METODO HIBRIDO PARA EL ANALISIS DE LA PROPAGACION DE ONDAS ELECTROMAGNETICAS EN MEDIOS PERIODICOS.

LUIS JOAQUIN MENDOZA HERRERA

UNIVERSIDAD DE PAMPLONA FACULTAD DE ARQUITECTURA E INGENIERIAS DEPARTAMENTO DE INGENIERIA ELECTRONICA UNIVERSIDAD DE PAMPLONA 2004

METODO HIBRIDO PARA EL ANALISIS DE LA PROPAGACION DE ONDAS ELECTROMAGNETICAS EN MEDIOS PERIODICOS.

LUIS JOAQUIN MENDOZA HERRERA

Proyecto Presentado Para Optar el Titulo de INGENIERO ELECTRONICO

DIRECTOR: ANGEL JOSE CHACON VELASCO Dr. en Ciencias Naturales, Física

UNIVERSIDAD DE PAMPLONA FACULTAD DE ARQUITECTURAS E INGENIERIAS DEPARTAMENTO DE INGENIERIA ELECTRONICA PAMPLONA-NORTE DE SANTANDER 2004 UNIVERSIDAD DE PAMPLONA

Proyecto Sometido en Cumplimiento de uno de los Requisitos Para Optar el Titulo de INGENIRO ELECTRONICO

JURADO CALIFICADOR

 GRADO CONFERIDO EN ______
 EL DIA _____
 DE _____2004

AGRADECIMIENTOS

Agradezco a Dios nuestro divino, creador de la vida y salud que me ha permitido tener para cosechar, sí como también la oportunidad de acumular, las experiencias que han servido de base para la realización de este proyecto que realice llenándome de alegría y motivación.

A mis padres, abuela, compañera, hijo y hermanos, que tan amorosamente me estimularon a llevar a feliz termino mi propósito de superación.

A mi director Dr. Ángel José Chacon Velasco que con paciencia y cariño aporto su parte intelectual y emocional, que fueron herramientas fundamentales para alcanzar la meta propuesta, impulsándome siempre a seguir adelante, empujándome a dar el salto hacía la gran carrera para ser un buen ingeniero.

A mis amigos compañeros que siempre recuerdo con mucho cariño porque con ellos pase los mejores momentos y desde sus puestos me incitaban a seguir adelante.

A mis suegros y cuñadas que de una u otra forma siempre me colaboraron para obtener hoy día este titulo que tanto luche.

Y a todas las personas que de una u otra forma me brindaron su amable colaboración y espontaneidad para ejecutar las tareas que me asignaban.

4

DEDICATORIA

Con satisfacción puedo decir que he logrado las metas que un día me propuse, y quiero agradecer a Dios, por ser mi guía y protector en todos los momentos difíciles y placenteros en el transcurso de mis estudios.

Dedico este triunfo, a mi hijo Luis Helian, a mi abuela, a mi compañera, a mis padres y hermanos que son lo más preciado y abnegado para mí, quienes con sus esfuerzos, sacrificios dedicación y paciencia en todo momento me brindaron la ayuda y el apoyo para lograr el triunfo obtenido.

Finalmente quiero manifestar que no son las grandes inteligencias las que triunfan, sino los grandes valores éticos, y morales que posee todo ser humano en su interior, así como la forma en como se realicen las cosas en las cuales usted desea triunfar.

TABLA DE CONTENIDO

	Pág.
RESUMEN	9
INTRODUCCION	11
2. PLANTEAMIENTO DEL PROBLEMA	14
3. OBJETIVOS	15
3.1 GENERAL	15
3.2 ESPECIFICOS	15
4. JUSTIFICACION	16
5. FUNDAMENTOS CONCEPTUALES	18
5.1 ESTRUCTURAS PERIODICAS	18
5.2 ANALISIS DE ESTRUCTURAS PERIODICAS INFINITAS	19
5.3 METODO DE LOS MOMENTOS	24
5.3.1 METODO DE COLOCACION	26
5.3.2 METODO DE SUBSECCIONES	27
5.3.3 METODO DE GALERKIN	27
5.3.4 METODO DE MINIMOS CUADRADOS	28
5.3.5 EJEMPLO SIMPLE DE APLICACIÓN DEL METODO DE LOS	
MOMENTOS	30
5.3.5.1 PLANTEAMIENTO GENERAL DEL PROBLEMA	30
5.3.5.2 CAMPO PRODUCIDO POR LAS CORRIENTES SOBRE EL	
DIPOLO	30

5.3.5.3 MODELADO DE DISTRIBUCION DE CORRIENTE	32
5.3.5.4 CAMPO PRODUCIDO POR LA FUENTE	33
5.3.5.5 ECUACION INTEGRAL DEL CAMPO ELECTRICO (EFIE)	34
5.3.5.6 IMPEDANCIA DE ENTRADA	36
5.3.5.7 FUNCIONES BASE TIPO SENOIDAL	36
5.4 METODO DE LOS ELEMENTOS FINITOS	37
5.4.1 HISTORIA	37
5.4.2 INTRODUCCION	38
5.4.3 FORMULACION DE GALERKIN	39
5.4.4 ESPECIFIDADES DEL METODO DE LOS ELEMENTOS	
FINITOS EN ELECTROMAGNETISMO	43
6. PLANTEAMIENTO DEL PROBLEMA BICAPA	44
7. FORMULACION TEORICA DEL PROBLEMA MULTICAPA	
BIDIMENSIONAL	48
8. ANALISIS DE LAS GRAFICAS OBTENIDAS	58
9. CONCLUSIONES	60
10. BIBLIOGRAFIA	62
ANEXOS	
CONDUCCION EN SUPERFICIES Y IMPEDANCIA EN	64
RAMAS	
PARAMETROS, DATOS Y RESULTADOS	69
1. DESCRIPCION DE PARAMETROS	69

2.	DATOS PARA LOS CALCULOS BICAPA	70
3.	DATOS PARA LOS CALCULOS MULTICAPA	72
4.	GRAFICAS Y CALCULOS	75
5.	PROGRAMAS MAS RELEVANTES	100

RESUMEN

Los sistemas periódicos multicapa, se emplean ampliamente en calidad de filtros reflectores y polarizadores de la radiación electromagnética así como en el diseño de nuevas antenas, guías de onda recubrimientos interiores en cámaras anecoicas y demás estructuras periódicas. Si el sistema multicapa resulta transparente en un diapasón bien definido de frecuencias o ante determinados ángulos de incidencia para una frecuencia dada, entonces es posible utilizarlo en calidad de filtro.

En la literatura científica relacionada con el tema se encuentra una gran cantidad de trabajos clásicos como el de Louis de Brillouin "propagación de ondas sobre medios periódicos" y "fundamentos de Optica" de Born and Wolf, en los cuales analítica y numéricamente se analizan las propiedades de reflexión de las multicapas, en el libro de Born se presenta una teoría general del sistema multicapa, cuyos cálculos están basados, en matrices de transformación con ayuda de los polinomios de Chevyshev de segundo orden, en este trabajo los campos asumen expresiones muy grandes y complejas en los casos mas generales, lo cual dificulta la aplicación practica de estos resultados.

Sin embargo en un caso particular como el de la capa homogénea de "cuarto de onda", las expresiones se simplifican. En este caso se obtiene una expresión sencilla para los coeficientes de refracción y transmisión, si la incidencia es normal para una onda TE. En el caso de una incidencia oblicua de la onda TM o TE sobre una multicapa de cuarto de onda, las formulas de los coeficientes de reflexión y transmisión son dados por (Macleod, H.A Thin-Film "optical Filters").

En la tesis de maestría de José Helder Facundo Severo (Brasil) se estudio analíticamente la reflexión de las ondas TM y TE sobre una multicapa de cuarto de onda homogénea.

Nuestro estudio de las bicapas fue realizado con base en este trabajo de maestria y el de las multicapas bidimensionales con base en los estudios de (Ramsai Galindo).

Las ecuaciones exactas para el caso de capas homogéneas que se usan en este trabajo fueron obtenidas por primera vez por Piotr .E. Strech de la Universidad Amistad de los pueblos, Moscú Rusiay publicados por esta universidad en su revista, tomo 342, N4 Paginas 477 de 1998)

Estas formulas se utilizan en nuestro trabajo para describir los "ángulos de transparencia "y para llevar a cabo algunos cálculos numéricos.

INTRODUCCIÓN

El presente trabajo aborda el estudio de la propagación de las ondas electromagnéticas en estructuras periódicas (bicapas con periodicidad unidimensional y multicapas con periodicidad bidimensional), a partir de los métodos de los momentos y de los elementos finitos, desarrollando para ambos casos software en Matlab, Fortran y en C++, apropiados para analizar algunas propiedades relevantes de stas estructuras periodicas.

El objeto principal del trabajo fue estudiar desde el punto de vista analitico y numerico las propiedades dielectricas de algunas estructuras periodicas ampliamente utilizadas en la ingenieria.

Para llevar a cabo la investigación se analizaron los métodos antes mencionados dado que estos son métodos muy poderosos en la solución numérica y analítica, por ejemplo el método de los elementos finitos ha llegado a ser una herramienta de gran utilidad en un amplio rango de problemas de ingeniería. Las aplicaciones de este metodo, van desde el análisis por deformación y esfuerzo de automóviles, aeronaves, edificios y estructuras de puentes hasta el análisis de los campos de flujo de calor, de fluidos, de campos electromagnéticos, filtraciones y otros problemas de flujo. Con los avances en la tecnología informática y de los sistemas CAD, pueden modelarse problemas complejos con relativa facilidad. En una computadora se pueden simular varias configuraciones antes de construir el primer prototipo. Todo esto sugiere la importancia de hacer uso de estas técnicas y desarrollos, para comprender mejor la teoría básica, los modelados y los aspectos computacionales del método del elemento finito

El incremento acelerado y exponencial del uso de la energía electromagnética a partir de desarrollos tecnológicos basados en la electrónica y las

10

telecomunicaciones, ha generado una nueva área de la ciencia, y la técnica la llamada compatibilidad electromagnética, que básicamente estudia el acoplamiento por varios canales de la energía producida y recibida entre distintos sistemas inertes o vivos.

El presente trabajo se inscribe en esta área y espera ofrecer un modesto aporte a lo que evidente y necesariamente se perfila como una nueva ingeniería.

METODO HIBRIDO PARA EL ANALISIS DE LA PROPAGACION DE ONDAS

ELECTROMAGNETICAS EN MEDIOS PERIODICOS.

1. PLANTEAMIENTO DEL PROBLEMA

El estudio de la propagación de las ondas electromagnéticas en un medio periódico es de vital importancia para el sideño de antenas, guías de onda, recubrimiento de cámaras anecoicas y filtros.

Por lo tanto se plantea el siguiente interrogante

Dada una superficie periódica bien definida (por ejemplo: ferritas reticulares, cuadradas, como recubrimientos internos de cámaras anecoicas)

¿Como abordar el estudio de las principales propiedades dieléctricas de una superficie periódica tanto en el interior de la retícula como en sus bordes utilizando varios programas desarrollados, con base en los métodos seleccionados, método de los momentos (M.o.M) y método de los elementos finitos M.E.F?

