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The hydrolysis of the cis-platin drug on a SiO
2
(100) hydrated surface was investigated by computational modeling. The cisplatin

molecule presents weak interactions with the neighbouring OH groups of the hydrated surface. The cisplatin hydrolysis is
not favourable on the SiO

2
(100) surface. Consequently, the adsorption properties of SiO

2
(100) are improved considering the

surface’s modification with K, Mg, or NH
2
functional species. In general, the system is more stable and the molecule-surface

distance is reduced when cisplatin is adsorbed on the promoted surfaces. The hydrolysis is a favourable process on the SiO
2
(100)

functionalized surfaces. The cisplatin hydrolysis is most favoured when the surface is functionalized with the NH
2
specie. The

electron density exchange plays a main role in the adsorption process. cis-[PtCl
2
(NH
3
)
2
] and cis-[PtCl(NH

3
)
2
]+ are adsorbed on

the functionalized surface via Cl–N and Cl–Si interactions, while the cis-[Pt(NH
3
)
2
]2+ complex is adsorbed through Pt–O, Pt–Si,

and Pt–H interactions. After adsorption, the strength of the N–Si, Si–O, and N–H superficial bonds of the functionalized SiO
2
(100)

changes favouring the interaction between the molecule and their complexes with the surface.

1. Introduction

Silica (SiO
2
) is a very important material in both industrial

application and material science. Various problems related
to silica surface characteristics are encountered in different
areas of science and technology: physics, chemistry and
physical chemistry, agriculture, soil science, biology and
medicine, electrical energetic, the oil processing industry, the
metallurgical and mining industries, some fields of geology,
and so forth. In the past, many reviews and significant articles
have appeared on the subject of surface chemistry of silica
[1–10].

Different types of silica are widely used as efficient
adsorbents, selective absorbents, and active phase carriers
in catalysis. Chemical modification of the surface of silica
receives interest because this process allows researchers to
regulate and change adsorption properties and technological
characteristics; for example, the alkylation techniques have

served as the starting point for bonding more interesting and
complicated molecules to the surface [11] such as polymers
[12], saccharides [13], and amines [14, 15]. At the crystal
surface, Si atoms are no longer protected by the bulk material
from chemical reactions with the environment, and molecu-
lar species can be absorbed into or bond with surface atoms.
These newmolecular species can alter the electronic structure
and bonding of the SiO

2
at the surface.

Studies have shown that silica matrixes could improve
drug delivery systems [16, 17]. Our group have previously
studied the adsorption of cis-platin on a SiO

2
(111) surface.

cis-platin (cis-[PtCl
2
(NH
3
)
2
]) is a coordination compound,

used in the treatment of several solid tumors [18, 19]. cis-
platin and its hydrolysis products (cis-[PtCl(NH

3
)
2
]+ and cis-

[Pt(NH
3
)
2
]2+) exhibit a grand pharmacological effect [20–

24], but they have adverse secondary effects [25, 26]. How-
ever, the optimization of the dosing and delivery schedule can
possibility minimise unfavourable effects while maintaining
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effectiveness [27, 28]. We have studied the adsorption of
cis-platin and its complexes on a SiO

2
(111) hydrated surface

by tight binding calculation [29]. We have reproduced the
main characteristics of the adsorption process showing a
possible way for the molecule/complexes adsorption. We
have also analyzed the nature of the drug-carrier bonding
and the changes observed in the electronic structure upon
adsorption. Except thosemolecular orbitals lyingmuch lower
in energy, the rest aremodified showing themolecule-surface
interaction. The new interactions are formed at expenses
of the OH bonds. One of the major findings is the Cl–H
interaction that takes place during cis-[PtCl

