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Abstract

A time of flight camera provides two types of im-
ages simultaneously, depth and intensity. In this paper
a computational method for background subtraction,
combining both images or fast sequences of images,
is proposed. The background model is based on un-
balanced or semi-supervised classifiers, in particular
support vector machines. A brief review of one class
support vector machines is first given. A method that
combines the range and intensity data in two opera-
tional modes is then provided. Finally, experimental
results are presented and discussed.
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1 Introduction

Background subtraction methods are used in machine
vision to detect foreground objects in image sequences
[1]. The background representation is called back-
ground model and methods involving different models
have been proposed over recent years [2][3][4]. A
broad distinction can be considered between paramet-
ric and nonparametric models if an assumption about
the intensity probabilistic distribution of background
pixels is made or not [5]. Furthermore, a model can
be divided into pixel based or block-based. Although
the former are more common, the latter can be used
to model distributions based on data of adjacent pixel
blocks. Non-stationary background modelling due to
overall lighting conditions and local image pattern fluc-
tuations have been proposed for background subtrac-
tion. A common assumption in background modeling
is that only initial background data is available to train
a two class pattern recognition system [6]. Time of
flight (TOF) cameras are an alternative to other sensing
techniques like laser scanners or image based stereo-
vision. Based on CMOS technology and time of flight
principle, provide range distance information in real
time and intensity images. By illuminating the scene
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with near infrared light and measuring the phase shift
of the reflected light for each pixel they provide depth
information, 21/2D images at fast rates [7][8]. Sensi-
bility to external light sources, calibration and noise
are important factors to consider in background mod-
elling based on TOF images [9][10]. Figure 1 shows
four different TOF phase based camera models.

(a) O3D100 (b) SR-4000

(c) SR-4500 (d) CamCube 2.0

Figure 1: a)Ifm electronic c©, b)HEPTAGON
TM

,
c)HEPTAGON

TM
, d)PMD[Vision] R©

Glazer et al. [11] proposed a nonparametric block
based model for intensity images, unbalanced classes
and support vector machine classification to perform
background subtraction. Cho et. al [12] proposed
a probabilistic background model for both intensity
and range images. The obtained foreground models
are combined and morphological filters are used to
remove noise. This paper presents a computational
background subtraction method for TOF images. The
background model assumes unbalanced training data
and is based on one class support vector machines
(OCSVM). A preliminary version of this paper pre-
sented OCSVM to operate with both images simulta-
neously [13].

This paper is organized as follows: Section 2 briefly
describes the main ideas behind one class support vec-
tor machines. Section 3 presents the proposed back-
ground subtraction method. In section 4 experimental
results are presented. Finally, conclusions are given in
section 5.
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2 Support vector machines

Support Vector Machines (SVM), based on statisti-
cal learning theory [14], are very useful classification
tools in machine vision. In this section, we briefly
review the notation and the classification method. Con-
sider a set of l training patterns from two classes
{(xi,yi), i= 1, ..., l}, where xiεRN is an N dimensional
vector and yiε{1,−1} is its class label. Consider a
data set x1, . . . ,xl ∈X where l ∈ N is the number of
observations and X is a compact subset of RN . A
SVM determines a linear classifier, a hyperplane, that
maximizes the distance between the two classes. Math-
ematically, it is equivalent to maximizing the margin
magnitude 2

||w|| subject to yi((xi.w)+ b) ≥ 1, where
b and w determine the hyperplane (w.x)+ b = 0. In
order to classify nonseparable samples, training errors
are accepted by introducing slack variables ξi≥ 0. The
hyperplane is then obtained by minimizing:

min 1
2 ||w||

2 +C ∑i ξi

s.t. yi[(w− xi)+b])≥ 1−ξi

(1)

where C controls the tradeoff between the hyperplane
complexity and training error, with a small C value
corresponding to a large margin. The final decision
function is obtained by solving the Lagrangian dual of
eq. (1),

f (x) = sgn[∑
i

αiyi(x.xi)+b]

where αi are Lagrange multipliers. A SVM classifier
can be extended to nonlinear classification by using
kernel methods. Kernel methods project data into a
higher dimensional feature space to obtain a linear de-
cision function equivalent to the nonlinear in the origi-
nal space. The kernel used in this paper is the Radial
Basis Function (RBF) defined as k(x,xi) = e−γ‖x−xi‖2 ,
where γ is the width parameter, a small γ value corre-
sponds to a large kernel width.
There are two main one class classification algorithms
based on SVM, support vector data description [15]
and one class SVM (OCSVM) [16]. The one-class
SVM estimates a function f that is positive for a subset
of the sample space and negative for the complemen-
tary. The algorithm maps the data into a feature space
corresponding to the kernel and separates them from
the origin with maximum margin. Let Φ : X →F
be a feature map, that is, a map into an inner product
space F such that the inner product in the image of Φ

can be computed by evaluating a simple kernel.

k(x,z) = (Φ(x) ·Φ(z))

It can be formulated as an optimization problem.