3. OBJETIVOS

3.1 GENERAL

Determinar las características dielectricas de algunas estructuras periódicas específicamente (bicapa unidimensional y multicapa bidimensional) por medio de los métodos de M.o.M y M.E.F utilizando un software desarrollado en Matlab, Fortran y C++

3.2 ESPECIFICOS

- Asimilación de los métodos escogidos(método de los momentos (M.o.M) y el método de los elementos finitos (M.E.F))
- Determinar los coeficientes de transmisión y reflexión de los campos reflejados y transmitidos, en las estructuras mencionadas
- Desarrollar un programa en Fortran y Matlab para la determinación de los coeficientes de reflexión y transmisión de los campos transmitidos y reflejados, en las estructuras mencionadas
- Validación de los programas
- Obtención de resultados y conclusiones
- Entrega del informe
- Sustentación del trabajo

4. JUSTIFICACION

El estudio de configuraciones de antenas, guías de onda, recubrimientos interiores de cámaras anecoicas (Laboratorios de interferencias electromagnéticas), filtros de alta calidad y otras estructuras periódicas son de vital importancia para el adecuado desarrollo de nuevas tecnologías en ingeniería eléctrica, electrónica y de telecomunicaciones.

Son las cámaras anecoicas dispositivos necesarios para la certificación de distinto equipos electrónicos, siendo este un aspecto primordial a considerar en la formación de cualquier ingeniero electrónico ya que esto representa la calidad de lo producido por los mismos.

Debido a la importancia que genera el análisis de ondas electromagnéticas en medios periódicos, como los ya mencionados y estos a su vez en la industria electrónica, surge la necesidad del estudio de la propagación de las ondas en estos medios, y además como consecuencia de la calidad en el análisis de los mismos, también la utilización de métodos más precisos como es la combinación de los mencionados anteriormente, dada la geometría de la estructura periódica

5. FUNDAMENTOS CONCEPTUALES

5.1 ESTRUCTURAS PERIODICAS

En tanto el presente trabajo se inscribe en el área de la ingeniería electrónica, la mejor manera de entender su significado para esta, de lo que es una estructura periódica, es viéndola desde un ejemplo sencillo

En electrónica una estructura periódica es una línea de transmisión o una guía de onda periódicamente cargada con elementos reactivos. La cual soporta la propagación de ondas lentas $(v_f \langle c)$ que tiene características de paso de banda o rechazo de banda.

Este tipo de estructura encuentra numerosas aplicaciones en el diseño y elaboración de filtros y tubos de microondas.

Fig.1

5.2 ANALISIS DE ESTRUCTURAS PERIODICAS INFINITAS

El análisis de una estructura periódica se simplifica estudiando un periodo o celda de la estructura. La celda tipo comprende un segmento de línea de transmisión de longitud eléctrica $\theta = d$ en cuyo interior se inserta una reactancia *jb*, en paralelo

Trabajando con impedancias normalizadas, la matriz de parámetros $\begin{pmatrix} A & C \\ B & D \end{pmatrix}$

De la celda elemental es:

$$\begin{pmatrix} A & C \\ B & D \end{pmatrix} = \begin{pmatrix} \cos\frac{\theta}{2} & jsen\frac{\theta}{2} \\ \frac{\theta}{jsen\frac{\theta}{2}} & \cos\frac{\theta}{2} \\ \frac{\theta}{jsen\frac{\theta}{2}} & \cos\frac{\theta}{2} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ jb & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos\frac{\theta}{2} & jsen\frac{\theta}{2} \\ \frac{\theta}{jsen\frac{\theta}{2}} & \cos\frac{\theta}{2} \\ \frac{\theta}{jsen\frac{\theta}{2}} & \cos\frac{\theta}{2} \end{pmatrix} = ,$$

$$= \begin{bmatrix} \cos\theta - \frac{b}{2}sen\theta & j\left(sen\theta + \frac{b}{2}\cos\theta - \frac{b}{2}\right) \\ j\left(sen\theta + \frac{b}{2}\cos\theta + \frac{b}{2}\right) & \cos\theta - \frac{b}{2}sen\theta \end{bmatrix}$$
(1)

Puede establecerse ahora la relación entre V_n , $I_{n,y}$, V_{n+1} , I_{n+1} ,

$$\begin{bmatrix} V_n \\ I_n \end{bmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{bmatrix} V_{n+1} \\ I_{n+1} \end{bmatrix} , \qquad (2)$$

donde I_n y V_n son la corriente y voltaje en el n-simo segmento, de igual forma I_{n+1} y V_{n+1} son la corriente y voltaje el segmento siguiente

De la misma manera que en una línea de transmisión se cumple:

$$V(z) = V_0 e^{-\gamma z} I(z) = I_0 e^{-\gamma z}$$
(3)

Entre los extremos de la celda n-esima, debe verificarse de forma completamente análoga:

$$V_{n+1} = V_n e^{-\gamma z} I_{n+1} = I_n e^{-\gamma z}$$
(4)

Sustituyendo, se obtiene:

$$\begin{bmatrix} V_{n+1}e^{\gamma d} \\ I_{n+1}e^{\gamma d} \end{bmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{bmatrix} V_{n+1} \\ I_{n+1} \end{bmatrix} \Longrightarrow \begin{bmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} - \begin{pmatrix} e^{\gamma d} & 0 \\ 0 & e^{\gamma d} \end{pmatrix} \end{bmatrix} \begin{bmatrix} V_{n+1} \\ I_{n+1} \end{bmatrix} = 0 \Longrightarrow,$$

$$\begin{pmatrix} A - e^{\gamma d} & B \\ C & D - e^{\gamma d} \end{pmatrix} \begin{bmatrix} V_{n+1} \\ I_{n+1} \end{bmatrix} = 0.$$
 (5)

Para que el sistema tenga una solución distinta de la trivial, el determinante de la matriz del sistema debe ser cero:

$$(A - e^{\gamma d})(D - e^{\gamma d}) - BC = 0 \implies AD - BC + e^{2\gamma d} - (A + D)e^{\gamma d} = 0.$$
(6)

Como la celda elemental tiene una estructura reciproca y simétrica, entonces AD-BC=1, y por tanto:

$$1 + e^{2\gamma d} - (A+D)e^{\gamma d} = 0 \quad \Leftrightarrow e^{\gamma d} + e^{-\gamma d} - (A+D) = 0 \quad \Leftrightarrow \quad \cosh(\gamma d) = \frac{A+D}{2}.$$
(7)

Sustituyendo A y D, resulta:

$$\cosh(\gamma d) = \cos\theta - \frac{b}{2}sen\theta \quad . \tag{8}$$

Dado que $\gamma = \alpha + j\beta$, desarrollando el cosh $(\alpha + j\beta)d$, se obtiene:

$$\cosh(\alpha)\cos(\beta d) + j \, \operatorname{senh}(\alpha)\operatorname{sen}(\beta d) = \cos\theta - \frac{b}{2}\operatorname{sen}\theta \,. \tag{9}$$

Identificando partes real e imaginaria se llaga a:

$$\cosh(\alpha)\cos(\beta d) = \cos\theta - \frac{b}{2}sen\theta$$
, (10)
$$senh(\alpha)sen(\beta d) = 0$$

de donde solo son posibles los valores: $\alpha = 0$ o $\beta = 0$:

Si $\alpha = 0$, tenemos un modo propagativo a través de la estructura periódica, que no se atenúa y cuya constante de fase puede calcularse a partir de:

$$\cos(\beta d) = \cos\theta - \frac{b}{2}sen\theta \quad . \tag{11}$$

Si, $\beta = 0$, no existe propagación, y la constante de atenuación vendrá dada por:

$$\cosh(\alpha d) = \cos\theta - \frac{b}{2} sen\theta .$$
(12)

Que solo tiene solución $(\alpha \in \Re)$, cuando $\left|\cos\theta - \frac{b}{2}sen\theta\right| \ge 1$.

Los valores de θ en los que $\left|\cos\theta - \frac{b}{2}sen\theta\right| \le 1$ dan lugar a infinitos posibles valores de β , ya que $\cos\beta d$ es una función periódica. En tales casos β es una función periódica y multievaluada.

Para el análisis de estructuras periódicas suele representarse $\theta = k_0 d$, que es función de la frecuencia, frente a βd .El resultado se conoce como diagrama de Billouin, en honor al primer científico que aplico este tipo de diagramas al estudio de las bandas de energía en los cristales

Y es que, en efecto, las estructuras periódicas presentan ciertas analogías con las bandas de energía de los cristales, al presentar ciertas bandas prohibidas $de\theta = kd$ (o de la frecuencia) para β por lo que tiene aplicaciones para el diseño de filtros.

Otras de las peculiaridades de las estructuras periódicas es que las velocidades de fase y grupo toman valores muy diferentes a los de las estructuras tradicionales (son posibles $v_f \langle c, v_g \langle 0, \text{ etc.} \rangle$

De la misma manera que hemos caracterizado la estructura periódica por su constante de propagación, también puede calcularse su impedancia característica Z_B (impedancia de Bloch). Trabajando con tensiones y corrientes normalizadas, puede escribirse

$$Z_{B} = Z_{0} \frac{V_{n+1}}{I_{n+1}} .$$
(13)

Fig.3

Teniendo en cuenta que se cumple:

$$\begin{pmatrix} A - e^{\gamma d} & B \\ C & D - e^{\gamma d} \end{pmatrix} \begin{bmatrix} V_{n+1} \\ I_{n+1} \end{bmatrix} = 0 \quad \Rightarrow (A - e^{\gamma d}) V_{n+1} + B \frac{Z_0}{Z_B} V_{n+1} = 0 \quad \Rightarrow Z_B = \frac{-BZ_0}{(A - e^{\gamma d})}$$

$$e^{2\gamma d} - (A + D) e^{\gamma d} + 1 = 0 \quad \Rightarrow \quad e^{\gamma d} = \frac{(A + D) \pm \sqrt{(A + D)^2 - 4}}{2} \quad \Rightarrow$$

$$Z_B = \frac{-2BZ_0}{(A - D) \mp \sqrt{(A + D)^2 - 4}} .$$

$$(14)$$

Cuando una celda es simétrica A = D, y en este caso:

$$Z_{B} = \frac{\pm BZ_{0}}{\sqrt{A^{2} - 1}} \,. \tag{15}$$

Donde el signo indica el sentido de propagación del eje Z

Además, en este supuesto A = D $\Rightarrow \cosh(\gamma d) = A$, de modo que Cuando $\alpha = 0 \Rightarrow \cosh(\gamma d) = \cos(\beta d) \le 1 \Rightarrow Z_B \in \Re$ pues B es imaginario puro y $A \le 1$. Cuando $\beta = 0 \Rightarrow \cosh(\gamma d) = \cosh(\alpha d) \ge 1 \Rightarrow Z_B \in \Im$ pues B es imaginario puro y $A \ge 1$.