2
(NH
3
)
2
] and cis-

[PtCl(NH
3
)
2
]+ adsorptions and the Pt–O interaction devel-

oped during the cis-[Pt(NH
3
)
2
]2+ adsorption.The adsorption

of cis-platin on a SH functionalized SiO
2
(111) surface has also

been studied [30]. The molecule/complexes-SH electrondo-
nating effect plays an important role in the catalytic reaction.
The more important drug-carrier interactions occur through
the Cl–H, Pt–S, and Pt–H interactions. When the new
interactions are formed, the functionalized carrier maintains
its matrix properties while the molecule is the most affected
after adsorption. The Pt atomic orbitals present the most
important changes during adsorption.Wehave also evaluated
the adsorption effects of CN-functionalized SiO

2
(111) surface

as cis-platin drug’s host [31]. The CN-silica carrier showed
good catalytic properties. The molecule-surface interactions
are strengthening due to the incorporation of the CN silane
group. The remarkable properties of the functionalized car-
rier may be attributed to the smaller changes in the CN
groups caused by the interactionwith neighbouring cis-platin
molecules and the enhancement in Pt-bonding interactions
due to the surface incorporation of CN silane groups.

In the present study, we analyze the adsorption of cis-
platin and its products on a dominant surface of the hydrated
silica, a SiO

2
(100) plane, and the surface functionalization

with K, Mg, CH
3
, or NH

2
chemical species in order to

improve the catalytic process. The minimum energy geom-
etry of cis-platin and its complexes is calculated, and the
changes in the electronic structure and the chemical bonding
are addressed by Yet Another Extended Hückel Molecular
Orbital Package (YAeHMOP) [32].

2. The Drug-Carrier System

It is known that hydroxyl (silanol) groups, Si–OH, should be
present on the surface of silicates and silicas. We have simu-
lated completely hydrated silica by considering it comparable
to the (100) surface of 𝛽-cristobalite, in which each surface Si
atom is connected to a single silanol group [33]. The crystal
structure of 𝛽-cristobalite is based on networks of corner-
connected SiO

4
tetrahedra, with noncollinear Si–O–Si bonds

forming bond angles of approximately 147∘. Si superficial
atoms tend to have a complete tetrahedral configuration and,
in an aqueous medium, their free bonds become saturated
with hydroxyl groups forming silanol groups (=Si–OH).

We have used a supercell of 469 atoms: 113 Si, 274
O atoms, and 82 H atoms, distributed in six layers. Every Si
atom completes its tetrahedron with O atoms. As a starting

Cl Cl

Pt

O O HH

Si

Figure 1: Schematic lateral view of the cis-platin adsorption geom-
etry on the SiO

2
(100) hydrated surface.

geometry for the surface, we used the following distances:
Si–Si, 5.07 Å; Si–O (surface), 1.5 Å; O–O (bulk), 2.53 Å; O–
H, 0.96 Å, and H–H, 5.07 Å. In order to reproduce the
surface, this cell is extended in two dimensions parallel to the
surface. All dangling bonds were saturated with additional
H atoms. On the other hand, the starting point for the
calculation was the cis-platin structure (see Figure 1) taken
from experimental data [34, 35]. Initial optimization of cis-
platin agreed with the findings of several theoretical studies
[36] giving a C

2𝑣
minimum with a distorted square-planar

coordination. The in-plane N–H groups are aligned toward
Cl, resulting in (N–H)- - - -Cl distances and angles of 2.41 Å
and 113∘. The electrostatic potential shows a highly polar
molecule more positive on the amino group and negative on
the chlorine atoms. The Pt is close to neutral.

3. The Computational Method

Our calculations were performed using the Atom Super-
position and Electron Delocalization method [37–39]. This
method is a modification of the Extended Hückel Molecular
Orbital Method implemented with the YAeHMOP program
(Yet Another Extended Hückel Molecular Orbital Package)
[32].TheExtendedHückel (EH) basedmethods supply useful
information about different aspects of the electronic structure
and the chemical reactivity. The theory is based on a physical
model of molecular and solid electronic charge density
distribution functions [40, 41]. The EH method has been
successfully employed for experimental information analysis
and its correlation with atomic data. It is a methodology
that reveals the basic interactions that are responsible for
the chemical bonding and it makes possible the relationship
between systems with similar geometrical and compositional
distributions. An other advantage of the method is that it
allows working with systems that include hundred transition
metals per unit cell. The literature shows a lot of references
about the application of this method in catalysis and adsorp-
tion phenomena on surfaces [42–45]. Our group has recently
used this methodology in studies of industrial interest [46,
47].

