

A Fast CORDIC Co-Processor Architecture for Digital Signal Processing
Applications

Javier O. Giacomantone, Horacio Villagarcía Wanza, Oscar N. Bria
CeTADΗ

hvw@info.unlp.edu.ar
 – Fac. de Ingeniería – UNLP

Abstract

The coordinate rotational digital computer (CORDIC) is an arithmetic algorithm,
which has been used for arithmetic units in the fast computing of elementary
functions and for special purpose hardware in programmable logic devices. This
paper describes a classification method that can be used for the possible applications
of the algorithm and the architecture that is required for fast hardware computing of
the algorithm.

Keywords:
Computer Architectures, CORDIC, Computer Arithmetic, Hardware Algorithms, Digital Signal
Processing Applications.

Η Centro de Técnicas Analógico-Digitales. Director: Ing. Antonio A. Quijano.

A Fast CORDIC Co-Processor Architecture for Digital Signal Processing
Applications

Javier O. Giacomantone, Horacio Villagarcía Wanza, Oscar N. Bria

CeTADΗ

hvw@info.unlp.edu.ar
 – Fac. de Ingeniería – UNLP

Abstract
The coordinate rotational digital computer (CORDIC) is an arithmetic algorithm,
which has been used for arithmetic units in the fast computing of elementary functions
and for special purpose hardware in programmable logic devices. This paper describes
a classification method that can be used for the possible applications of the algorithm
and the architecture that is required for fast hardware computing of the algorithm.

Keywords: Computer Architectures, CORDIC, Computer Arithmetic, Hardware Algorithms,
Digital Signal Processing Applications.

I. Introduction

The Coordinate Rotation Digital Computer (CORDIC) is an arithmetic technique, which makes it
possible to perform two dimensional rotations using simple hardware components. The algorithm
can be used to evaluate elementary functions such as cosine, sine, arctangent, sinh, cosh, tanh, ln
and exp. CORDIC algorithm appears in many applications because it uses only primitive operations
like shifts and additions to implement more complex functions. This is why the development of
special purpose hardware architectures, sought to be considered.

This paper is organised as follows: Section II reviews the CORDIC algorithm. Section III presents a
classification of the possible applications of the (2D) algorithm. The fast architecture solution,
which is geared towards programmable devices, is given in section IV.

II. The CORDIC algor ithm

The algorithm was introduced by J. Volder [Vol59] as a special purpose digital computer for real
time navigation problems.

Similar algorithms were presented by J. Meggit [Meg62] and Linhart and Miller [Mill69] but it was
Walther [Wal71] who formally introduced this theory, in 1971. This was the generalised algorithm
that allowed the computation of many elementary functions including multiplication, division, sine,
cosine, arctan, sinh, cosh, tanh, arctanh, ln, exp, and square root.

Η Centro de Técnicas Analógico-Digitales. Director: Ing. Antonio A. Quijano

All the evaluation procedures in CORDIC are computed as a rotation of a vector in three different
coordinate systems with an iterative unified formulation.

The rotation angle θ is approximated by the sum of im,α which are the partial step angles.

 ()1
1

0
,∑

−

=

=
n

i
imic αθ

 }1,1{−∈ic

where im,α is defined by:

 ()[] ()22tan1 ,1
,

imS
im m

m
−−=α

The coordinate system of operation is determined by m as follows

 1=m circular coordinate system
 1−=m hyperbolic coordinate system
 0→m linear coordinate system

replacing in (2)

 ()iS

im ,0
,0 20 −=⇒→ α

 ()iS
im ,11

,1 2tan1 −−=⇒= α

 ()iS
im ,11

,1 2tanh1 −−−
− =⇒−= α

()imS , is an integer shift sequence satisfying:

 () () 1,1,),(+≤+≤ imSimSimS

The unified CORDIC algorithm can be written as:

 1) Read () () ()0,0,0 zyx

 2) For i = 0 to n-1 the CORDIC iteration equation gives the new coordinates after each

pseudorotation

()
()

()

()
()
() ()3

12
21

1
1

,

,
















 −
=







+
+

−

−

iy
ix

c
cm

iy
ix

imS
i

imS
i

 3) The angle must be updated, giving:

() () ()41 ,imiciziz α−=+

Actually equation (3) is called a pseudorotation because the m-norm of the vector []Tyx , which is

defined as myx 22+ , is not the same after each step.

In order to maintain the m-norm constant a scaling operation is needed.

