XXIII Congreso Argentino de Ciencias de la Computacion La Plata - 9 al 13 de octubre de 2017

Using an Improved Data Structure in Hybrid
Memory for Agent-Based Simulation

Silvana Gallo!*, Francisco Borges?, Laura De Giusti!, Marcelo Naiouf!, and
Remo Suppi®

! Instituto de Investigacién en Informética III-LIDI, Facultad de Informética,
Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
2 Federal Institute of Bahia, Santo Amaro, Bahia, Brazil
3 Universitat Autdnoma de Barcelona, Bellaterra, Barcelona, Espaiia
4 CONICET, Facultad de Informética, UNLP, La Plata, Buenos Aires, Argentina
{sgallo,ldgiusti,mnaiouf}@lidi.info.unlp.edu.ar
franciscoborges@ifba.edu.br,remo.suppi@uab.cat

Abstract. Data structure is an important issue to get good performance
in parallel and distributed applications. These data structures have to be
designed with the memory paradigm in mind where the data structure
will be used in order to explore the architecture in a better way and
subsequently obtain the best Speedup. Current parallel programming
languages enable us to easily transform a parallel solution developed
for a distributed paradigm to a hybrid solution just by adding pragma
codes. At first approach, this is an interesting solution because it does
not require several code modifications. Nevertheless, this interchange can
cause a slowdown if an appropriate and deep adaptation is not carried
out in the code. In this paper, we present our experience when we mi-
grated a data structure developed for a distributed paradigm to a hybrid
paradigm. This data structure was implemented in our Fish Schooling
Agent-Based simulator where it might be useful either as a distributed
paradigm or a hybrid paradigm. The results show the importance of cus-
tomizing the data structure for the appropriate infrastructure and par-
allel programming paradigm. We believe that the data structure should
have a flexible and dynamic behavior in accordance with the paradigm
used.

Keywords: Parallel and distributed simulation, High performance sim-
ulation, Hybrid MPI4+OpenMP programming, Individual-oriented model

1 Introduction

Parallel and distributed architectures have been providing more power com-
puting for the scientific community. They enable researchers to develop more
complex and realistic models. However, the computing resources available can
be underused if the software does not take advantage of these architectures.
Data structures are an important issue that must be considered in order to

226

XXIII Congreso Argentino de Ciencias de la Computacion La Plata - 9 al 13 de octubre de 2017

obtain maximum speedup in the parallel and distributed solutions. Data struc-
tures should fit the modeled problem on the parallel and distributed architecture
and with the programming paradigm. Otherwise, the solution will not reach an
acceptable level of performance.

In fact, the parallel and distributed architecture and the programming para-
digm are strongly related. The concepts of the memory paradigm: Distributed
Memory (DM) and Shared Memory (SM) are the key to understand how to ex-
plore the architecture in a better way. DM paradigm uses an addressing memory
for each process. In this paradigm, each process has only access to the variables
that are inside of its addressing memory. Hence, there are no parallel and concur-
rent writing in the same variables and data structures. On the other hand, the
SM paradigm shares the same addressing memory space among threads, where
each thread can concurrently access the same variables and data structures. This
paradigm requires that lock mechanisms be applied in order to maintain data
coherence. Generally, lock mechanism implies a sequential access to variable and
data structures and can become a bottleneck in a parallel execution.

DM is a very appropriate solution for scalability [5] because it enables us to
easily add other processing nodes in order to execute a solution. The communica-
tion among the processes occurs by message passing. Communication among the
processes is the main cause of the inefficiency of DM solutions. The SM allows the
solution to take advantage of the locality of the data using the cache hierarchy.
In addition, SM decreases the communication volume in the network because the
communication occurs by memory copy. Therefore, the Hybrid Memory (HM)
paradigm emerges as an approach that can use the main advantages of both
DM and SM paradigms. Accordingly, these were the main motivations in using
the data structure proposed by [14] in an HM paradigm. The volume commu-
nication in MPI is too high; therefore, we would decrease the communication
volume among the agents because they are in the same core and an MPI com-
munication routine is not required. In addition, we can take advantage of data
locality. The data structure proposed by [14] is a data structure used to partition
the data over the parallel and distributed architecture. This data structure is
implemented in our Fish Schooling Agent-Based simulator. Our group has been
researching High Performance Parallel and Distributed Simulation over the last
few years [2,14]. That is why we were interested in analyzing the data structure
behavior in the hybrid memory.