min
w∈F ,ξ∈Rl ,ρ∈R

1
2 ||w||

2 + 1
ν l ∑i ξi−ρ

s.t. (w ·Φ(xi))≥ ρ−ξi

(2)

where ξi ≥ 0 and ν ∈ (0,1] is a parameter controlling
the penalized term and ξi are slack variables. By solv-
ing the optimization problem (2) we obtain w and ρ

and the decision function is -1 for outliers in the data
set and +1 for the rest of the samples in the data set.

f (x) = sgn(w ·Φ(x)−ρ) (3)

Introducing Lagrangian multipliers αi,βi ≥ 0, we ob-
tain

L(w,ξ ,ρ,α,β ) = 1
2 ||w||

2 + 1
ν l ∑i ξi−∑i βiξi

−ρ−∑i αi(w ·Φ(x)−ρ +ξi)

Setting the derivatives with respect to the primal vari-
ables w,ξ ,ρ equal to zero yields

w = ∑i αiΦ(xi),

αi =
1
ν l −βi ≤ 1

ν l ,

∑i αi = 1.

The decision function can be written as

f (x) = sgn(∑
i

αik(xi,x)−ρ)

The multipliers αi can be solved from the dual prob-
lem:

min
α

1
2 ∑i j αiα jk(xi,x j)

s.t. 0≤ αi ≤ 1
ν l , ∑i αi = 1.

The parameter ρ can be recovered by exploiting that
for any such αi and the corresponding pattern xi satis-
fies:

ρ = (w ·Φ(xi)) = ∑
j

αik(xi,x j). (4)

3 Background subtraction

The proposed method consists of two operational
modes. Each one has two stages. The first stage trains
a OCSVM classifier with background data. The second
stage classifies each pixel or voxel as a member of the
background or the foreground. Both operational modes
are based on adequately combining depth and inten-
sity TOF data. The operational mode 2 works with
arrays of volumes of TOF images. Figure 2 shows the
data structure for both operational modes. Let TOFr
and TOFg be two arrays of depth images and intensity
images respectively. Each one consists of l images
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21/2D and l images 2D. The parameters of the back-
ground model are obtained by the procedure described
in section 2. Let l be the number of training vectors,
k = 1...l, for each pixel (i, j), where:

(a) Mode 1

(b) Mode 2

Figure 2: (a) Training images, (b) V volumes

xk
i, j = [x1,x2]

T

is the k-th training vector for pixel the pixel (i, j)
where:

x1 = TOFk
r (i, j) and x2 = TOFk

g (i, j)

After the reference background model is defined depth
and intensity images are obtained and each pixel is
classified as belonging to the background or the fore-
ground by the equation:

f (xi, j) = sgn(w ·Φ(xi, j)−ρ) (5)

The second operational mode operates with large data
sets. l volumes, v = 1...l, of image arrays, TOFr and
TOFg are the training data of the first stage. M images
of depth an intensity, respectively formed each volume.
The OCSVM parameters of the background model are
defined from V vectors, v = 1...l, for each volumen
element (i, j,k), where:

xv
i, j,k = [x1,x2]

T

is the v-th training vector for voxel (i, j,k) where:

x1 = TOFv
r (i, j,k) and x2 = TOFv

g (i, j,k)

The second stage of mode 2 determines the class of
each voxel by:

f (xi, j,k) = sgn(w ·Φ(xi, j,k)−ρ) (6)

A tradeoff between available memory, complexity and
speed depends on the camera characteristics and the
particular conditions of a problem.

4 Experimental Results

In order to test and compare results of the proposed
method three main TOF data sets were evaluated. The
first TOF set is a completely synthetic one with dif-
ferent levels and noise statistical distributions. These
types of experiments provide controlled conditions
and knowledge of the exact foreground object location,
namely a gold standard. The second alternative is to
generate artificial foci of activated pixels or voxels
in real background TOF data sequences. The third
possible data set involves working with real TOF back-
ground and foreground objects. Figure 3 depicts one
synthetic image and foreground objects in a pseudo-
color image. The synthetic TOF data are formed by
10x10x3 voxels per volume and 20 volumes. Voxels
values were 16000 corrupted by zero-mean Gaussian
noise with standard deviation 4000. Foreground vox-
els had their values increased between 600 and 1500
in 100 steps. Images TOF1 to TOF10 were gener-
ated with Gaussian noise and TOF11 to TOF20 with
Rayleigh noise.