()
() ()

()
() ()

()
() ()5

21

11
1

0

,22
'

'










+
=







=








∏
−

=

− ny
nx

cm
ny
nx

nKny
nx

n

i

imS
i

m

Computing Modes

In CORDIC there are two fundamental modes of operation defined by Volder [Vol59] as rotation
and vectoring modes. When the algorithm works in the rotation mode, the data that is used are the
coordinate components of a vector and the desired angle of rotation, after n iterations the algorithm
approximates the final coordinates of the rotated vector.

In the vectoring mode the coordinates components after rotation are given and the algorithm
calculates the angle of rotation.

The set of }11,{ −= ntoici determine the direction of rotation of each step, which is known as the
forward rotation mode [Hu88]:

 () θ=0z

() () () ∑
−

=

=−=−
1

0
,0

n

i
imicnznzz αθ

To satisfy the above equation: ()izofsignci = .

In the vectoring mode or backward rotation mode [Hu90]:

 () 00 =z
 () ()iyixofsignci −=

Shift sequence and convergence

The shift sequence determines the convergence and the scaling factor. The selection of the adequate
shift sequence must be done to fulfil the following error criteria:

The angle approximation error due to the finite set of angles {αm,i , i=0, n−1} is :

 ∑
−

=

−=
1

0
,

n

i
imic αθε

It is desired that for any given rotation

 1, −≤ nmαε

In order to satisfy the above condition a partial angle in iteration i must be compensated except for
the error by all the following partial angles

 ∑
−

+=
−+≤

1

1
1,,,

n

ij
nmjmim ααα

According to the above criteria the maximum angle is:

 anglenm

n

i
im .max1,

1

0
, ≡+≤ −

−

=
∑ ααθ

The accuracy, approximation error and rounding error have been analysed [Wal71] [Hu92]
[Cav93].

The following values for the shift sequence were presented by Walther [Wal71], satisfying the
convergence criteria

 m S(m,i) Max. angle
 1 0,1,2,3,4,5,….,i,… 1.743287
 0 1,2,3,4,5,6,…,i+1,.. 1.000000
 -1 1,2,3,4,4,5,…,12,13,13,14.. 1.118173

III. Applications of the algor ithm

The CORDIC algorithm can perform elementary functions efficiently as an alternative method to
using tables or polynomial approximation but the real power of the technique resides on the fact
that provides solution to a broad class of problems with the same iterative algorithm. It is the aim of
this section to classify these applications.

The applications of the algorithm can be considered in three main groups:

• The first group includes only the simple original task, but it is very important as it allows the

vector to be rotated in a plane and the new coordinates of the vector or rotated angle to be
determined. This first group also includes the first direct applications like conversions between
decimal and binary systems and polar into Cartesian coordinates.

• The second part of the classification involves the elementary functions. These are determined by

the proper setting of the initial values of the algorithm or by the double application of it. The
arithmetic operations and functions that we can generate with the appropriate use of CORDIC
are multiplication, division, sine, cosine, tan, arctan, sinh, cosh, tanh, arctanh, ln, exp, and
square root.

• The third group is definitely the one that we can call general application for image processing,

pattern recognition and digital signal processing in general. For the sake of simplicity this group
is presented as three subgroups:

 Transformation

: Cosine Discrete Transform, Discrete Fourier Transform (FFT), Chirp Z
Transform, Hartley Transform, and Hough Transform

 Digital Filters

: Orthogonal Digital Filters and Adaptive Lattice Filters

 Matrix Algorithms

: QR factorization (Kalman Filters, Linear System solvers), Toeplitz
and covariance system solvers, least square deconvolution and eigenvalue, and SVD
with application to array processing.

IV. CORDIC Architectures

There are multiple hardware structures that can be used to implement a CORDIC processor. The
interaction between the three most important structures, iterative, serial iterative and unrolled
(parallel implementation), and the basic arithmetic circuits to implement them have already been
classified [Vlad99].

The primary target application of the architectural design presented in this paper is a CORDIC co-
processor for high throughput digital signal processing tasks, where the CORDIC co-processor is
intend to be implemented in a programmable device, interacting with a digital signal processor.

A design for a programmable device can impose severe restrictions. It is important to realise that
consideration must be given for the trade-off factors associated with the area consumption, accuracy
and throughput must be considered.

A survey of algorithms for FPGA have been carried out [Andra98], where the principal features of
each structures have been presented.

The following section presents a particular design based on the unrolled CORDIC processor
[Andra98].

A Fast CORDIC Design

The following CORDIC module deals with the performance of the algorithm in both modes of
operation and in the three coordinate systems.

A simple unit is used called CORDIC element (Fig.1). The main components are three
adders/subtractors, two shift registers and the necessary combinatorial hardware to control the
adders and select the operation mode.