In this paper, we present our experience in data structure migration proposed
by [14] to the HM paradigm. We report the solutions and problem in two phases:
in the first one, we just add an OpenMP pragma without changes to the data
structure [14]. In the second phase, we show the changes and adaptation of
data structure and we present, with software point view, the resulting data
structure [2]. We have used a Fish Schooling Agent-Based Model simulation [14]
in order to test the proposed data structure. Thence, some questions emerge
and are answered throughout the paper: could we use a data structure, initially
developed for DM, in an HM paradigm? What changes in data structure would

227

XXIII Congreso Argentino de Ciencias de la Computacion La Plata - 9 al 13 de octubre de 2017

be necessary in order to maintain or improve the previous performance? What
are the challenges?

The remainder of the paper is organized as follows: the related works are
discussed in Section 2. After that, the hybrid data structure is presented in
Section 3. Then, we present the experimentations in Section 4; and, lastly, our
conclusions and final considerations are shown in Section 5.

2 Related Work

Data structures drive the computational complexity, and memory is an impor-
tant issue in HPC. The data structures used depend, directly on the behavior
of the model. In our case, we have a fixed amount of nodes and the behavior
of the agents inside the node is dynamic, so we use a dynamic list. In previous
works, we can find both Distributed memory and Shared memory approaches
in order to improve the performance of the solution. In the literature, we have
not found an agreement on the use of Hybrid Memory paradigm for parallel
and distributed applications. Basically, the works present different applications
and results about this point. What we observe is that the gain of performance
depends on a combination of several factors, for example, architecture [7,9, 12],
network interconnection [6], and application [4,7]. Adhianto and Chapman [1]
provide an additional list of references on this topic.

In addition, agent based models have been solved by software engineers used
widely in software engineering. This is a common problem; therefore, several
tools have been created in order to encapsulate the programming complexity. In
the case of non-distributed computing, we can find tools such as Netlogo [15],
Anylogic [3]. They use dynamic structures such as List of Lists in the case of
grid based maps or hash in the case of agent definitions, but all the structures
are used without distributing. Some parts of Netlogo [15] are programmed using
Scala, which uses Actor programming. Repast HPC [8] is an HPC tool pro-
grammed in C and MPI library. Agents communicate their information sharing
by using messages. It is programmed using distributed memory with a language
description based in environmental agents, networks, coordinating and mobile
agents, in a Logo-style. Pandora [13] is an open framework for discrete event
simulation and ABM HPC tool that uses shared memory in an OpenMP level
and distributed memory in an MPI level. Flame [11] is another framework for
agent based modeling. It also has a GPU version that has the same modeling
approach but a different computational model and architecture. In the case of
the main, Flame uses MPI and it does not use OpenMP, but Pthreads are used
for asynchronous communications.

3 Data structure
We organize this section in two parts. First, we review the list of cluster data

structure [14], as this is the base for the data structure proposed in [2]. Then, we
talk about our experience with using this data structure [14] at hybrid simulator

228

XXIII Congreso Argentino de Ciencias de la Computacion La Plata - 9 al 13 de octubre de 2017

without appropriate adaptations. In the second part of this section, we present
the list of clusters adapted for this solution.

3.1 List of Cluster Data structure

The data structure proposed by [14], see Figure 1, is a dynamic list composed
by nodes. Each node has some information and link(s) to other node(s). Each
node is called a cluster, therefore, the data structure is called a list of clusters.

ucke <~ — |
Pid=0 ‘ \ Pid=0 Center
\\ 19
"w

.
\

Distances

Cid=3 | Distances Cid=2

— Bucket

Bucket <~

. Pid=2 Center y \ Pid=1 Center

Fig. 1: The figure shows the data structure proposed by [14] where all commu-
nication is using MPI.

Each cluster consists of several data such as: a) Center field that represents a
centroid, which is the most representative element of the cluster; b) the processor
identifier (PID) indicates in which process each cluster is stored; ¢) a bucket in
which agents belonging to the cluster are stored; d) the cluster identifier (CID),
which indicates the cluster position in the list; and e) the distances to other
clusters (see Figure 1). This data structure allows for defining areas in which
agents can interact only with agents belonging to adjacent areas (see Figure 2a),
reducing the computing involved in the neighbour selection process.

In the DM paradigm, the clusters are distributed between processors by MPI
processes; therefore, each MPI process can have many allocated clusters (see
Figure 2a). Some adjacent clusters are allocated in the same processors according
to the PID field. Therefore, each MPI process has a copy of its list of clusters.
During the simulation, the agent moves in the environment, thus its centroid can
change and it begins to suffer from the influence of other centroids. Therefore,
a migration process of agents among the MPI processes occurs. In this moment,
the MPI processes send and receive these agents and update their local list of
clusters.