A continuación pasare a describir el primer método de los utilizados en el calculo de los parámetros ya considerados

5.3 METODO DE LOS MOMENTOS (M.o.M)

El método de los momentos, o los residuos ponderados, parte de la definición del residuo:

$$r = Lu - f \qquad \forall u \in H \tag{16}$$

El planteamiento original del problema es:

Hallar $u \in H$ tal que r = 0 en R

La formulación débil del problema, de la cual parte el MoM es:

Hallar $u \in H$ tal que $\langle r, h \rangle = 0$ en R, $\forall h \in H$

El método de los momentos, de acuerdo con el método de Rayleigh-Ritz, busca la proyección de la solución del problema diferencial en un subespacio de dimensión N, $H_N \subset H$, que se obtiene a partir de N funciones base $\{\phi_i\}_{i=1}^N$. Así, para cualquier $u \in H_N$ se tendrá:

$$u = \sum_{i=1}^{N} \dot{u} \phi_i .$$
 (17)

Adicionalmente, se define un subespacio N-dimensional de funciones peso W_N , obtenido a partir de una base $\{w_i\}_{i=1}^N$, de forma que cualquier $v \in W_N$ se puede escribir como:

$$\mathbf{v} = \sum_{i=1}^{N} \dot{\mathbf{v}}_i w_i \,. \tag{18}$$

El método de los momentos parte de la formulación débil:

$$\langle r, \mathbf{v} \rangle = \langle Lu - f, \mathbf{v} \rangle = 0 \quad \forall \mathbf{v} \in W_N.$$
 (19)

Expresión que se puede escribir como:

$$\left\langle Lu - f, \sum_{i=1}^{N} \dot{v}_{i} w_{i} \right\rangle = \sum_{i=1}^{N} \dot{v}_{i} \left\langle Lu - f, w_{i} \right\rangle = 0 \quad \forall \left\{ \dot{v}_{i} \right\}_{i=1}^{N}.$$
(20)

O, equivalente:

$$\langle Lu - f, w_i \rangle = 0$$
 $i = 1, 2, \dots$ (21)

Substituyendo el desarrollo de u a partir de las funciones base, se obtiene el siguiente sistema de ecuaciones:

$$\sum_{j=1}^{N} \dot{u}_{j} \left\langle L\phi_{j}, w_{i} \right\rangle = \left\langle f, w_{i} \right\rangle = \quad i = 1, 2, \dots$$
(22)

Que se puede escribir matricialmente como:

$$\begin{bmatrix} \langle L\phi_1, w_1 \rangle & \langle L\phi_2, w_1 \rangle & \cdots \\ \langle L\phi_1, w_2 \rangle & \langle L\phi_2, w_2 \rangle & \cdots \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \dot{u}_1 \\ \dot{u}_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} \langle f, w_1 \rangle \\ \langle f, w_2 \rangle \\ \vdots \end{bmatrix}.$$
(23)

La elección de las funciones base y peso da lugar a distintas versiones del método de los momentos, de las cuales vamos a describir las mas importantes.

5.3.1 MÉTODO DE COLOCACIÓN.

En el dominio se definen N puntos de coordenadas \vec{r}_i , tomando como funciones prueba:

$$w_i = \delta\left(\vec{r} - \vec{r}_i\right). \tag{24}$$

De forma que se obtiene el siguiente sistema de ecuaciones:

$$\begin{bmatrix} L\phi_{1}(\vec{r}_{1}) & L\phi_{2}(\vec{r}_{1}) & \cdots \\ L\phi_{1}(\vec{r}_{2}) & L\phi_{2}(\vec{r}_{2}) & \cdots \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \dot{u}_{1} \\ \dot{u}_{2} \\ \vdots \end{bmatrix} = \begin{bmatrix} f(\vec{r}_{1}) \\ f(\vec{r}_{2}) \\ \vdots \end{bmatrix}.$$
(25)

5.3.2 MÉTODO DE SUBSECCIONES.

El dominio se divide en N subdominios, de forma que cada función base se define en cada uno de ellos y se anula en los demás. Una elección típica es:

$$w_i = \begin{cases} 1 & en \ el \ elemento \ i \\ 0 & en \ el \ resto \end{cases}$$
(26)

En este caso:

$$\langle L\phi_j, w_i \rangle = \int_{R^i} L\phi_j dR \qquad \langle f, w_i \rangle = \int_{R^i} f dR$$
 (27)

5.3.3 MÉTODO DE GALERKIN.

Básicamente consiste en tomar como funciones test las mismas funciones base:

$$w_i = \phi_i \implies W_N = H_N.$$
⁽²⁸⁾

El sistema de ecuaciones a resolver será:

$$\begin{bmatrix} \langle L\phi_1,\phi_1 \rangle & \langle L\phi_2,\phi_1 \rangle & \cdots \\ \langle L\phi_1,\phi_2 \rangle & \langle L\phi_2,\phi_2 \rangle & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \dot{u}_1 \\ \dot{u}_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} \langle f,\phi_1 \rangle \\ \langle f,\phi_2 \rangle \\ \vdots \end{bmatrix}.$$
(29)

Para el método de Galerkin se tiene:

$$\left\|u - u_g\right\| = \inf_{\widetilde{u} \in H_N} \left\|\widetilde{u} - u^I\right\|.$$
(30)

5.3.4 MÉTODO DE LOS MÍNIMOS CUADRADOS.

El método de mínimos cuadrados se puede plantear a partir del método de los momentos tomando:

$$w_i = L\phi_i. \tag{31}$$

de forma que el sistema a resolver será:

$$\begin{bmatrix} \langle L\phi_1, L\phi_1 \rangle & \langle L\phi_2, L\phi_1 \rangle & \cdots \\ \langle L\phi_1, L\phi_2 \rangle & \langle L\phi_2, L\phi_2 \rangle & \cdots \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \dot{u}_1 \\ \dot{u}_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} \langle f, L\phi_1 \rangle \\ \langle f, L\phi_2 \rangle \\ \vdots \end{bmatrix}.$$
(32)

Definiendo el error cuadrático como:

$$I(u) = ||r||^2 = \langle Lu - f, Lu - f \rangle.$$
(33)

El error cuadrático mínimo se obtiene cuando

$$\frac{\partial I(u)}{\partial \dot{u}_i} = 0 \qquad i = 1, 2, \dots, N,$$
(34)

$$I(u) = \sum_{i=1}^{N} \sum_{j=1}^{N} \dot{u}_{i} \dot{u}_{j} \langle L\phi_{j}, L\phi_{i} \rangle - \sum_{j=1}^{N} \dot{u}_{j} \langle L\phi_{j}, f \rangle - \sum_{j=1}^{N} \dot{u}_{j} \langle f, L\phi_{i} \rangle + \left\| f \right\|^{2},$$
(35)

$$\frac{\partial I(u)}{\partial \dot{u}_{i}} = 2\sum_{j=1}^{N} \dot{u}_{j} \langle L\phi_{j}, L\phi_{i} \rangle - \langle L\phi_{i}, f \rangle - \langle f, L\phi_{i} \rangle .$$
(36)

Y si el operador L es autoadjunto:

$$\frac{\partial I(u)}{\partial \dot{u}_i} = 2\sum_{j=1}^N \dot{u}_j \left\langle L\phi_j, L\phi_i \right\rangle - 2 \left\langle L\phi_i, f \right\rangle, \tag{37}$$

$$= 2\left\langle \sum_{j=1}^{N} \dot{u}_{j} L \phi_{j} - f, L \phi_{i} \right\rangle = 2\left\langle L u - f, L \phi_{i} \right\rangle = 2\left\langle r, w \right\rangle \quad \text{Para } i = 1, 2, \dots, N.$$
(38)

Expresión que coincide con la formulación débil del problema.

$$u^{e} = \sum_{i=1}^{M} \dot{u}_{i}^{e} \phi_{i}^{e} = \{N^{e}\}^{T} \{ \dot{u}^{e} \} = \{ \dot{u}^{e} \}^{T} \{ N^{e} \}$$

$$v^{e} = \sum_{i=1}^{M} \dot{v}_{i}^{e} \phi_{i}^{e} = \{N^{e}\}^{T} \{ \dot{v}^{e} \} = \{ \dot{v}^{e} \}^{T} \{ N^{e} \}$$
(39)

donde:

$$\left\{N^e\right\}_i = \varphi_i^e.$$

Es el vector de funciones de interpolación locales del elemento, conocidas como las funciones de forma, y definidas dentro de cada elemento:

$$\varphi_i^e(\vec{r}) = 0 \quad si \quad \vec{r} \notin R^e.$$
(41)

La forma mas adecuada de entender cualquier método utilizado en un desarrollo, es mediante un ejemplo, en la siguiente sección presentamos uno que lo ilustra bien.

5.3.5 APLICACIÓN SENCILLA DEL MÉTODO DE LOS MOMENTOS PARA LA OBTENCIÓN DE LAS CORRIENTES E IMPEDANCIA DE UN DIPOLO

5.3.5.1 PLANTEAMIENTO GENERAL

Considérese un dipolo de longitud *L* y de radio *a* orientado y centrado según *z*, alimentado en su centro. Supóngase que está construido con un conductor eléctrico perfecto. El campo eléctrico total existente se puede descomponer en campo impreso \vec{E}_i (forzado por la fuente) y campo \vec{E}_s producido por radiación de la corriente del dipolo *l*(*z*), corriente que es "a priori" desconocida. Para determinar dicha corriente se va a aplicar la condición de contorno del campo eléctrico sobre las paredes del conductor, que establece que la componente tangencial de dicho campo debe ser cero.

Supondremos que el dipolo es delgado y que no existen componentes ϕ de las corrientes sobre el mismo ni del campo eléctrico. En tal situación, la condición que aplicaremos es:

$$E_{sz} + E_{iz}\big|_{sip} = 0 \tag{A}$$

5.3.5.2 CAMPO PRODUCIDO POR LAS CORRIENTES SOBRE EL DIPOLO

La componente *Z* del campo producido por la distribución de corrientes, se puede expresar a través del potencial vector, suponiendo un problema equivalente en que la corriente fuente se concentra en el eje del hilo:

$$R = |\vec{r} - \vec{r}'| = \sqrt{\rho^2 + (z - z')^2}$$
(B)

$$\vec{A} = A_z \hat{z} = \hat{z} \frac{\mu}{4\pi} \int_{-\frac{L}{2}}^{\frac{L}{2}} I(z') \frac{e^{-jkR}}{R} dz'$$
(C)

$$\vec{\mathbf{E}} = -j\omega\vec{A} + \frac{\nabla(\nabla \cdot \vec{A})}{j\omega\mu\varepsilon}$$
(D)

Fig.4
$$E_{sz} = j\omega A_z + \frac{1}{j\omega\mu\varepsilon} \frac{\partial^2 A_z}{\partial z^2}$$
 (E)

$$E_{sz} = \frac{-j\eta}{4\pi} \left(k + \frac{1}{k} \frac{\partial^2}{\partial z^2} \right) \int_{-\frac{L}{2}}^{\frac{L}{2}} \frac{e^{-jkR}}{R} I(z') dz'$$
(F)

$$E_{sz} = \frac{-j\eta}{4\pi} \int_{-\frac{L}{2}}^{\frac{L}{2}} \left(k + \frac{1}{k} \frac{\partial^2}{\partial z^2}\right) \frac{e^{-jkR}}{R} I(z') dz'$$
(G)

Para obtener la expresión (F) se ha tenido en cuenta que $\omega = k\sqrt{\mu\epsilon}$. Para obtener la expresión (G) se ha tenido en cuenta que el operador diferencial afecta a la variable de observación y es transparente a la variable de integración, por lo que puede incluirse dentro de la integral. En la expresión (G) puede realizarse directamente la diferenciación teniendo en cuenta (B):

$$E_{sz} = \frac{-j\eta}{4\pi} \int_{-\frac{L}{2}}^{\frac{L}{2}} \left[(1+jkR) \cdot (2R^2 - 3a^2) + (kaR)^2 \right] \frac{e^{-jkR}}{R^5} I(z') dz'$$
(H)

5.3.5.3 MODELADO DE LA DISTRIBUCIÓN DE CORRIENTE

La distribución de corriente I(z') es en principio desconocida. Para determinarla se descompone en una suma de una serie de funciones base $\phi_n(z')$ multiplicadas por determinados coeficientes I_n . El problema de determinarI(z') se convierte en la determinación de dichos coeficientes.

$$I(z') \approx \sum_{n=1}^{N} I_n \phi_n(z') \tag{I}$$

Las funciones base pueden ser de dominio completo (*entire domain functions*) si están definidas sobre toda la extensión del dipolo, o pueden estar definidas sobre subdominios (*piecewise functions*). La figura siguiente representa dos tipos de funciones base sobre subdominios: funciones pulso y triángulos.