The C.E. element is the kernel of the CORDIC processor and it’s primary function is to perform
eq.(3) and eq.(4).

It is clear from eq.(3) that it can be implemented basically with adders and appropriate shifters but
without using multipliers.

The basic operation that the CORDIC element performs is not more than a crossaddition [Vol59],
to sum or substruct a shifted value of xi to yi to obtain yi+1 or a shifted value of yi to xi to obtain xi+1
(Fig.2).

A parallel pipelined structure is used to implement the system consisting in an array of C.E., each of
them performing a computation in parallel with the other and separated by registers to form a
pipeline structure (Fig.3).

 C.E.

iii zyx

 111 +++ iii zyx

 m

Fig.1

 +/- +/-

>> >>

ix iy

1+ix 1+iy

Fig.2

C.E. Reg. C.E.

 Fig.3

Any CORDIC processor should contain a proper module to perform four basic functions:

1) The basic iterations of eq.(3)

2) The scaling of the vector module

3) The angle update iteration

4) The storage of the arc tangent radix constants ATR

Fig.4 shows the whole design which basically consist of four modules, the pseudorotation (P) and
the scaling factor (S) blocks are very fast parallel, pipeline structures, of which the first implements
the basic iterations and the angle updating, while the second fits the vector to the correct trajectory.

The ATR block only contains the angle steps for each iteration.The rotation module (R) performs a
real rotation of 90 or –90 degrees, in order to extend the angle range.

The design behaviour was first simulated in C/C++, then described in VHDL and in then tested in
the adequate VHDL testbench.

V. Conclusions

The pipeline CORDIC architecture design, presented is appropriate for solving trigonometric
relations at high speed. It can be used in real time applications, but the fundamental advantage is the
possibility of generating different elementary functions, with the same unit.

The algorithm needs adders and multipliers but using specific sets of ATR constants the hardware
implementation is simplified (eg. shifters as multipliers). The separate distribution of the ATR
constants to each adder permits a hardwire solution instead of using a specific ROM.

The shifters need not to be programmable, which is a beneficial asset. Nevertheless, a trade-off

 P S R

ATR

Fig.4

System
Control
Logic

between area and accuracy, needs to be made, so that the utility of the design incorporates the
considerations required of accuracy bits needed for each arithmetic task and the hardware resources
available.

 Acknowledgement

The authors are grateful to Griselda Lyn for providing comments and suggestions that greatly
improved this paper.

References

[Vol59] Volder, J., “The CORDIC Trigonometric Computing Technique”, IRE Trans. Electronic
Computing, Vol. EC-8, Sept 1959, pp. 330-334.

[Wal71] Walther, J. S., “A unified algorithm for elementary functions”, Spring Joint Computer
Conf., 1971, Proc., pp. 379-385.

[Hu88] Hu, Y. H. and Sung, T. Y. “Efficient Implementation of the Chirp Z-Transform using a
CORDIC processor”, IEEE Trans. ASSP, Vol. 38, No. 2, Feb. 1990, pp. 352-354.

[Hu92] Hu, Y. H., “The quantization effects of the CORDIC algorithm”, IEEE Trans. on Signal
Processing, Vol. 40, No. 4, April 1992, pp. 834-844.

[Mill69] Linhardt, R. J. and Miller, H. S., “Digit-by-Digit Transcendental-Function Computation”,
RCA, Rev. 30 (1969), pp. 209-247.

[Andra98] Andraka, R. “A survey of CORDIC Algorithms for FPGA Based Computers”, Proc. of
ACM/SIGDA Sixth International Symposium on FPGAs, Feb. 1998, Monterrey, CA, pp. 191-200.

[Vlad99] Vladimirova, T. and Tiggler, H. “FPGA Implementation of Sine and Cosine Generators
Using the CORDIC Algorithm”, Proc. of Military and Aerospace Application of Programmable
Devices and Technologies Conference (MAPLD 99), Sep. 1999, Laurel, MA, A-2, pp. 28-30.

[Meg62] Meggitt, J.E. “Pseudo division and pseudo multiplication processes”, IBM Journal of
Research and Development, 1962, No. 6, pp. 210-226.

[Cav93] Kota, K. and Cavallaro, J.R. “Numerical accuracy and hardware tradeoffs for CORDIC
arithmetic for special-purpose processors”, IEEE Trans. on Computers, Vol. 42, No. 7, July 1993,
pp.769-779.

	Computing Modes
	IV. CORDIC Architectures
	V. Conclusions