(a) Synthetic (b) Pseudo-color

Figure 3: TOF data

Images for real and semi-synthetic data sets were ob-
tained using the MESA SwissRanger SR4000 time-
of-flight camera [17][18]. The SR4000 is an active
measurement device that obtains depth and intensity
images of 144x176 pixels up to 50fps as shown in fig-
ures 4(a) and 4(b). The operational range is between
0,8 to 8m. Figure 4(c) and 4(d) are depth images with
synthetic and real foreground objects shown in pseudo-
color. TOF depth measurements at high rates can be
noisy and display errors where scenes contain mate-
rials with low infrared reflectivity [19][20]. Another
error known as flying pixel, could appear in depth im-
age levels between the foreground and the background
[21][22].
Table 1 presents comparative results. The values of the
true positive fraction (TPF) and the false negative frac-
tion (FPF) correspond to the optimal operating point
of the receiving operating characteristics (ROC). The
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(a) Range (b) Intensity

(c) Synthetic (d) Real

Figure 4: Time of flight images

optimal operating point distance and the area under the
curve are indicated for each data set. C1 is the method
proposed in [12] and C2 also includes morphological
filters. M2AF refers to a test of the proposed method in
mode 2, and anisotropic diffusion filtering [23]. Fig-
ure 5 presents ROC curves corresponding to TOF9,
TOF12 and TOFS.

Area dpo T PFpo FPFpo

TOF9
M1ν=0.37 0.989 0.661 0.979 0.046

TOF12
M2ν=0.4 0.977 0.693 0.892 0.049

M2AF 0.985 0.639 0.946 0.045
TOFS

M1ν=0.38 0.986 0.645 0.955 0.043
C1 0.954 0.573 0.931 0.121
C2 0.975 0.618 0.935 0.060

Table 1: Performance metrics

Figure 6 shows a real range scene and the result of the
proposed method for background subtraction.

5 Conclusions

In this paper, a computational method for background
subtraction of time of flight imaging, have been pro-
posed. The background model is constructed by using
depth and intensity data to train a one class support
vector classifier. The second stage of the method is
a pixel based background scheme that classifies each
pixel. Experimental results show that the method can
combine depth and intensity data to build an effective
model suitable for real time applications. Future work
should consider evaluating the specific performance of
the method for more extensive experimental scenarios
involving noise filtering and the overhead influence in

(a) TOF

(b) TOFS

Figure 5: ROC curves

(a) Depth image (b) Subtraction

Figure 6: TOFR

real time.

Competing interests

The authors have declared that no competing interests
exist.

References

[1] P. Rajan and S. Prakash, “Moving foreground ob-
ject detection and background subtraction using
adaptive-K GMM: A survey,” International Jour-
nal of Advance Research in Computer Science
and Management Studies, vol. 2, pp. 300–308,
2014.

[2] M. Piccardi, “Background subtraction tech-
niques: a review,” in IEEE International Confer-

Journal of Computer Science & Technology, Volume 17, Number 2, October 2017

138



ence on System. Man and Cybernetics, pp. 3099–
3104, 2004.

[3] T. Bouwmans, L. Davis, J. Gonzalez, M. Pic-
cardi, and C. Shan, “Special issue on background
modeling for foreground detection in real-world
dynamic scenes,” Machine Vision and Applica-
tions, vol. 25, pp. 1101–1103, 2014.

[4] A. Vacavant, L. Tougne, and T. Chateau, “Spe-
cial section on background models compari-
son,” Computer Vision and Image Understand-
ing, vol. 122, pp. 1–202, 2014.

[5] C. Stauffer and W. L. Grimson, “Adaptive
background mixture models for real-time track-
ing,” Computer Vision and Pattern Recognition,
pp. 2246–2252, 1999.

[6] R. D. Cajote et al., “Framework of surveillance
video analysis and transmission system using
background modeling and MIMO-OFDM,” in
IEEE International Conference on Digital Signal
Processing, pp. 1071–1075, 2015.

[7] F. Chiabrando, R. Chiabrando, D. Piatti, and
F. Rinaudo, “Sensors for 3d imaging: Metric
evaluation and calibration of a ccd/cmos time-of-
flight camera,” Sensors, vol. 9, pp. 10080–10096,
2009.

[8] A. Kolb, E. Barth, R. Koch, and R. Larsen,
“Time-of-flight sensors on computer graphics,”
in Eurographics, 2009.

[9] S. Foix, G. Alenya, and C. Torras, “Lock-in
time-of-flight (ToF) cameras: A survey,” Sen-
sors, vol. 11, no. 9, pp. 1917–1926, 2011.

[10] T. Oggier et al., “Novel pixel architecture with
inherent background suppression for 3d time-of-
flight imaging,” in Videometrics VIII, 2005.

[11] A. Glazer, M. Lindenbaum, and S. Markovitch,
“One-class background model,” Lecture Notes in
Computer Science, vol. 7728, pp. 301–307, 2012.

[12] S. H. Cho et al., “Background subtraction based
object extraction for time-of-flight sensor,” in
IEEE Global Conference on Consumer Electron-
ics, pp. 48–49, 2013.

[13] J. Giacomantone, L. Violini, L. Lorenti, and A. D.
Giusti, “Supresión de segundo plano en imágenes
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[23] H. Schöner, “Denoising 3d images from time-of-
flight cameras using extended anisotropic diffu-
sion,” SPIE Newsroom, 2012.

Journal of Computer Science & Technology, Volume 17, Number 2, October 2017

139




