2006 ). Thus, we hypothesized that metformin 
could either block or prevent the deleterious effects of AGEs on 
bone-derived cells. Data presented here demonstrates that 
AGEs-modifi ed albumin enhances osteoblast death by both 
apoptotic and necrotic mechanisms, by pathways which involve 
caspase-3 activation. Similar doses have been previously shown 
to inhibit the proliferation and differentiation of osteoblasts and 
to engage AGEs-binding sites ( McCarthy et al., 1997 ;  McCarthy 
et al., 2001 ;  McCarthy et al., 1999 ). The present data also shows 
that metformin is able to prevent AGEs-induced apoptosis and 
necrosis in osteoblasts in culture. These results agree well with 
our previous report ( Cortizo et al., 2006 ) that 500    k M metformin 
stimulates osteoblastic proliferation without inducing cell death. 
However, although our present results in the case of MC3T3E1 
osteoblasts do not show signifi cant differences in apoptosis /
 necrosis between cells incubated with BSA or BSA plus met-
formin, there does appear to be a tendency toward an 
anti-apoptotic effect of metformin. If this were the case, the 
observed suppression by metformin of the apoptotic / necrotic 
effects of AGEs might simply be the addition of two independ-
ently acting mechanisms. 
 In this study, we also assessed the effect of AGEs on osteoblastic 
differentiation by evaluating the specifi c marker alkaline phos-
phatase. After 72   h incubation, AGEs inhibited ALP in both cells 
lines, although a higher dose of AGEs was needed to induce a 
signifi cant effect in the non transformed MC3T3E1 osteoblasts. 
This difference in responsiveness probably refl ects the differ-
ences which exist in ALP expression of transformed versus non-
transformed osteoblastic cell lines, since UMR106 osteosarcoma 
cells greatly over-express alkaline phosphatase in their basal 
state. Nevertheless, metformin was able to completely abrogate 
the effect of AGEs in both cells lines. We have previously demon-
strated that metformin does not affect ALP in the osteosarcoma 
UMR106 cells but slightly (20    %  over basal) stimulates this 
marker after 24   h incubation in differentiated MC3T3E1 cells 
( Cortizo et al., 2006 ). Altogether, the net effect observed in the 
present study was a reversion by metformin to the basal levels 
of ALP activity in both UMR106 and MC3T3E1 cells. 
 The mechanisms of action involved in the effects of AGEs and 
metformin are not completely known. AGEs have been shown to 
bind with specifi c receptors such as RAGE and galectin-3 
( Bierhaus et al., 2005 ;  Bierhaus et al., 2006 ). AGEs-RAGE interac-
tion can induce activation of MAPK, nuclear translocation of NF-
KB transcription factor, and subsequent induction of cell-type 
specifi c subsets of NF-KB-responsive genes ( Haslbeck et al., 
2005 ). Metformin probably has multiple cellular actions, for 
example as an antioxidant and as an indirect AMP-activated 
kinase stimulator. In particular, in the MC3T3E1 and UMR106 
osteoblastic cells we have previously found that both AGEs and 
metformin can independently activate the MAPK pathway (i.e., 
ERK 1 / 2 phosphorylation), and also stimulate eNOS and iNOS 
expression ( Cortizo et al., 2003 ;  Cortizo et al., 2006 ;  McCarthy 
et al., 2001 ). The fact that different agents with apparently oppo-
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   Fig. 4           Effects of metformin on AGE-induced up-regulation of RAGE. 
MC3T3E1 ( A ) and UMR106 ( B ) cells were seeded in 6-well plate and grown 
in DMEM – 10    %  FBS for 24   h. Cells were then cultured in DMEM medium 
with 200    k g / ml unmodifi ed-BSA or AGE-BSA with or without 500    k M 
metformin for 48   h. Cells were washed with PBS, proteins extracted with 
Laemli ’ s buffer and Western blot analysis was performed for RAGE as 
described in Materials and methods. Figures are representative of three 
separate experiments. Each bar represents the mean    ±    SEM;  *  p     <    0.05.  