Fig.5

Introduciendo (I) en (H) se obtiene la siguiente expresión:

$$E_{sz}(\rho, z) = \sum_{n} I_{n} G_{n}(a, z) + E_{iz}(a, z) = 0,$$
(J)

$$G_{n}(\rho,z) = \frac{-j\eta}{4\pi k} \int_{\Delta_{n}} \left[(1+jkR) \cdot \left(2R^{2} - 3\rho^{2} \right) + (k\rho R)^{2} \right] \frac{e^{-jkR}}{R^{5}} \Phi_{n}(z') dz'.$$
(K)

La función $G_n(z)$ es la componente *z* del campo producido por una distribución de corriente $\Phi_n(z')$ con alimentación unitaria ($I_n = 1$). Se entiende que dicha distribución se extiende al subdominio Δ_n

5.3.5.4 CAMPO PRODUCIDO POR LA FUENTE.

Existen dos esquemas ampliamente utilizados para modelar el campo de la fuente. El primero de ellos es el denominado *delta gap*, en el que se supone un campo intenso en el salto (gap) del dipolo.

$$E_{sz} = \begin{cases} \frac{V_g}{\delta_{gap}} & en \ el \ salto \\ 0 & en \ el \ resto \end{cases}$$
(L)

El segundo modelo es más elaborado y más recomendable desde el punto de vista numérico. Se denomina *magnetic frill* y consiste en una espira de corriente magnética alrededor del dipolo en su punto de alimentación. Esta corriente magnética circular produce un efecto similar al de la fuerza electromotriz en el salto del dipolo.

$$E_{iz}(0,z) = \frac{V_g}{2\ln\frac{b}{a}} \left(\frac{e^{-jkR_a}}{R_a} - \frac{e^{-jkR_b}}{R_b}\right),$$
 (M)

$$R_a = \sqrt{a^2 + z^2} , \qquad (N)$$

$$R_b = \sqrt{b^2 + z^2} , \qquad (O)$$

Tipicamente
$$b/a = 2.3$$
. (P)

Fig.6

5.3.5.5 ECUACION INTEGRAL DEL CAMPO ELECTRICO (EFIE)

Con las consideraciones anteriores ya puede aplicarse la condición de contorno (A) considerando la corriente sobre el eje del dipolo y los puntos de observación sobre la superficie del conductor ($\rho = a$). La condición toma la forma de una ecuación integro-diferencial (EFIE), que posteriormente será transformada en un sistema de ecuaciones lineales.

$$\sum_{n} I_{n} G_{n}(a, z) + E_{iz}(a, z) = 0$$
(Q)

En la expresión (Q) el campo impreso sobre la pared del conductor será directamente el indicado por (L) para el modelo *delta gap*. En el caso del modelo *magnetic frill*, se considera el problema recíproco en el que el punto de observación está en el eje del dipolo y la fuente sobre la superficie. Por simetría, esta fuente superficial produciría en el eje la misma componente *Z* del campo que un filamento sobre la superficie con toda la corriente concentrada en él. En tales circunstancias se aplica para la fuente el campo $E_{iz}(0, z)$.

Para obtener el sistema lineal se necesitaría tomar tantas muestras o puntos de observación como incógnitas I_n definan la corriente:

$$\sum_{m=1}^{N} Z_{mn} I_n = V_m , \qquad (\mathsf{R})$$

$$Z_{mn} = -G_n(z_m) \qquad V_m = \mathcal{E}_{iz}(z_m). \tag{S}$$

Una segunda opción sería, en vez de muestrear en puntos aislados, realizar una media alrededor de los mismos con arreglo a cierta función de peso $\Psi_m(z)$.

$$Z_{mn} = -\int_{-\frac{L}{2}}^{\frac{L}{2}} G_n(z) \Psi_m(z) dz \qquad V_m = -\int_{-\frac{L}{2}}^{\frac{L}{2}} E_{iz} \Psi_m(z) dz \quad .$$
(T)

La función de peso puede ser también de dominio completo o de subdominio. El caso más interesante es aquel en que las funciones de peso son las mismas funciones base, en este caso el método se denomina del tipo Galerkin. El caso de muestreo o point matching (S), es similar al que se obtendría con el (T) con funciones de peso iguales a pulsos muy estrechos.

Como peculiaridad, en la ecuación (S) la matriz Z_{mn} tendría dimensiones de Ω/m y el vector V_m de volt/m. Una manera de normalizar esta situación es multiplicar ambos por λ . En la expresión (T) las dimensiones son respectivamente Ω y volt. Debido a la integración en longitud.

5.3.5.6 IMPEDANCIA DE ENTRADA

La impedancia de entrada de la antena se determina directamente a partir de la estimación de corriente en el punto de alimentación:

$$Z_{in} = \frac{V_g}{I(0)}.$$
 (U)

5.3.5.7 FUNCIONES BASE DE TIPO SENOIDAL

La función base de tipo senoidal tiene la peculiaridad de que existe una expresión analítica de $G_n(z)$ en lugar de tener que realizar una integral. Por otra parte, es una función que aparece de forma natural en las antenas de dipolo. Puesto que $G_n(z)$ es la componente Z del campo producido por la distribución de corriente senoidal sobre un punto, puede utilizarse directamente la expresión del campo producido por dipolos de longitud resonante que puede encontrarse en [4]. La deducción detallada de dicha expresión está en [5].

Fig.7

$$\phi_n(z') = \frac{1}{sen\left(\frac{k\Delta_n}{2}\right)}sen\left[k\left(\frac{\Delta_n}{2} - |z'|\right)\right],\tag{V}$$

$$G_n(z) = \frac{j\eta}{4\pi sen\left(\frac{k\Delta_n}{2}\right)} \left\{ \frac{e^{-jkR_1}}{R_1} + \frac{e^{-jkR_2}}{R_2} - 2\cos\left(\frac{k\Delta_n}{2}\right)\frac{e^{-jkR}}{R} \right\}.$$
 (W)

Pasaremos a describir en adelante el M.E.F como el segundo de los métodos empleados en el análisis de las superficies estudiadas

5.4 EL METODO DE LOS ELEMENTOS FINITOS

5.4.1 HISTORIA DEL METODO DE LOS ELEMENTOS FINITOS

♦ El método de elementos finitos no es nuevo. Su desarrollo y éxito se expande con el creciente desempeño de las computadoras digitales.

• Los geómetras antiguos ya habían empleado los "elementos finitos" para determinar un valor aproximado de π . Arquímedes usó ideas similares para determinar el área de figuras planas.

Este hecho dio una premisa para el desarrollo del cálculo integral por Newton y Leibniz dos mil años después.

• Walter Ritz (1878–1909), físico suizo fue el primero en formalizar el método de elementos finitos. Él propuso que las frecuencias de las líneas espectrales de los átomos podían ser expresadas por diferencias entre un relativamente pequeño número de "elementos".

 Ritz desarrolló la formulación matemática del MEF, con base en el cálculo variacional. El método de Ritz es también conocido como variacional o formulación clásica. ♦ La incorporación del cálculo matricial al método de elementos finitos fue propuesta por el ingeniero ruso Boris G. Gallerkin (1871-1945).

Gallerkin publicó sus primeros trabajos en base al método clásico durante su prisión en 1906 por orden del zar en la Rusia prerrevolucionaria. En muchos textos rusos el método de elementos finitos de Gallerkin se conoce como método de Bubnov-Gallerkin. Él publicó un trabajo usando esta idea en 1915. El método también fue atribuido a Bubnov en 1913.

 La aplicabilidad del método de elementos finitos fue detenida por lo extenso de los cálculos necesarios para resolver un sistema de un considerable número de elementos finitos.

 ◆ El desarrollo de los computadores digitales durante la década de 1950, permitió la aplicación del método de elementos finitos a la solución de ecuaciones diferenciales.

El uso moderno de los elementos finitos inició en el campo de ingeniería de estructuras en 1950, para que luego los conceptos básicos fueran reconocidos de amplia aplicabilidad y prontamente empleados en muchas otras áreas. El subsecuente desarrollo ha sido vertiginoso y ahora el método está bien establecido dentro de varias disciplinas científicas.

 Recientemente en adición a las formulaciones de Ritz y Gallerkin, otros métodos han venido a emplearse. Los más conocidos son el método de los mínimos cuadrados y un método conocido como método directo, método de balance global o método de Oden.

5.4.2 INTRODUCCION

El método de los elementos finitos es, básicamente, un procedimiento para construir las funciones base del subespacio H_N sobre el que se proyecta la solución del problema de contorno (método de Rayleigh-Ritz).

36
Existen dos versiones del método, la versión de Galerkin, que se basa en el método de los momentos, en su forma de Galerkin, combinada con un método subseccional, y la versión variacional, que se basa en buscar extremos de funcionales asociados a la ecuación diferencial a resolver.

5.4.3 FORMULACION DE GALERKIN

El punto de partida es el problema de contorno:

$$Lu = f . ag{42}$$

Donde L es un operador diferencial lineal, generalmente de segundo orden, y u es una función que pertenece a un subespacio de Hilbert H de funciones definidas en un dominio R (normalmente C^1).

En la frontera C del dominio R se establece la condición de contorno:

$$Bu + \alpha u = u_0. \tag{42}$$

La formulación débil del este problema para el método de los momentos es:

$$\langle r, \mathbf{v} \rangle = \langle Lu - f, \mathbf{v} \rangle = 0 \quad \forall \mathbf{v} \in W_N.$$
 (43)

O bien, desarrollando los productos:

$$\int_{R} (Lu - f) v = 0.$$
 (44)

Aplicando integración por partes hasta reducir al mínimo el orden de las derivadas

$$\int_{R} L_1 v L_2 U dR + \oint_C v L_3 u dC - \int_R v f dR = 0.$$
(45)

Al reducir el orden de los operadores diferenciales, se reducen los requerimientos de continuidad de u y v (típicamente C^0).

Siguiendo el esquema del método de Galerkin, las funciones base y las funciones test se buscan en el mismo espacio H_N :

$$u = \sum_{i=1}^{N} \dot{u}_{i} \phi_{i} = \{N\}^{T} \{\dot{u}\} = \{\dot{u}\}^{T} \{N\}$$

$$v = \sum_{i=1}^{N} \dot{v}_{i} \phi_{i} = \{N\}^{T} \{\dot{v}\} = \{\dot{v}\}^{T} \{N\}$$
(46)

siendo $\{N\}_i = \phi_i$ el vector de funciones base

Fig.8

La particularidad del método de los elementos finitos radica en como se aplica el método de subsecciones para construir las funciones base. Para ello, el dominio se divide en N_E subdominios o elementos:

$$R = \bigcup R^{e}, e = 1, 2, \cdots, N_{E},$$

$$R^{i} \cap R^{j} = \emptyset \forall \quad i \neq j$$
(47)

de esta manera:

En cada elemento se realiza la siguiente interpolación:

$$u^{e} = \sum_{i=1}^{M} \dot{u}_{i}^{e} \phi_{i}^{e} = \{N^{e}\}^{T} \{\dot{u}^{e}\} = \{\dot{u}^{e}\}^{T} \{N^{e}\},$$

$$v^{e} = \sum_{i=1}^{N} \dot{v}_{i}^{e} \phi_{i}^{e} = \{N^{e}\}^{T} \{\dot{v}^{e}\} = \{\dot{v}^{e}\}^{T} \{N^{e}\},$$
(49)

donde:

$$\left\{N^e\right\}_i = \varphi_i^e \,. \tag{50}$$

Es el vector de funciones de interpolación locales del elemento, conocidas como funciones de la forma, y definidas dentro de cada elemento:

$$\varphi_i^e(\vec{r}) = 0 \quad si \quad \vec{r} \notin R^e.$$
(51)