We have computed the adiabatic energy of the system
absorbing the drug cis-platin on the SiO

2
(100) hydrated
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Figure 2: Adiabatic total energy curves for the (a) cis-platin-
silica system, (b) cis-[PtCl(NH

3
)
2
]+-silica system, and (c) cis-

[Pt(NH
3
)
2
]2+-silica system.

surface (carrier). During the calculations, the structures of
bothmolecule and substrate were optimized at steps of 0.02 Å
and convergence in energy of 0.01 eV. We have obtained the
energy curves, initially for the cis-platin molecule and then
considered the removal of one and the two chloroatoms of
the molecule, in order to study the hydrolysis phenomenon.
In a second stage, we have modified the SiO

2
(100) surface by

adding a functional specie (K, Mg, CH
3
, or NH

2
), in order to

analyze the changes in the surface adsorption properties.
The adiabatic total energy values were computed as the

difference between the electronic energy (𝐸) of the system
when the drug is at finite distance on the surface (carrier) and
the same energy when that drug is far away from the surface:

Δ𝐸Abs, total = 𝐸 (carrier + drug) − 𝐸 (carrier) − 𝐸 (drug) .
(1)

To understand the drug-carrier interactions we used the
concept of density of states (DOS) and crystal orbital overlap
population (COOP) curves. The DOS curve is a plot of the
number of orbitals per unit volume per unit energy. The
COOP curve is a plot of the overlap population weighted
DOS versus energy. The integration of the COOP curve up
to the Fermi level (𝐸

𝑓
) gives the total overlap population of

the bond specified and it is a measure of the bond strength.

4. Results and Discussion

The adsorption energies for cis-platin and its complexes are
shown in Figure 2. The cis-[PtCl

2
(NH
3
)
2
] molecule adopt it

minimum energy location at the OH–Cl distance of 2.4 Å.
When we computed the cis-platin complexes adsorption
energies, the [PtCl(NH

3
)
2
]+ and cis-[Pt(NH

3
)
2
]2+ adsorp-

tions are not favourable because the energy is always positive
(repulsive interaction). We can conclude that the hydrolysis
process is not favourable on the SiO

2
(100) hydrated sur-

face. For cis-[PtCl
2
(NH
3
)
2
]-silica configuration of minimum

energy, each Cl atom of cis-platin presents weak interactions
with neighbour OH groups of the hydrated surface. The
existence of these bonds is confirmed by the bond population;
the Cl–H and Cl–O overlap populations (OP) are 0.011 and
0.013, respectively. The COOP curves can be seen in Figures
3(a) and 3(b).These curves present bonding and antibonding
peaks below the Fermi Energy level (𝐸

𝑓
) and their integration

up to the 𝐸
𝑓
gives the cited small total OPs. After adsorption,
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Figure 3: COOP curves for the (a) Cl–H interactions and (b) Cl–O
interactions in the cis-platin-silica system.

Table 1: Average overlap population (OP).

Bond OP
Cl–H 0.011a

Cl–O 0.013a

Cl–Pt 0.418a

0.418b

O–H 0.600a

0.607b

O–Si 0.591a

0.593b
acis-[PtCl2(NH3)2]/silica system.
bBare silica or isolated cisplatin.

the silica surface almost maintains its matrix properties.
The O–H and O–Si superficial bonds only decrease 1.21%
and 0.38%, respectively (see Table 1); the orbital population
changes are smaller than 2%. The major changes occur in
cis-platin’s molecule; the Cl–Pt OP decreases 22%. The Cl
𝑠 and Cl 𝑝 populations decrease 5% and 47%, respectively,
while the Pt 𝑠, Pt 𝑝, and Pt 𝑑 orbital populations change 37%,
35%, and 90%, respectively. A complete data about the orbital
populations and net charges can be seen in Table 2.