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site effects on osteoblastic growth and development have simi-
lar effects on cell transduction pathways, can be explained by 
the pleiotropic nature of these mechanisms, although one can-
not discard a divergence in the more downstream phases of 
these pathways. Unfortunately, the similar effects of AGEs and 
metformin on osteoblastic MAPK and NOS activation, precludes 
the design of experiments with specifi c inhibitors such as 
PD98059 or aminoguanidine, to demonstrate the involvement 
of these cell signaling mechanisms. 
 Our group and other investigators have previously demonstrated 
that AGEs induce cellular events associated with oxidative stress 
and generation of ROS. In the present study we have found that 
100 – 200    k M AGEs affect intracellular oxidative stress in both 
cell lines but in opposite directions. While in non-transformed 
MC3T3E1 cells AGEs appear to inhibit ROS production, in 
UMR106 osteosarcoma cells a signifi cant increase in ROS genera-
tion was detected by the DHR assay. These results agree with our 
previous report of ROS production in osteoblastic cell lines 
( McCarthy et al., 2001 ) and could be indicating differences in the 
responsiveness to AGEs of transformed versus non-transformed 
osteoblastic cells. Importantly, in the present study co-incuba-
tion with metformin prevented the alterations in intracellular 
oxidative stress induced by AGEs in both cell lines. 
 Considerable evidence has accumulated suggesting that the 
engagement of AGEs with RAGE triggers several deleterious 
effects of AGEs ( Kaji et al., 2003 ;  Mukherjee et al., 2005 ). In addi-
tion, it has recently been shown that metformin inhibits the 
expression of RAGE in endothelial cells ( Ouslimani et al., 2007 ). 
Based on those results, on our previous studies in which we 
demonstrated that AGEs up-regulate the expression of RAGE in 

osteoblastic cells ( Cortizo et al., 2003 ;  Mercer et al., 2007 ), and 
on the present observations of the overall ability of metformin 
to prevent the effects of AGEs on osteoblasts, we hypothesized 
that metformin could reduce the deleterious effect of AGEs via a 
regulation in the expression of RAGE. Our present results indi-
cate that AGEs-treatment of osteoblasts enhances RAGE protein 
expression (evaluated by Western immunoblot and immunofl u-
orescence techniques), and that this up-regulation is prevented 
in the presence of metformin. This modulation of RAGE protein 
is probably due to changes in gene expression, since the RAGE 
gene promoter possesses an NF-KB-responsive element, and has 
been shown to be up-regulated by AGEs and other agents such 
as TNF- a  ( Marx et al., 2004 ;  Tanaka et al., 2000 ) in various cell 
types. However, we cannot exclude the possibility of an increase 
in RAGE mRNA stability or post-transcriptional mechanisms, 
and further experiments are in progress in our laboratory to 
clarify this point. Osteoblasts also express AGER-2 / galectin-3, 
which we have also demonstrated previously to be up-regulated 
in the presence of AGEs ( Mercer et al., 2004 ;  Mercer et al., 2007 ). 
In the present study, metformin was not able to block the AGEs-
induced up-regulation of galectin-3 in both cell lines, suggesting 
that this receptor does not play a role in the protective effect of 
metformin on the AGEs-exposed osteoblasts (data not shown). 
 In conclusion, our present study demonstrates that metformin is 
able to prevent the increase in apoptosis, caspase 3 activity, inhi-
bition of ALP and alterations in intracellular oxidative stress 
induced by AGEs in osteoblastic cells. Although the precise 
mechanisms involved in metformin signaling are still elusive, 
our data implicate AGEs-RAGE interaction in this modulation of 
the growth and differentiation of osteoblasts.   
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  Fig. 5           Effect of metformin and AGEs on RAGE-associated immunofl uorescence. MC3T3E1 ( A ) and UMR106 ( B ) osteoblastic cells were cultured in DMEM 
with 200    k g / ml of unmodifi ed BSA or AGEs-BSA with or without 500    k M metformin for 48   h. Cells were then fi xed and stained with an anti-RAGE antibody 
followed by FITC-conjugated secondary antibody. Specimens were examined by fl uorescence microscopy. Obj 100x.  
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