De esta forma, la formulación débil discretizada se transforma en:

$$\sum_{e=1}^{N_{E}} \int_{R^{e}} \{\dot{v}^{e}\}^{T} L_{1}\{N^{e}\}L_{2}\{N^{e}\}^{T}\{\dot{u}^{e}\}dR^{e} + \sum_{e=1}^{N_{E}} \oint_{C^{e}} \{\dot{v}^{e}\}^{T}\{N^{e}\}L_{3}\{N^{e}\}^{T}\{\dot{u}^{e}\}dC^{e} + \sum_{e=1}^{N_{E}} \int_{C^{e}} \{\dot{v}^{e}\}^{T}\{N^{e}\}L_{3}\{N^{e}\}^{T}\{\lambda^{e}\}f^{e}dR^{e} = \sum_{e=1}^{N_{E}} \{\dot{v}^{e}\}^{T}\left[\int_{R^{e}} L_{1}\{N^{e}\}L_{2}\{N^{e}\}^{T}dR^{e}\right]\{\dot{u}^{e}\} + \sum_{e=1}^{N_{E}} \{\dot{v}^{e}\}^{T}\left[\oint_{C^{e}} \{N^{e}\}L_{3}\{N^{e}\}^{T}dC^{e}\right]\{\dot{u}^{e}\} - \sum_{e=1}^{N_{E}} \{\dot{v}^{e}\}^{T}\left[\int_{R^{e}} \{N^{e}\}f^{e}dR^{e}\right] = 0.$$
(52)

O bien matricialmente:

$$\sum_{e=1}^{N_E} \{ v^e \}^T [A^e] \{ \dot{u}^e \} + \sum_{e=1}^{N_E} \{ v^e \}^T [B^e] \{ \dot{u}^e \} - \sum_{e=1}^{N_E} \{ v^e \}^T [C^e] = 0.$$
(53)

Donde:

$$\begin{bmatrix} A^{e} \end{bmatrix} = \begin{bmatrix} \int_{R^{e}} L_{1} \{N^{e}\} L_{2} \{N^{e}\}^{T} dR^{e} \end{bmatrix},$$

$$\begin{bmatrix} B^{e} \end{bmatrix} = \begin{bmatrix} \oint_{C^{e}} \{N^{e}\} L_{3} \{N^{e}\}^{T} dC^{e} \end{bmatrix},$$

$$\{C^{e} \} = \begin{bmatrix} \int_{R^{e}} \{N^{e}\} f^{e} dR^{e} \end{bmatrix}.$$
(54)

La operación de ensamblado permite pasar de la expresión anterior a:

$$\{\dot{v}\}^{T}[A]\{\dot{u}\} + \{\dot{v}\}^{T}[B]\{\dot{u}\} - \{\dot{v}\}^{T}\{C\} = 0.$$
(55)

Donde:

$$[A] = \sum_{e=1}^{N_E} [A^e] \qquad [B] = \sum_{e=1}^{N_E} [B^e] \qquad \{C\} = \sum_{e=1}^{N_E} \{C^e\}.$$
(56)

Puesto que la expresión algebraica de la formulación débil ha de ser valida para cualquier función v *en* H_N , deberá ser valida para todos los elementos de la base, por lo que se obtiene, finalmente:

$$[A]\{\dot{u}\} + [B]\{\dot{u}\} = \{C\}.$$
(57)

5.4.ESPECIFIDADES DEL METODO DE LOS ELEMENTOS FINITOS PARA ELECTROMAGNETISMO

El uso del M.E.F a problemas de teoría electromagnética, presentan algunas especifidades propias de la naturaleza de los campos electromagnéticos, algunas de estas especifidades son:

Soluciones espurias.

Cuando se desea resolver una ecuación vectorial, como la ecuación de onda:

$$\nabla \times \left(\hat{\mu}_r^{-1} \nabla \times \vec{E}\right) - \kappa_0^2 \hat{\varepsilon}_r \vec{E} = 0.$$
(58)

La interpolación

$$\vec{E} = \{N\}^{T} \{ \dot{E}_{x} \} \hat{x} + \{N\}^{T} \{ \dot{E}_{y} \} \hat{y} + \{N\}^{T} \{ \dot{E}_{z} \} \hat{z} .$$
(59)

No representa adecuadamente la solución de la ecuación, dando lugar a soluciones no físicas, conocidas como modos espurios.

La interpolación con elementos de arista evita este problema.

Singularidades de campo.

Fig.9

En aristas agudas, como la de la figura, el campo es singular, aunque la energía almacenada en un entorno de la arista esté acotada, lo cual da origen a problemas cuando se utiliza interpolación nodal.

La interpolación de arista, al no considerar el campo en la singularidad como incógnita, no plantea este problema.

Habiendose descrito los métodos utilizados así como sus singularidades en el estudio de las estructuras a analizar pasaremos a la etapa de formulación o planteamiento teórico de los problemas

6. PLANTEAMIENTO DEL PROBLEMA BICAPA

Una onda monocromática incide bajo un ángulo de inclinación bicapa donde n_1 y n_2 son los índices de reflexión correspondientes a d_1 y d_2 , y n_0 y n_r son los índices de reflexión para $Z \le Z_1$ y $Z \ge Z_{2n+1}$ correspondientemente

Cuando sobre el sistema incide una onda TE cuyo vector de campo eléctrico \vec{E} es perpendicular a la superficie de incidencia la ecuación de onda vectorial es

$$\Delta \vec{E} - \nabla div \, \vec{E} + k_0^2 \varepsilon(z) \vec{E} = 0 \,. \tag{60}$$

La cual podemos llevar a una ecuación ordinaria de la forma:

$$\frac{d^2 E_y}{dz^2} + \beta^2 (z) E_y = 0.$$
 (61)

En la cual

$$\beta^{2}(z) = k_{0}^{2} \left[n^{2}(z) - n_{0}^{2} \sin^{2} \theta \right] \qquad k_{0} = \frac{w}{c}.$$
(62)

Para el caso de incidencia de una onda TM cuyo vector de campo magnético \vec{H} es perpendicular a la superficie de incidencia la ecuación de onda vectorial es:

$$\Delta \vec{H} + \left[\frac{1}{\varepsilon}\nabla\varepsilon \cdot \operatorname{rot} \vec{H}\right] + k_0^2 \varepsilon(z) \vec{H} = 0 \quad .$$
(63)

Que se puede llevar a una ecuación de la forma

$$\frac{d^2H_y}{dz^2} - \frac{d}{dz}\ln\varepsilon(z) \cdot \frac{dH_y}{dz} + \beta^2(z)H_y = 0.$$
(64)

En los trabajos del profesor Stresh se resuelven estas ecuaciones haciendo un cambio hacia un sistema de ecuaciones ligadas de primer orden.

Resolviendo el sistema por el método de los exponentes matriciales se obtienen formulas exactas para los coeficientes de reflexion r y transmisión τ en el caso de la multicapa de la Fig.10

Fig.10

Es mostrado también por el mismo autor que cuando $n_0 = n_r$ y los grosores ópticos de las capas son iguales o sea:

$$\beta_1 d_1 = \beta_2 d_2 = \delta . \tag{65}$$

En este caso la solución general se obtiene a partir de las siguientes formulas:

$$|r|^{2} = 1 - |\tau|^{2},$$

$$|\tau|^{2} = |A|^{2},$$

$$|A|^{2} = 1 + \left(\frac{\sin N\varphi}{\sin \varphi}\right)^{2} Sh^{2} 2f_{2} \sin^{m} \delta.$$
(66)

En la expresión (66) ϕ se define de la siguiente manera:

$$\cos\varphi = Ch^2 f_2 \cos 2\delta - Sh^2 f_2. \tag{67}$$

para una onda TE en (54) y (55) f_2 es la siguiente:

$$f_2 = \frac{1}{2} \ln \frac{\beta_1}{\beta_2} \,. \tag{68}$$

$$\beta_1 = k_0 \sqrt{n_1^2 - n_0^2 \sin^2 \theta} .$$
 (69)

$$\beta_2 = k_0 \sqrt{n_2^2 - n_0^2 \sin^2 \theta} .$$
 (70)

Para una onda TM (66) y (67) junto con f_2 se utiliza f_{2m} que tiene la siguiente expresión:

$$f_{2m} = \frac{1}{2} \log \left(\frac{\beta_1 n_2^2}{\beta_2 n_1^2} \right).$$
(71)

En (71) β_1 y β_2 se definen por (69) y (70)

En (66) m = 2 si $n_0 = n_2$ esto corresponde al caso en el que la bicapa representa un sistema homogéneo de capas con índice de refracción n_1 distribuido en un medio con coeficiente de refracción n_2

7. FORMULACIÓN TEÓRICA DEL PROBLEMA MULTICAPA BIDIMENSIONAL

El teorema de Floquet es fundamental para la teoría de propagación en estructuras periódicas. Una manera no formal de presentar tal teorema es la siguiente:

Si tenemos una estructura periódica a lo largo del eje z, y a una distancia λ la estructura se repite.

Suponiendo que no existe absorción. A causa de la simetría, la estructura transversal de los campos libres en los sistemas periódicos debe repetirse cada dos periodos λ . Sin embargo, tomando dos secciones transversales distanciadas en λ , no debemos obligatoriamente encontrar allí iguales fases de las oscilaciones. Pero, si el respectivo desfasaje es igual a φ , durante el posterior desplazamiento a $n \lambda$, el desfasaje complementario será $n\varphi$. En general, para las amplitudes complejas de los vectores del campo, son validas las expresiones

$$\dot{E}_m(x, y, z+\lambda) = \dot{E}_m(x, y, z)e^{-i\varphi} , \qquad (72)$$

$$\dot{H}_m(x, y, z + \lambda) = \dot{H}_m(x, y, z)e^{-i\varphi} .$$
(73)

Estas ecuaciones expresan el contenido del teorema de Floquet

Para formular el problema para una estructura bidimensional se considera un segmento plano en lugar de un segmento real volumétrico. Adicionalmente, el modelo analítico es perfectamente periódico, mientras que la verdadera malla es casi periódica (Fig. 11(a)).

La metodología de la formulación del problema se describe en el diagrama de Bloques mostrado en Fig. 11(b). Primero, la estructura compleja de una célula dada está dividida en muchos segmentos rectos, una vez identificados los puntos extremos, inicial y final de los segmentos rectos, si dos o más segmentos se cortan, con o sin contacto, se usa el mismo punto nodal de la intersección para todas las ramas que se cortan.

Fig.11 (b)

La corriente de superficie eléctrica en cada segmento recto se representa entonces por medio de las corrientes triangulares a lo largo del segmento, los coeficientes de cada corriente triangular son determinados por el método de momentos. Estas corrientes se colocan en la ecuación integral, para la estructura que se formula utilizando el teorema de Floquet y colocando en cero la componente \vec{E} tangencial en los segmentos (Apéndice 1). Desde que el ancho del segmento sea muy pequeño en comparación con la longitud de onda, son consideradas sólo componentes en la dirección del segmento.

La corriente se toma uniforme a través del segmento, es decir, ortogonal a la dirección del segmento.

La mayor desviación de la precisión en la solución está en la selección de las funciones base y la utilización las corrientes para establecer la continuidad del vector corriente en las uniones de los segmentos.

Considerando el segmento mostrado en la Fig.12. La superficie es periódica y es el infinito es asumido en el plano xy. Esto nos permite expandir los campos en las

47

tres regiones, es decir, incide en la hoja del dieléctrico y en el aire en cualquier lado. Las expresiones explícitas para los campos transmitidos en las tres regiones pueden encontrarse en Apéndice 1.