The motivation to proof a hybrid implementation for a list of cluster data
structure was that we had observed that many agents were in same processor;
therefore, the OpenMP strategy in this situation would be interesting as a perfor-
mance improvement. Thus we developed a hybrid version using the list of clusters

229

XXIII Congreso Argentino de Ciencias de la Computacion La Plata - 9 al 13 de octubre de 2017

(a) Allocated for different MPI process in (b) Allocated same MPI process + threads
the same processor but the clusters are not manipulated con-
currently

Fig. 2: Cluster adjacent areas.

and adding OpenMP pragmas without changes to the data structure. Figure 3
shows the execution time with list of cluster being used as a Distributed Memory
paradigm (only MPI) and a Hybrid Memory paradigm (MPI and OpenMP).

As we can note, this Hybrid solution has a slowdown in comparison with
the DM solution. The list of clusters works very well in the pure MPI version
because each processor has a local copy of this data structure. Therefore, there
is no concurrent manipulation of data structure in each MPI process. On the
other hand, this hybrid version has many threads of the same processes inserting
and updating concurrently the same copy of data structure through OpenMP
threads, see Figure 2b.

Total execution time

T T
1400 - Distributed Memory Paradigm s -
Hybrid Memory Paradigm mmms

)
1200 - ‘\:I. b

1000

800

600

Time in seconds

400

200

8192 agents 16384 agents 32768 agents

Number of agents x Programming Paradigm

Fig.3: Total execution time with Distributed Memory and Hybrid Memory
paradigm

230

XXIII Congreso Argentino de Ciencias de la Computacion La Plata - 9 al 13 de octubre de 2017

Therefore, the list of clusters has a performance problem when it is used in a
hybrid solution, where many threads can write new information simultaneously
in the cluster. This data structure becomes a bottleneck because a sequential
access at data structure is required in order to maintain the data coherence. To
avoid inconsistency in the simulation results, it is necessary to use OpenMP crit-
ical regions. In our DM simulator, the list of cluster is represented by a vector of
list of cluster. Each MPI process, manipulates just the agents that are in it. The
insert method includes a new agent in the bucket. This has the same behavior
when we need to include new clusters inside of the list. The problem with this
solution is that many threads execute this operation concurrently through the
shared vector of lists. Therefore, the critical section is required. Critical section
enables just one thread to have access to this code region at the same time. Thus
only one active thread can access the data referenced by the code. As a result,
this produces a sequential behavior and possible slowdown of the parallel code.

We can see in Figure 3, as the number of agents increases, the slowdown
increases as well. This occurs because the number of updates in the agents is
increased; therefore, more threads enter the critical section code. In this hybrid
solution, each MPI process receives a set of agents by MPI message. Then, the
process through OpenMP loop parallelization distributes the agents to other
cores in the same node that execute the computing over the shared data struc-
ture. These operations have to be protected inside of the critical section because
many threads are inserting and updating the individuals of this data structure
at the same time. The slowdown happens because these operations are invoked
constantly.

In order to solve the slowdown problem in the hybrid version, we propose an
adaptation of the data structure that supports shared memory paradigm. This
data structure can be used with either the SM or Hybrid paradigm.

3.2 Hybrid Memory Data structure

Figure 4 shows the data structure proposed. The main idea is to distribute
the clusters among the OpenMP threads. In this way, there are no concurrent
accesses to the same cluster when insert and update operations occur because
each thread is able to manipulate the clusters that were assigned to it (see Figure
2b). Thus, we can take off many critical sections of the code. Since, in this
solution, a thread can only access its clusters, there will be no inconsistencies.

The data structure, see Figure 4, is composed by a Metalist where n positions
are dynamically created according to the MPI rank size. Suppose there are ten
MPI ranks. Then 10 positions will be created. Each position of the Metalist
represents an MPI Rank. Therefore, MPI Rank 0 manipulates the clusters of
the position 0; MPI Rank 1 manipulates the clusters of the position 1, and so on
until the last MPI Rank. Inside of each position, the proposed data structure has
a vector of list of cluster. This vector is created dynamically and has the same
number of OpenMP threads that were created in the execution time. Therefore,
each MPI process distributes the clusters among its threads. Thus each thread
will manipulate only the clusters assigned to it.