In a second stage, in order to improve the adsorption
properties of the SiO

2
(100) surface, we have considered the

surface’s modification with different functional species: K,
Mg, CH

3
, or NH

2
. Figure 4 shows the energy curves for

these systems. When the surface is functionalized by CH
3
,

the adsorption process is not favourable (the energy of this
system is always positive) and it could occur because the
interaction between the CH

3
functional group and cis-platin

molecule is not favoured by the electron excharge; while
the other systems (promoted by K, Mg, or NH

2
) are more

stable than the surface without functionalization, in general
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Table 2: Orbital occupations and net charge.

Atom 𝑠 𝑝
𝑥

𝑝
𝑦

𝑝
𝑧

𝑑
𝑥
2
−𝑦
2 𝑑

𝑧
2 𝑑

𝑥𝑦
𝑑
𝑥𝑧

𝑑
𝑦𝑧

Charge

Cl 1.7768a 0.9422a 0.9907a 1.0210a +2.2692a

1.8612b 1.7473b 1.9174b 1.8722b −0.3982b

Pt 0.4043a 0.2285a 0.1692a 0.1824a 0.0693a 0.0698a 0.2711a 0.3358a 0.0937a +8.1759a

0.6591b 0.3367b 0.2133b 0.3421b 1.8970b 1.9930b 1.6842b 1.0725b 1.9481b −0.1459b

H 0.5729a +0.4271a

0.5770b +0.4230b

O 1.6225a 1.6688a 1.7906a 1.7730a −0.8548a

1.6203b 1.7708b 1.7888b 1.7728b −0.9527b

Si 0.5596a 0.3472a 0.3426a 0.3458a +2.3648a

0.5994b 0.3488b 0.3432b 0.3469b +2.3617b
acis-[PtCl2(NH3)2]/silica system.
bBare silica or isolated cisplatin.
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Figure 4: Adiabatic total energy curves for the cis-platin adsorption
on silica functionalizedwithMg,K, CH

3
, andNH

2
chemical species.

the surface modification acts on reducing the adsorption
energy. The curves corresponding to the systems promoted
by K, Mg, and NH

2
do not present an absolute minimum

energy position for the cis-platin molecule. In general, the
more favorable molecule-surface distances are in the range
between 0.3 and 4.0 Å. We can conclude that the surface
functionalization improves the adsorbate-substrate contact
by diminishing the molecule-surface distance and reducing
the adsorption energy.

The system functionalized with NH
2
group presents

the best cis-platin adsorption energies compared to the
other studied systems (see Figure 4). We have calculated the
adsorption of cis-platin and its products, [PtCl(NH

3
)
2
]+ and

cis-[Pt(NH
3
)
2
]2+, on the silica-NH

2
matrix; Figure 5 shows

the corresponding adiabatic curves. We can observe that cis-
platin and [PtCl(NH

3
)
2
]+ adsorptions are favourable on the

surface (at positive distances), while [Pt(NH
3
)
2
]2+ adsorption

is more stable inside the surface (at negative distances). A
schematic view of the adsorption geometry can be seen in
Figure 6 (see selected ℎ = 0 level). We can see in Figure 5
that the adsorption of [Pt(NH

3
)
2
]2+ complex on the silica-

NH
2
matrix is the most favoured; the minimum adsorption

energy is obtained when the complex is located at −1.4 Å
from the surface. In order to analyze the complexes-surface
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Figure 5: Adiabatic total energy curves for the (a) cis-platin-silica–
NH
2
system, (b) cis-[PtCl(NH

3
)
2
]+-silica-NH

2
system, and (c) cis-

[Pt(NH
3
)
2
]2+-silica-NH

2
system.

interactions, we have studied in detail the electronic structure
and bonding characteristics of the cis-platin/SiO