Fig.12 Geometría de la malla superficial

El campo producido por la onda plana incidente en la ausencia de dispersión en la célula, es simplemente el campo producido por la onda incidente en la presencia de una lamina del dieléctrico de espesor s. por consiguiente contiene sólo el orden cero de los modos de Floquet. Los campos reflejados, por otro lado, son producidos por la distribución de corriente $\vec{J}(x, y)$. Si denotamos los componentes tangenciales (en el plano xy) de los campos transmitidos por \vec{E}_t^{tira} , \vec{H}_t^{tira} , y las del campo incidente \vec{E}_t^{inc} , \vec{H}_t^{inc} entonces, cada modo de Floquet en el campo transmitido debe satisfacer las condiciones de frontera siguientes:

1)
$$\vec{E}_{t}^{tira}$$
, \vec{H}_{t}^{tira} continuos en z = s,

2)
$$\vec{E}_t^{tira}$$
 continuo en z = 0, (74)

3) \vec{H}_t^{tira} , discontinuo en z = 0 igual $\vec{J}(x, y)$.

Éstas condiciones de frontera, combinadas con la ortogonalidad de los modos de Floquet sobre una sola célula periódica, llevan a una expresión integral para \vec{E}_t^{tira} ,

en z = 0 en términos de
$$\vec{J}$$
 (x, y).

El campo transmitido tangencial debe cancelar el campo tangencial en la superficie de los segmentos, de donde tenemos

$$\vec{E}_t^{tira}(x, y, 0) + \vec{E}_t^{inc}(x, y, 0) = 0 \qquad \text{en cada segmento.}$$
(75)

Esto conlleva a una ecuación íntegra para la distribución de corriente desconocida que se resuelve por el método de los momentos con $\vec{J}(x, y)$ aproximada de la siguiente forma:

$$\vec{J}(x,y) = \sum_{n=1}^{N} c_n \vec{h}_n(x,y).$$
(76)

Donde, las funciones $\vec{h}_n(x, y)$ son las funciones base escogidas. Sustituyendo (76) en (75) e integrando a través de los segmentos contenidos en una célula periódica y después de multiplicar ambos lados por $\vec{h}_i(x, y)$, se obtiene el siguiente sistema de ecuaciones:

$$\sum_{m=1}^{2} \left(1 + \vec{R}_{m00}^{tira} \right) b_{m} \hat{k}_{m00} \cdot \vec{g}_{i}^{*}(k_{00}) = \sum_{n=1}^{N} c_{n} \frac{1}{d^{2}} \sum_{m=1}^{2} \sum_{p} \sum_{q} \frac{\hat{k}_{mpq} \cdot \vec{g}_{i}^{*}(k_{pq}) \cdot g_{n}(k_{pq})}{\eta_{mpq}^{eq}} \quad i = 1, 2, \dots, N.$$
(77)

Donde es asumida una dependencia temporal de la forma exp(jwt), m=1 corresponde al modo transverso magnético (TM) y m=2 al modo transverso eléctrico (TE), y

$$\vec{g}_{l}(k_{pq}) = \int_{tira} \vec{h}_{l}(x, y) \exp(j\vec{k}_{pq} \cdot \vec{\rho}) dx dy,$$

$$\vec{\rho} = x\hat{x} + y\hat{y},$$

$$\vec{k}_{pq} = \left(k_0 \sin\theta \cos\phi + \frac{2\pi p}{d}\right)\hat{x} + \left(k_0 \sin\theta \cos\phi + \frac{2\pi q}{d}\right)\hat{y} = k_x \hat{x} + k_y \hat{y},$$

$$k_0 = \frac{2\pi}{\lambda_0},$$
(78)

 λ_0 = longitud de onda espacio-libre, (θ, ϕ) = dirección incidente, b_m = la magnitud del campo incidente en el *m*-esimo modo,

$$k_{lpq} = \frac{\vec{k}_{pq}}{|\vec{k}_{pq}|},$$

$$\hat{k}_{2pq} = \hat{z} \times \hat{k}_{1pq},$$
(79)

donde

$$\eta_{mpq}^{eq} = \eta_{mpq}^{aire} + \eta_{mpq}^{diel} \left(\frac{1 - R_{mpq}}{1 + R_{mpq}} \right),$$

$$\eta_{1pq} = \frac{k\eta}{\gamma_{pq}},$$

$$\eta_{2pq} = \frac{\gamma_{pq}\eta}{\eta},$$

$$\eta = \sqrt{\frac{\epsilon}{\mu}},$$
(80)

 ϵ,μ permitividad y permeabilidad de medio, propagación constante del medio.

$$\gamma_{pq} = \left(k^{2} - \left|\vec{k}_{pq}\right|^{2}\right)^{\frac{1}{2}}, \quad k^{2} \rangle \left|\vec{k}_{pq}\right|^{2},$$

$$= -j\left(\left|\vec{k}_{pq}\right|^{2} - k^{2}\right)^{\frac{1}{2}}, \quad k^{2} \langle \left|\vec{k}_{pq}\right|^{2},$$

$$R_{mpq} = \frac{\eta_{mpq}^{diel} - \eta_{mpq}^{aire}}{\eta_{mpq}^{diel} + \eta_{mpq}^{aire}} \exp\left(-j2\gamma_{pq}s\right),$$

$$R_{mpq}^{tira} = \frac{2\eta_{mpq}^{aire} - \eta_{mpq}^{eq}}{\eta_{mpq}^{eq}}.$$
(81)

Una vez seleccionado conjunto conveniente de funciones, los coeficientes complejos desconocidos, puede obtenerse resolviendo (76). Las Expresiones para los campos reflejados y transmitieron son:

$$\vec{R} = \sum_{m=1}^{2} \left\{ R_{m00}^{tira} b_m - \frac{1}{d^2 \eta_{m00}^{eq}} \sum_{n=1}^{N} c_n \vec{g}_n \left(\vec{k}_{00} \right) \cdot \hat{k}_{m00} \right\} \hat{k}_{m00} , \qquad (82)$$

$$\vec{T} = \sum_{M01}^{2} \left\{ t_{m00} \left(1 + R_{m00}^{tira} \right) b_m - \frac{t_{m00}}{d^2 \eta_{m00}^{eq}} \sum_{n=1}^{N} c_n \vec{g}_n \left(\hat{k}_{00} \right) \cdot \hat{k}_{m00} \right\} \hat{k}_{m00} , \qquad (83)$$

donde

$$t_{mpq} = \frac{\exp\{j(\gamma_{pq}^{aire} - \gamma_{pq}^{diel})\} + R_{mpq} \exp\{j(\gamma_{pq}^{aire} + \gamma_{pq}^{diel})\}}{1 + R_{mpq}},$$
(84)

 $b_1 = 1$, $b_2 = 0$ para incidencia TM $b_1 = 0$, $b_2 = 1$ para incidencia TE

Fig.13

El segmento real curvo se planteará como una serie de segmentos rectos. A la unión de dos segmentos rectos, se le debe dar un tratamiento especial. Si no hay ninguna curvatura entre segmentos rectos o conexión con un segmento recto, entonces no se requiere ningún tratamiento especial.

Las corrientes se plantean como subdominios triangulares a lo largo del segmento y constante en la dirección transversa. La geometría se muestra en Fig. 13. En particular las corrientes en el n-esimo segmento son

$$\vec{h}_{n}(x',y') = \hat{x}'\frac{(x'+l)}{wl}, \quad -l \le x' \le 0, \quad -\frac{w}{2} \le y \le \frac{w}{2},$$
$$\vec{h}_{n}(x',y') = \hat{x}'\frac{(l-x')}{wl}, \quad 0 \le x' \le l, \quad -\frac{w}{2} \le y \le \frac{w}{2},$$
(85)

donde

$$x = x_n + x'\cos\psi - y'\sin\psi, \quad y = y_n + x'\sin\psi + y'\cos\psi.$$
(86)

Sustituyendo (85) en (78) e integrando, obteneos

$$\vec{g}_{npg} = \vec{g}_{npq}^- + \vec{g}_{npq}^+$$
, (87)

Donde

$$\vec{g}_{npq}^{-} = \hat{x}' e^{jC} \left[\left(\frac{1}{Z^2} - \frac{jl}{Z} \right) e^{jlZ} - \frac{1}{Z^2} \right] \frac{\sin \frac{Vw}{2}}{\frac{Vw}{2}} \times \frac{e^{-jlk}}{l},$$

$$\vec{g}_{npq}^{+} = \hat{x}' e^{jC} \left[\left(\frac{1}{Z^2} + \frac{jl}{Z} \right) e^{jlZ} - \frac{1}{Z^2} \right] \frac{\sin \frac{Vw}{2}}{\frac{Vw}{2}} \times \frac{e^{jlk}}{l},$$
(88)

con

 $Z = k_x \cos \psi + k_y \sin \psi,$

 $V = -k_x \sin \psi + k_y \cos \psi, \quad \mathbf{y} \quad C = k_x x_n + k_y y_n.$ (89)

La solución completa para la reflectivitidad se obtiene así utilizando (88) y (63) y resolviendo para los coeficientes desconocidos que usan (76), y usando entonces (84) para calcular la reflectividad.

Tratamiento Especial de Curvaturas y Uniones para la Continuidad del Vector de Corriente

La curvatura o conexión entre dos segmentos rectos, se ha encontrado necesario asegurar que el modelo analítico mantenga la continuidad del vector de corriente de un segmento, al próximo segmento. Si la continuidad del vector no se proporciona, entonces la corriente a lo largo del segmento en el final del conductor, así como el coeficiente del punto extremo de la función base se coloca en cero.

Se ha encontrado que esto ocurre sin ninguna restricción adicional, otra manera es igualar la componente \vec{E} tangencial a cero.

Colocar \vec{E} tangencial en cero es la única restricción requerida, así la continuidad es garantizada en la dirección del vector corriente en un segmento como es ilustrado en Fig. 14(a).

El segmento de corriente en la Fig.14(a) se representa por

$$h_n = \frac{-\hat{x}\sin\psi + \hat{y}\cos\psi}{w}.$$
 (90)

Ésta es una corriente circular de amplitud constante como es mostrada en la Fig. 14(a). Se necesita evaluar para este segmento y el resultado es

$$\vec{g}_{npq} = e^{jC} \int_{\psi_{n-1}}^{\psi_n} \left[\frac{-\hat{x}\sin\psi + \hat{y}\cos\psi}{w} \right] \cdot \left[\frac{e^{jZw} - jZwe^{jZw} - 1}{Z^2} \right] d\psi$$
(91)

Donde la integración se lleva a cavo numéricamente

En la unión de más de un segmentos se requiere una superposición de todas las posibles corrientes de la unión. Por ejemplo, si dos segmentos se cruzan y hacen contacto, entonces esta unión se trata como un cuatro "puerto" con seis cuñas interconectadas es necesario permitir que el flujo de corriente de cualquier segmento dado a cualquier otra segmento. En general, para N' segmentos con un punto de unión común,

$$[(N'-1)+(N'-2)+\cdots] = \left[\frac{N'(N'-1)}{2}\right].$$
(92)

En la Fig. 14(b), se ilustra un esquema de tres segmentos de alambre que se encuentran en una unión.

Para usar las corrientes cilíndricas simples en el segmento de corriente, es necesario introducir algo adicional en nuestra geometría "directamente que una los segmentos". Esto se ilustra en la unión del tres-alambre de Fig. 14(c).

Para la unión de tres alambres se deben introducir dos segmentos rectos, para usar las corrientes circulares en la unión. Las corrientes cilíndricas del segmento se centran en los puntos #1, #2, y #3 de la figura14(c).

ANALISIS DE LAS GRAFICAS OBTENIDAS

En las figuras 15, 16 y 17, se puede notar que existe un crecimiento del ángulo de transparencia (ángulo al cual la onda TE o TM pasa como si la multicapa no existiera), en cuanto al aumento del numero de capas, en las figuras 18,19 y 20 de igual forma que en el caso anterior se produce el crecimiento del ángulo, donde en ambos casos se ha considerado $n_1 \rangle n_2$.