231

XXIII Congreso Argentino de Ciencias de la Computacion La Plata - 9 al 13 de octubre de 2017

FRE—————— Sl

Metalist Local List of

Clusters 1 (
Vector[0]) = ‘L Gt | Ditances
MPI Rank 0 Thread id 0 Bucket < = N Bu§et

v - |" —
Vector[1] Thread id 1 < =%
y

MPI Rank 1

) Cid=3 | Distances Cid=2 | Distances

ooe Bucket e ! < > Bgﬁ}iet
Thread Id m Pid=2 Center Pid=1 Center ~~
Vector[n] \ V\g /
n = last MPI Rank b

Fig. 4: This figure shows the adaptation of the partitioning data structure to the
hybrid simulator version.

The main difference of the proposed data structure is that the pointer to the
list of clusters is not shared. This data structure (Figure 4) tries to remove the
drawback of list of cluster when applied to the Hybrid solution, see Algorithm 1
for a code example. Each thread receives a pointer to the list of clusters that will
be computed. Now, the access to the structure is no longer at only one access
point. Thus, the quantity of critical section code is reduced further still.

Algorithm 1 Cluster insertion with proposed data structure and without crit-
ical section.

1: vector<list_of_clusters* > vector_lc; > create a vector of list of cluster

: for (long pid=0l;pid<this—nprocs;pid++) do > for each process...
for (unsigned int i=0L;i<this—num_thread;i++) do > for each thread...
vector_lc.push_back(new list_of_clusters());
end for
metalist_lc.push_back(make_pair(pid,vector_lc));
end for

10: metalist_lc[pid]—lc_thread[i]—insert(c); > The variable ”pid” is MPI Rank
11: > process, ”1” identifies the thread that
12: > has to manipulate these data and the
13: > variable ”c” is a new cluster

4 Experimentation

The environment configuration used in this experimentation has the following
characteristics: AMD Opteron 6200 1.6 GHz, L2 (2MB), L3 (6MB), 8 nodes
with 64 cores each distributed in 4 sockets with three cache levels, 64 GB RAM

232

XXIII Congreso Argentino de Ciencias de la Computacion La Plata - 9 al 13 de octubre de 2017

per node, Interconnection Gigabit Ethernet. The simulator was developed by
using C++ (gce 4.3.2), STL (C++ standard template library), MPI namespace
(openmpi 1.4.3). The experimentations were carried out for 131072, 262144 and
524288 agents in 32, 64, 128, 256 and 512 cores. We used one MPI Process per
core for the DM paradigm and eight OpenMP threads per MPI Process for the
Hybrid paradigm. In addition, the number of MPI processes is calculated as the
total number of used cores divided by eight.

In the experimentation, see Figure 5, we compare the total execution time
of simulation obtained by using the list of cluster and the hybrid data structure
proposed. As we can observe, there is no significant difference between both data
structure until 128 cores. But there is a significant difference of total execution
time when the simulation is performed with 256 and 512 cores. This occurs
basically because the communication volume is higher in DM than in the hybrid
approach. As presented before, in Section 3, the MPI processes have to send
and receive agents that migrate along the simulation. This migration procedure
is implemented with MPI_Broadcast and MPI_Wait methods. Therefore, the
impact of this type of message is more visible when the number of nodes is
increased.

Total execution time
Simulation of 131072 agents

9000

T
MPI version
8000 || MPI+OpenMP version

7000 -
6000 -
5000 -
4000 -
3000 =
2000 -
1000 -

6z £5%-]

Time in seconds

32 cores 64 cores 128 cores 256 cores 512 cores

Number of cores x Simulator version

Fig. 5: Total execution time of Fish School simulation.

Also, we can note that the infrastructure with 128 cores is enough to execute
131072 agents. This means that 256 and 512 cores would only be necessary if the
problem were bigger. In addition, we can observe that the execution time of the
hybrid solution remains within a well-defined range, while the MPI curve has
a significant increment. Therefore, if we extrapolate both curves for 1024 and
2048, we will get the hybrid solution with feasible execution times in contrast
with the MPI solution. As we can see in the next experimentation, see Figure
6, we maintain the number of cores constant (512 cores) and increase the size of
the agents dataset.

233

XXIII Congreso Argentino de Ciencias de la Computacion

The MPI solution continues to show a high growth in total execution time.
However, the hybrid solution does not follow the same exponential behavior as
it is observed in Figure 6.

The data structure must be created thinking in the paradigm target in order
to take advantage of it. Using a data structure developed for a specific paradigm
requires adaptation if it is to be used in another one. Otherwise, slowdown at
execution time can occur.

Total execution time of 512 cores
14000

T
MPI version
12000 H MPI+OpenMP version

10000 -

3
%
S

8000

6000

Time in seconds

4000

2000

131072 262144 524288

Dataset agents x Data structure version

Fig. 6: Total execution time in 512 cores for different sizes of agent datasets.