2
(100)-NH

2

system.
The DOS curve corresponding to the isolated SiO

2
(100)-

NH
2
system can be seen in Figure 7(a).When themolecule is

adsorbed, the changes are lightly perceived (see Figure 7(b)).
For a major view of these states, the partial DOS of the
cis-platin, arranged in the same geometry as the molecules
take on the surface, is shown in Figure 7(c). The horizontal
sticks display the energy of the molecular orbitals in the
isolated cis-platin molecule. After adsorption, a portion of
its DOS is pushed above the Fermi level. The Fermi level is
modified and this implies an energetic stabilization of the
molecule after adsorption. The lowest s and p orbitals of the
molecule substantially interact with surface 𝑠-𝑝 orbitals; the
corresponding bands are spread out after adsorption.

For cis-[PtCl
2
(NH
3
)
2
]-silica-NH

2
study, we have selected

the complex located at 2.0 Å from the surface. For this
configuration, the Cl atoms present interactions with neigh-
bouring N and Si atoms of the surface. The Cl–N and Cl–
Si overlap populations are 0.8105 and 0.5785, respectively;
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Figure 6: The schematic drawing of the adsorption geometries is indicated in (a) cis-platin/NH
2
-silica system, (b) cis-[PtCl(NH

3
)
2
]1+/NH

2
-

silica system, and (c) cis-[Pt(NH
3
)
2
]2+/NH

2
-silica system.

the COOP curves can be seen in Figures 8(a) and 8(b).
No other important interactions were observed. For cis-
[PtCl(NH

3
)
2
]+-silica-NH

2
system we have considered for

studying the geometry corresponding to the complex posi-
tioned at 2.0 Å from the surface (at its minimum energy
location). When the cis-platin molecule loses the first chloro
atom, the most favourable interactions take place between
the remaining Cl atom and the neighbouring N and Si atoms
of the surface. The Cl–N and Cl–Si OP values are 0.7402
and 0.4235 respectively; Figures 8(c) and 8(d) show the

corresponding COOPs curves. For cis-[PtCl(NH
3
)
2
]+-silica-

NH
2
system, we have selected for studying the geometry

corresponding to the complex positioned at −1.4 Å from the
surface (at itsminimumenergy location).When themolecule
loses both the chloro atoms, the most favourable interactions
occur between the Pt atom and neighbouring O and Si atoms
of the surface. The Pt–O OP value is 0.7269, while the Pt–Si
OP values are 0.1092 (Si superficial) and 0.0285 (Si bulk). A
very small Pt–H interaction is detected (OP=0.002). Figure 9
shows the corresponding COOPs curves.
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0

10

20

30

40

−40

−30

−20

−10

Cl–SiCl–N

(a) (b)

En
er

gy
 (e

V
)

−

COOP
+−

COOP
+

(c) (d)

−

COOP
+−

COOP
+

EfEf

Cl–SiCl–N

EfEf

Figure 8: COOP curves for the Cl–N and Cl–Si interactions—(a) and (b) for cis-[PtCl
2
(NH
3
)
2
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)
2
]+ adsorption.

During adsorption, an electronic densities relocation is
produced between the surface and cis-platin atomic orbitals.
The major changes are summarized in Table 3. For cis-
[PtCl
2
(NH
3
)
2
]-silica-NH

2
system, the 𝑠 and𝑝 orbital popula-

tions of the N atoms neighbouring to cis-platin decrease 1–7%
and increase 39–46%, respectively. The 𝑠 and 𝑝 populations
of neighbouring Si (superficial) atoms decrease 9–11% and
increase 2–9% respectively, while Si (bulk) atom population
decreases less than 1%. The 𝑠 and 𝑝 orbital populations of
the O atoms neighbouring to cis-platin increase to about
1% and 4–13%, respectively. Then, the major population
changes occur in N 𝑝, Si (superficial) 𝑠, and O 𝑝 orbitals. The

biggest percent changes in the cis-platin orbital populations
are observed. The Cl 𝑠 and Cl 𝑝 populations decrease 15–
22%, and 40–51% respectively, while Pt 𝑠, Pt 𝑝, and Pt 𝑑
populations decrease 38%, 31%, and 77%, respectively. For cis-
[PtCl(NH