En las figuras 21-26, con la disminución de los coeficientes n_1 y n_2 existe una variación del ángulo con respecto a los casos considerados anteriormente, pero de igual forma se que en las figuras 15-20, con el aumento de del numero de capas dieléctricas crece la ubicación del ángulo de transparencia.

En las figuras 27 y 28 se puede ver de forma mas clara como es el comportamiento de los ángulos con el crecimiento del numero de capas, por otra parte en las figuras 29-32 se puede notar la no dependencia del ángulo de transparencia con el numero de capas, para estos valores específicos de n_1 , n_2 y k_0d_1 , parámetros ya definidos en el planteamiento del problema bicapa.

En las figuras 33-36 se varia el numero de capas tanto para los modos TE y TM respectivamente para analizar mejor el comportamiento de la variación de aquel.

En la figura 37 se realizo una variación del coeficiente de refracción n_1 , y se observo que el ángulo de cambia conforme cambia n_1 , de igual forma en la figura

56

38, sucede algo similar al variar n_2 , mientras que en las figuras 39-41 se realiza una variación de k_0d_1 y se puede concluir que con el aumento de k_0d_1 , también aumenta el ángulo de transparencia para la superficie, además de las figuras 15-36 existe una diferencia entre los valores de los ángulos para el caso TE y TM con respecto a los mismos datos de la estructura.

9. CONCLUSIONES

- 1. Para el sistema bicapa periódico (Fig. 10) las formulas (54,55) permitieron calcular ángulos ante los cuales la multicapa resulta ser transparente como puede observarse en las figuras 15-41.
- 2. Los valores de los ángulos de transparencia dependen de los coeficientes de refracción, del parámetro k_0d_1 y del numero de secciones en la multicapa, donde los parámetros fueron definidos en la formulación del problema.
- 3. Con el aumento de N (subsecciones) o de k_0d_1 los ángulos de transparencia crecen, lo cual puede notarse en las figuras 33-36.
- La multicapa resulta ser transparente para diferentes ángulos de incidencia de las ondas TE y TM, los valores de estos ángulos varían para TE Y TM independientemente (Figuras 15-36).
- Para algunos ángulos de transparencia no hay dependencia de N, además, con el aumento de N en la curva de dependencia surge una especie de comportamiento resonante en las cercanías del ángulo de transparencia (Figuras 29-32).
- 6. Los valores de los ángulos de transparencia para las ondas TE y TM no coinciden, lo cual se puede observar en las figuras 15-26 y 29-32.

7. Los resultados obtenidos en este trabajo pueden ser utilizados para el diseño de multicapas en calidad de filtros reflectores y polarizadores, así como en el diseño de recubrimiento de cámaras anecoicas y otras estructuras mencionadas anteriormente.

10. BIBLIOGRAFÍA

- 1. LEON BRILLOUIN, MAURICE PARODI "Propagación de ondas sobre medios periódicos" Editorial Masson Paris 2.da Edición 1970.
- MAX BORN, EMIL WOLF "Principes of Optics" Cambridge University Press 7.ma Edición 1999.
- ANGEL CARDAMA AZMAR, LUIS JOFRE ROCA, JUAN MANUEL RUIS CASALS, JORDI ROMEU ROBERT, SEBASTIÁN BLANCH BORIS "Antenas" Editorial Alfaomega México 2.da Edición 2000.
- 4. JOSE LUIS SEBASTIÁN "Fundamentos de compatibilidad electromagnética" Editorial Addison-Wesley Madrid España 1999
- 5. TIRUPATHI R. CHANDRUPATLA "Introducción al estudio del elemento finito en ingeniería " Editorial Prentice Hall México 1.ra Edición 1997
- HILDEBERTO JARDON AGILAR "Compatibilidad Electromagnética" Editorial Alfaomega México 1.ra Edición 1996
- ANTONIO NIEVES, FEDERICO C DOMÍNGUEZ "Métodos Numéricos Aplicados a la ingeniería" Editorial Cecsa México 2.da Edición 1997
- SHOICHIRO NAKAMURA "Análisis Numérico y Visualización grafica con Matlab" Editorial Prentice Hall México 1.ra Edición 1997

 WILLIAM A IMBRIALE, VICTOR GALINDO, YAHJA RAMAT SAMMI "On the reflectivity of Complex Mesh Surface" IEEE Vol 39 N° 9 September de 1991

APENDICE 1

CONDUCTIVIDAD SUPERFICIAL E IMPEDANCIA EN RAMAS

Para analizar el efecto de los segmentos del alambre con pérdida en ohmios, introducimos que la idea de conductibilidad superficial σ_s la cual se relacionará a la conductibilidad ordinaria volumétrica σ . Debido a que nuestros segmentos de alambre tienen cierta profundidad (en la dirección de z), debemos introducir σ_s para considerar la pérdida en ohmios.

Primero, desarrollemos la ecuación integral para las tiras del alambre finito $con \sigma_s$. El procedimiento sigue para el segmento de metal para el infinito con σ_s (siguiendo (62)), tenemos

$$\vec{E}_{t}^{tira}(x, y, 0) + \vec{E}_{t}^{inc}(x, y, 0) = \frac{1}{\sigma_{s}}\vec{J}_{s}.$$
(A.1)

Donde \vec{J}_s es la corriente superficial en el metal. Cuando ningún substrato del dieléctrico esta en los modos de Floquet presentes, $\psi_{pq}^m(x, y)$ se normaliza para que

$$\iint_{A} \Psi_{pq}^{m} \cdot \Psi_{rs}^{m^{*}} da \equiv \delta_{pr} \delta_{qs} .$$
(A.2)

Podemos representar

$$\begin{cases} \vec{E}_{t}^{inc} = \sum_{m=1}^{2} b_{m}^{i} \Psi_{00}^{m}(x, y/u, v) \\ \vec{H}_{t}^{inc} = \sum_{m=1}^{2} \eta_{m00} b_{m}^{i} \hat{z} \times \Psi_{00}^{m} \end{cases},$$
(A.3)

como el campo incidente, y

$$\begin{cases} \vec{E}_{t}^{-} = \sum_{m}^{2} \sum_{p=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} a_{mpq} \psi_{pq}^{m} \equiv \sum_{mpq} a_{mpq} \psi_{pq}^{m} \\ \vec{H}_{t}^{-} = \sum_{mpq}^{\infty} \eta_{mpq} a_{mpq} \hat{z} \times \psi_{pq}^{m} \end{cases},$$
(A.4)

como el campo reflejado, y

$$\begin{cases} \vec{E}_t^+ = \sum_{mpq} b_{mpq} \psi_{pq}^m \\ \vec{H}_t^+ = \sum_{mpq} \eta_{mpq} b_{mpq} \hat{z} \times \psi_{pq}^m \end{cases}$$
(A.5)

Como el campo transmitido (η_{mpq} son las impedancias modales de Floquet)

$$\Psi_{pq}^{m} = -\hat{K}_{mpq} \exp\left(j\vec{k}_{pq}\cdot\vec{\rho}\right). \tag{A.6}$$

Aplicando las condiciones de continuidad para la frontera en z = 0 y con el uso de la relación de ortogonalidad, lleva a una ecuación íntegra para \vec{J}_s

$$-\vec{E}_{t}^{inc} = \iint_{A} \left[\sum_{mpq} \frac{\Psi_{pq}^{m} \Psi_{pq}^{m^{*}}}{2\eta_{mpq}} \right] \cdot \vec{J}_{s} \, da - \left(\frac{1}{\sigma_{s}} \right) \vec{J}_{s} \, . \tag{A.7}$$

Para resolver (A.7) como una ecuación de matricial, representamos

$$\vec{J}_s \equiv \sum_{n=1}^N C_n \vec{J}_{sn} .$$
(A.8)

Donde las \vec{J}_{sn} son nuestras funciones base triangulares. Como funciones de peso tomamos

$$\vec{L}_{sl}: l = 1, \cdots, N$$
 (A.9)

Utilizando σ_s para derivar una ecuación íntegra para cierta tira gruesa así, relacionaremos ahora σ_s para el segmento grueso finito de grueso t y conductibilidad σ . La única objeción involucrada es que t debe ser mucho más pequeño que la anchura de la tira W y longitud L de cualquier rama dada en la malla.

Dentro del metal de grueso t (z = 0 a z = t) definimos las propiedades del metal

$$\begin{cases} \varepsilon' = \varepsilon - j \frac{\sigma}{\omega} \\ k' = \omega \sqrt{\mu} \sqrt{\varepsilon - j \frac{\sigma}{\omega}} \\ \eta' = \sqrt{\frac{\mu}{\varepsilon'}} = \sqrt{\frac{\mu}{\varepsilon - j \frac{\sigma}{\omega}}} \end{cases}$$
(A.10)

Para una casualidad de onda, de incidencia normal en el metal, encontramos rápidamente

Con T_d y R_d como los coeficientes de transmisión y reflexión de las ondas en el metal delantero (hacia z^-) tomamos la densidad de corriente volumétrica dentro del metal como

$$J_{x} = \sigma \left(T_{d} e^{-jk'z} + R_{d} e^{+jk'z} \right)$$
(z = 0 a t). (A.11)

La corriente total se define como la corriente superficial

$$J_{sx} \equiv \sigma \int_{0}^{t} \left(T_{d} e^{-jk'z} + R_{d} e^{+jk'z} \right) dz = \frac{j\sigma}{k'} \left[R_{d} + T_{d} - R_{d} e^{+jk'z} + e^{-jk'z} \right].$$
(A.12)

Relacionando esta corriente al campo del dieléctrico a z = 0 obtenemos la conductibilidad superficial del metal finito en términos de σ y t:

$$\sigma_{s} = \frac{j\sigma \left[R_{d} + T_{d} - R_{d}e^{+jk'z} + e^{-jk'z}\right]}{k'(R_{d} + T_{d})},$$
(A.13)

donde

$$T_{d} = \frac{2\eta_{0}(\eta_{0} + \eta')}{(\eta_{0} + \eta')^{2} - (\eta_{0} - \eta')^{2} e^{-2jk't}}.$$
(A.14)

$$R_d = -\left(\frac{(\eta_0 - \eta')}{(\eta_0 + \eta')}\right) T_d e^{-jk't} .$$
(A.15)

Ordinariamente, la presencia de un substrato del dieléctrico tendrá un efecto muy pequeño en cuanto penetración del campo en z = t.