5 Conclusion

In this paper, we detail a data structure for shared memory that supports a
clustering algorithm. This data structure avoids the creation of critical sections
and enables us to obtain more efficient parallel and distributed execution. We
have tested this data structure using a Fish Schooling Agent-Based Model as a
case of study.

The next stage of our research will be to validate this data structure with
a bigger agent dataset in order to confirm the results obtained. In addition, it
would be interesting to analyze the data structure with some memory and cache
counters in order to evaluate the memory contention and cache misses.

As part of our main findings, we show that data structure must be con-
ceived with the paradigm of programming in mind. The migration to another
paradigm can cause slowdown to the solution without appropriate adjustment
and changes. Also considering the current parallel and distributed architectures,
it would be interesting for the data structure to have a flexible and dynamic
behavior according to the paradigm used.

234

La Plata - 9 al 13 de octubre de 2017

XXIII Congreso Argentino de Ciencias de la Computacion La Plata - 9 al 13 de octubre de 2017

Acknowledgments

This research has been supported by the MINECO (MICINN) Spain under con-
tracts TIN2011-24384 and TIN2014-53172-P. Some images come from [10].

References

1. Adhianto, L., Chapman, B.: Performance modeling of communication and com-
putation in hybrid MPI and OpenMP applications. In: Proceedings of the 12th
International Conference on Parallel and Distributed Systems, ICPADS’06. vol. 2,
pp. 3-8 (2006)

2. Borges, F., Gutierrez-Milla, A., Suppi, R., Luque, E.: A Hybrid MPI+OpenMP So-
lution of the Distributed Cluster-based Fish Schooling Simulator. Procedia Com-
puter Science 29(0), 2111-2120 (2014)

3. Borshchev, A.: The Big Book of Simulation Modeling: Multimethod Modeling with
AnyLogic 6. AnyLogic North America (2013)

4. Cappello, F., Etiemble, D.: MPI versus MPI4+OpenMP on the IBM SP for the
NAS Benchmarks. In: Supercomputing, ACM/IEEE Conference. p. 12 (2000)

5. Chan, M.K., Yang, L.: Comparative Analysis of OpenMP and MPI on Multi-core
Architecture. In: Proceedings of the 44th Annual Simulation Symposium. pp. 18—
25. ANSS 11, Society for Computer Simulation International (2011)

6. Chorley, M.J., Walker, D.W.: Performance analysis of a hybrid MPI/OpenMP
application on multi-core clusters. Journal of Computational Science 1(3), 168—
174 (2010)

7. Chow, E., Hysom, D.: Assessing Performance of Hybrid MPI/OpenMP Programs
on SMP Clusters. Tech. rep., Lawrence Livermore National Laboratory (2001)

8. Collier, N., North, M.: Repast HPC: A platform for large-scale agent based mod-
eling. Wiley (2011)

9. Hager, G., Jost, G., Rabenseifner, R.: Communication Characteristics and Hy-
brid MPI/OpenMP Parallel Programming on Clusters of Multi-core SMP Nodes.
Proceedings of Cray User Group Conference 4(d), 54-55 (2009)

10. Icons8: Largest colletion of icons (2016), https://icons8. com, icons/maps/draws
under: CCBY-ND3.0

11. Kiran, M., Richmond, P., Holcombe, M., Chin, L.S., Worth, D., Greenough, C.:
FLAME: Simulating Large Populations of Agents on Parallel Hardware Architec-
tures. In: Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems. AAMAS ’10, vol. 1, pp. 1633-1636. International Foun-
dation for Autonomous Agents and Multiagent Systems (2010)

12. Rabenseifner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP Parallel Programming
on Clusters of Multi-Core SMP Nodes. In: Parallel, Distributed and Network-based
Processing, 17th Euromicro International Conference on. pp. 427-436 (2009)

13. Rubio-Campillo, X.: Pandora: A Versatile Agent-Based Modelling Platform for
Social Simulation. In: Conference Proceedings SIMUL 2014, The 6th International
Conference on Advances in System Simulation. pp. 29-34 (2014)

14. Solar, R., Suppi, R., Luque, E.: High performance distributed cluster-based
individual-oriented fish school simulation. Procedia Computer Science 4, 76-85

2011

15. %Vilen)sky, U.: NetLogo Ants model. Center for Connected Learning and Computer-
Based Modeling, Northwestern University, Evanston, IL. (1997), http://ccl.
northwestern.edu/netlogo/models/Ants

235