3
)
2
]+-silica-NH

2
system, the 𝑠 and 𝑝 orbital popu-

lations of the N atoms neighbouring to cis-platin modified
1–8% and 59–87%, respectively. The 𝑠 and 𝑝 populations
of neighbouring Si(superficial) atoms are modified 1–9%
and increase 4–6%, respectively, while Si (bulk) population
decreases less than 1%. The 𝑠 and 𝑝 orbital populations of
the O atoms neighbouring to cis-platin increase to about
1% and 3–14%, respectively. Then, the major population
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Table 3: Orbital occupations, net charges, and average overlap population (OP).

Orbital occupation Charge Bond OP
𝑠 𝑝 𝑑

ClI

1.4606a 2.6716a 2.8678a

Cl–N

0.8105a

1.5438b 3.6228b 1.8333b 0.7402b

— — — —
1.8613d 5.5367d −0.3980d —

ClII

1.5858a 3.3345a 2.0796a

Cl–Si

0.5785a

— — — 0.4235b

— — — —
1.8612d 5.5369d −0.3982d —

Pt

0.4112a 0.6170a 1.9754a 6.9965a

Pt–Si

—
0.4387b 0.5974b 1.3024b 7.6616b —
0.2372c 0.4920c 1.4661c 7.8045c 0.1092c

0.6591d 0.8921d 8.5948d −0.1459d —

NI

1.3184a 2.9864a — 0.6952a

Pt–O

—
1.3194b 3.4380b — 0.2426b —
1.3573c 3.3924c — 0.2502c 0.7269c

1.4273d 2.1555d — 1.4171d —

NII

1.4572a 3.3890a — 0.1537a

1.4683b 4.3326b — −0.8009b

1.3752c 3.6591c — −0.0343c

1.4586d 2.3163d — 1.2251d

SiI

0.6487a 0.8423a — 2.5089a

0.6490b 0.8736b — 2.4773b

0.7084c 0.8433c — 2.4483c

0.7129d 0.8252d — 2.4619d

SiII

0.6690a 0.9295a — 2.4014a

0.7602b 0.8854b — 2.3544b

0.6954c 0.8043c — 2.5002c

0.7557d 0.8537d — 2.3906d

SiIII

0.5832a 0.9806a — 2.4362a

0.5846b 0.9862b — 2.4292b

0.5885c 0.9482c — 2.4632c

0.5848d 0.9881d — 2.4271d

OI

1.6135a 5.3967a — −1.0101a

1.6160b 5.4476b — −1.0635b

1.5993c 5.0873c — −0.6866c

1.6020d 4.7942d — −0.3962d

OII

1.6678a 5.5382a — −1.2059a

1.6484b 5.4856b — −1.1339b

1.6066c 4.8620c — −0.4687c

1.6473d 5.3482d — −0.9955d
acis-[PtCl2(NH3)2]/silica-NH2 system, bcis-[PtCl(NH3)2]

+/silica-NH2 system.
ccis-[Pt(NH3)2]

2+/silica-NH2 system, disolated silica-NH2, or isolated cisplatin.

changes occur in N 𝑝, Si (superficial) 𝑠, and O 𝑝 orbitals.
Noticeable changes can be observed in cis-platin orbitals.
The Cl 𝑠 and Cl 𝑝 populations decrease 17% and 35%,
respectively, while Pt 𝑠, Pt 𝑝 and Pt 𝑑 populations decrease
33%, 33%, and 85%, respectively. For cis-[PtCl(NH

3
)
2
]+-

silica-NH
2
system, the 𝑠 and 𝑝 orbital populations of the

N atoms neighbouring to cis-platin decrease to about 5%

and increase 58%, respectively. The 𝑠 and 𝑝 populations of
neighbouring Si (superficial) atoms aremodified by 1–8% and
2–6%, respectively, while Si (bulk) population changes 1–4%.
The 𝑠 and 𝑝 orbital populations of the O atoms neighbouring
to cis-platin is modified to about 2% and 6–9% respectively.
Then, themajor population changes occur inN𝑝 orbitals. Big
changes take place in Pt atomic orbitals of cis-platinmolecule.



8 Journal of Solid State Physics

0

10

20

30

40

−40

−30

−20

−10

Pt–SiPt–O

(a) (b)

En
er

gy
 (e

V
)

−

COOP
+−

COOP
+

(c) (d)

−

COOP
+−

COOP
+

EfEf

Pt–HPt–Si

EfEf

Figure 9: COOP curves of (a) Pt–O, (b) Pt–Si, (c) Pt–Si (bulk), and (d) Pt–H interactions for cis-[Pt(NH
3
)
2
]2+ adsorption.

Table 4: Average overlap population (OP).

Bond OP

N–Si

0.212a

0.224b

0.311c

0.497d

O–Si (surface)

0.645a

0.522b

0.329c

0.700d

O–Si (bulk)

0.512a

0.510b

0.476c

0.592d

N–H

0.613a

0.650b

0.594c

0.725d

Pt–Cl

0.592a

0.779b

—
0.534d

acis-[PtCl2(NH3)2]/silica-NH2 system, bcis-[PtCl(NH3)2]
+/silica-NH2 sys-

tem.
ccis-[Pt(NH3)2]

2+/silica-NH2 system, disolated silica-NH2, or isolated
cisplatin.

The Pt 𝑠, Pt 𝑝, and Pt 𝑑 populations decrease 64%, 45%, and
83%, respectively.

The new interactions are formed at the expenses of
the original bonds (see Table 4). When Cl–N and Cl–Si
interactions are formed during cis-[PtCl

2
(NH
3
)
2
] and cis-

[PtCl(NH
3
)
2
]+ adsorption, the N–Si and Si–O (superficial)

bond strengths are reduced between 47–55% and 8–24%,
respectively, while the Si–O (bulk) interaction increases to
about 2 %, compared with the same bonds in the isolated
surface. On the other hand, when Pt–O, Pt–Si, and Pt–H
interactions are formed during cis-[Pt(NH

3
)
2
]2+ adsorption,

the N–Si, Si–O (superficial), and N–H bond strengths are
modified to about 5–29%, 5–20%, and 4–17%, respectively,
after adsorption. At the same time, the Pt–Cl bond of both cis-
[PtCl
2
(NH
3
)
2
] molecule and the cis-[PtCl(NH

3
)
2
]+ complex

are strengthed 11% and 46%, respectively, after adsorption.

5. Conclusions

Theadsorption of cis-platin drug on a SiO
2
(100) hydrated sur-

face was investigated by computational calculation. During
adsorption, the silica surface maintains its matrix properties
and the major changes occur in cis-platin’s molecule. The cis-
platin molecule presents weak interactions with neighbour-
ing OH groups of the hydrated surface and the hydrolysis
process is not favourable on the SiO

2
(100) surface.

The SiO
2
(100) adsorption properties are improved con-

sidering the surface’smodificationwith K,Mg, orNH
2
chem-

ical species. In general, the stability of the system is increased
and the molecule-surface distance is reduced. The hydrolysis
is a favourable process on the SiO

2
(100) functionalized sur-

face. The adsorption of cis-platin molecule and its complexes
is strengthened. The electron density exchange between the
functional specie and the molecule/complexes plays a main
role in the adsorption process. The cis-platin hydrolysis is
most favoured when the surface is functionalized with the
NH
2
specie. cis-[PtCl

2
(NH
3
)
2
] and cis-[PtCl(NH

3
)
2
]+ are

adsorbed on the surface via Cl–N and Cl–Si interactions,
while the cis-[Pt(NH

3
)
2
]2+ complex is adsorbed through

Pt–O, Pt–Si, and Pt–H interactions. After adsorption, the
strength of N–Si, Si–O and N–H superficial bond of the
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functionalized SiO
2
(100) changes favoring the interaction

between the molecule and its complexes with the surface.
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