Podemos definir la impedancia de la rama vista desde la tira del alambre recta de longitud L. Si definimos

$$\begin{cases} J_{sxa} \equiv promedio \ de \ J_{sx} \ alol \ \arg o \ de \ L \\ E_{xa} \equiv promedio \ de \ E_{x} \ alol \ \arg o \ de \ L \end{cases}.$$
(A.16)

Entonces simplemente

$$\int_{0}^{L} \left(\frac{E_{x}}{J_{sx}}\right) dx = \frac{E_{xa}}{J_{sxa}} \cdot L .$$
(A.17)

La impedancia puede darse como

$$dZ_x = \frac{E_x}{J_{sx}} \frac{dx}{W} = \frac{1}{\sigma_s W} dx, \qquad (A.18)$$

donde W es la anchura de la tira de alambre y E_x y J_{sx} son asumidos como constantes a lo largo de la anchura. Así

$$Z_{L} = \int_{0}^{L} dZ_{x} = \left(\frac{E_{xa}}{J_{sxa}}\right) \frac{L}{W},$$
(A.19)

$$Z_L = \frac{1}{\sigma_s} \frac{L}{W} \,. \tag{A.20}$$

Para σ muy grande, encontramos rápidamente

$$Z_{L} = \left(\frac{L}{W}\right) \sqrt{\frac{\pi f \mu}{\sigma}} (1+j)$$
(A.21)

APENDICE 2

DESCRIPCION DE PARAMETROS

- IRT = Parámetro para seleccionar los coeficientes a calcular (Transmisión o Reflexión)
- D1XM , D2XM, D2YM = Parámetros de espacio en mm
- F1 = Inicio de frecuencia en GHz
- F2 = Final de frecuencia en GHz
- FINC = Incremento de frecuencia
- TH1 = Angulo theta inicial
- TH2 = Angulo theta final
- THINC = Incremento de theta
- PHIDEG = Angulo phi en grados
- ER = Constante dieléctrica
- TMIL = Espesor en mm
- IMODE = Numero de modos de floquet
- NODES = Numero de los nodos
- N = Numero de nodos
- X1MIL = Dimensión x en mm
- Y1MIL = Dimensión y en mm
- NBR = Numero de ramas
- IBR1 = Primer nodo de rama
- IBR2 = segundo nodo de rama
- IBR3 = Numero de segmentos por rama
- ZREAL = Parte real de las impedancias
- ZAIMAG = Parte imaginaria de las impedancias

DATOS PARA LOS CALCULOS DEL PROBLEMA BICAPA

N° Eir	Índices de		V0-21	Numerica	Compo	Drograma	
N .FIG	nl	n2	RUUI	Capas	calcular	corrido	
						Fortran	
15	2.345	1.52	2.0	10	TE-TM	Matlab	
						C++	
						Fortran	
16	2.345	1.52	2.0	20	TE-TM	Matlab	
						C++	
						Fortran	
17	2.345	1.52	2.0	50	TE-TM	Matlab	
						C++	
						Fortran	
18	2.345	1.52	5.0	10	TE-TM	Matlab	
						C++	
						Fortran	
19	2.345	1.52	5.0	20	TE-TM	Matlab	
						C++	
	2.345	1.52	5.0	50	TE-TM	Fortran	
20						Matlab	
						C++	
						Fortran	
21	1.52	1.18	2.0	10	TE-TM	Matlab	
						C++	
						Fortran	
22	1.52	1.18	2.0	20	TE-TM	Matlab	
						C++	
						Fortran	
23	1.52	1.18	2.0	50	TE-TM	Matlab	
						C++	
						Fortran	
24	1.52	1.18	5.0	10	TE-TM	Matlab	
						C++	
25	1.52	1.18	5.0	20	TE-TM	Fortran	
						Matlab	
						C++	
	1.52	2 1.18	5.0	50		Fortran	
26					TE-TM	Matlab	
						C++	

	9.0	1.0	4.0	1	TE	Fortran
27	9.0	1.0	4.0	10	TE	Matlab
	9.0	1.0	4.0	20	TE	C.++
	9.0	1.0	4.0	50	TE	
20	9.0	1.0	4.0	1 O	.Т.W	Fortran
20	9.0	1.0	4.0	10	IM TM	Matian
	9.0	1 0	4 0	50	TM TM	CTT
	5.0	1.0	1.0			Fortran
29	9.0	1.0	2.0	1	TE-TM	Matlab
						C++
						Fortran
30	9.0	1.0	2.0	10	TE-TM	Matlab
						C++
						Fortran
31	9.0	1.0	2.0	20	TE-TM	Matlab
						C++
	0.0	1 0		5.0		Fortran
32	9.0	1.0	2.0	50	'I'E-'I'M	Matlab
	1 0	1 0	F 0	1		C++
33	4.0	1.0	5.0		TE	Fortran
55	4.0	1 0	5.0	20		Matlab
	4.0	1.0	5.0	50	TE	C++
	4.0	1.0	5.0	1	TM	Fortran
34	4.0	1.0	5.0	10	TM	Matlab
	4.0	1.0	5.0	20	TM	C++
	4.0	1.0	5.0	50	MT	CTT
25	4.0	1.0	10.0	1	TE	Fortran
35	4.0	1.0	10.0	10	TE	Matlab
	4.0	1.0	10.0	50	TE TE	C++
	4.0	1.0	10.0	1	TM	Fortran
36	4.0	1.0	10.0	10	TM	Matlab
	4.0	1.0	10.0	20	ΜT	C++
	4.0	1.0	10.0	50	TM	
	0 a 10	1.0	1.0		TE	Fortran
37	0 a 10	1.0	2.0	1		Matlah
57	0 a 10	1 0	 6 0	⊥ 1		Mactab
	0 a 10	1.0	8.0	1		C++
	0 a 10	1.0	10.0	1		
	1.0	0 a 10	1.0	1	TE	Fortran

1					1	
	1.0	0 a 10	2.0	1	TE	Matlab
38	1.0	0 a 10	4.0	1	TE	
	1.0	0 a 10	6.0	1	TE	C++
	1.0	0 a 10	8.0	1	TE	
	1.0	0 a 10	10.0	1	TE	
	1.0	4.0	0 a 10	1		Fortran
39	4.0	1.0	0 a 10	1	TE	Matlab
						C++
						Fortran
40	9.0	1.0	0 a 4	1	TE	Matlab
						C++
						Fortran
41	1.0	9.0	0 a 10	1	TE	Matlab
						C++

DATOS PARA LOS CALCULOS DEL PROBLEMA MULTICAPA

CALCU	JLO 1	CALCULO 2	
IRT	0	IRT	0
D1XM	100.00	D1XM	100.00
D2XM	0.00	D2XM	0.00
D2YM	100.00	D2YM	100.00
Fl	8.00	F1	8.00
F2	9.00	F2	9.00
FINC	0.50	FINC	0.50
TH1	0.00	TH1	0.00
TH2	0.50	TH2	0.50
THINC	1.00	THINC	1.00
PHIDEG	0.00	PHIDEG	0.00
ER	1.000	ER	1.000
TMIL	1.000	TMIL	1.000
IMODE	10.00	IMODE	10.00
NODES	1,2,3,4,5,6	NODES	1,2,3,4,5,6
N	6.00	N	6.00

X1M	-50,0,0,	X1M	-50,0,0,
	0,0,50		0,0,50
Y1M	0,0,-50,	Y1M	0,0,-50,
	50,0,0		50,0,0
NBRS	2,2,2,2	NBRS	6,6,6,6
IBR1	1,2,4,5	IBR1	1,2,4,5
IBR2	2,3,5,6	IBR2	2,3,5,6
WIDTH	10,10,10,10	WIDTH	10,10,10,10
ZREAL	0,0,0,0	ZREAL	0,0,0,0
ZAIMAG	0,0,0,0	ZAIMAG	0,0,0,0

CALCULO 3		CALCULO 4		
-IRT	0	IRT	0	
D1XM	100.00	D1XM	100.00	
D2XM	0.00	D2XM	0.00	
D2YM	100.00	D2YM	100.00	
F1	8.00	F1	8.00	
F2	9.00	F2	9.00	
FINC	0.50	FINC	0.50	
TH1	0.00	TH1	0.00	
TH2	0.50	TH2	0.50	
THINC	1.00	THINC	1.00	
PHIDEG	0.00	PHIDEG	0.00	
ER	1.000	ER	1.000	
TMIL	1.000	TMIL	1.000	
IMODE	10.00	IMODE	10.00	
NODES	1,2,3,4,5,6	NODES	1,2,3,4,5,6	
N	6.00	N	6.00	
X1M	-50,0,0,	X1M	-50,0,0,	
	0,0,50		0,0,50	
Y1M	0,0,-50,	YIM	0,0,-50,	
	50,0,0		50,0,0	
NBRS	2,2,2,2	NBRS	6,6,6,6	
IBR1	1,2,4,5	IBR1	1,2,4,5	
IBR2	2,3,2,6	IBR2	2,3,2,6	
WIDTH	10,10,10,10	WIDTH	10,10,10,10	
ZREAL	0,0,0,0	ZREAL	0,0,0,0	
ZAIMAG	0,0,0,0	ZAIMAG	0,0,0,0	

CALCULO 5		CALCULO 6	
IRT	1	IRT	1
D1XM	100.00	D1XM	236.22
D2XM	0.00	D2XM	0.00
D2YM	100.00	D2YM	236.22
F1	8.00	F1	28.00
F2	8.05	F2	32.00
FINC	0.10	FINC	5.00
TH1	0.00	TH1	30.00
TH2	0.50	TH2	30.50
THINC	1.00	THINC	1.00
PHIDEG	0.00	PHIDEG	0.00
ER	1.000,1.000,	ER	2.330,2.330,
	1.000,1.000		1.000,1.000
TMIL	0.20, 0.50,	TMIL	1.30, 2.953,
	1.000		4.000
IMODE	10.00	IMODE	10.00
NODES	1,2,3,4,5	NODES	1,2,3,4,5
N	6.00	N	5.00
X1M	-50,0,0,	X1M	-82.677,0,
	0,0,50		82.677,0,0
Y1M	0,0,-50,	Y1M	0,0,0,
	50,0,0		-82.677,82.677
NBRS	2,2,2,2	NBRS	6,6,6,6
IBR1	1,2,4,5	IBR1	1,2,4,5
IBR2	2,3,5,6	IBR2	2,3,5,6
WIDTH	10,10,10,10	WIDTH	23.622,23.622
			23.622,23.622
ZREAL	0,0,0,0	ZREAL	0,0,0,0
ZAIMAG	0,0,0,0	ZAIMAG	0,0,0,0


```
*******
*****
% Ingresamos los valores por el teclado
clear.clf
k0d=input('ingrese el valor de k0d1')
n1=input('ingrese el valor de n1')
n2=input('ingrese el valor de n2')
s=input('ingrese el valor de s')
for i=1:1:90
 t(i)=i;
%Expresamos angulo Theta en radianes=rad
rad(i)=i.*(pi./180);
%Calculamos Beta1./Beta2=div
div=sqrt(n1.^2-n2.^2.*(sin(rad(i)))^2)./(n2.*cos(rd(i)));
%Calculamos f1 y f2
f1=(1./2).*log(div);
f2=log((n2./n1).*sqrt(div));
%Calculamos el coseno de Phi para TE
del=k0d1.*sqrt((n1.^2-(n2.^2).*(sin(rad(i))).^2)).*(pi./180);
argE=((cos(2.*del)-(tanh(f1)).^2).*((cosh(f1)).^2));
%Inversa del coseno de Phi para TE
fE=acos(argE);
%Calculo de la magnitud de A del TE al cuadrado=AE
AE=1+((sin(s.*fE)./sin(fE)).*(sinh(2.*f1)).*(sin(del))).^2;
%Calculo de la magnitud del tao alcuadrado de TE=taugE
taugE=1./AE;
%Calculo de la magnitud de TE
TE(i)=1-taugE
%Calculamos el coseno de Phi para TM
argM=((cos(2.*del)-(tanh(f2)).^2).*((cosh(f2)).^2));
%Inversa del coseno de Phi para TM
fM=acos(argM);
%Calculo de la magnitud de A del TM al cuadrado=AM
AM=1+((sin(s.*fM)./sin(fM)).*(sinh(2.*f2)).*(sin(del))).^2;
%Calculo de la magnitud del tao alcuadrado de TM=tauqM
taugM=1./AM;
%Calculo de la magnitud de TM
TM(i)=1-taugM
end
%Grafica en funcion del angulo de las magnitudes de TE y TM
plot(t,TM,'r',t,TE,'k')
title ('Figura 15 TE(Negro) y TM(Rojo)')
```

clear.clf k0d1=input('ingrese el valor de k0d1') n2=input('ingrese el valor de n2') s=input('ingrese el valor de s') %n1=i for n1=1:1:100 t1(n1)=n1; f1=(1./2).*log((n1./10)./n2);%Calculamos el coseno de Phi para TE del=kd1.*(n1./10).*(pi./180); argE=((cos(2.*del)-(tanh(f1)).^2).*((cosh(f1)).^2)); %Inversa del coseno de Phi para TE fE=acos(argE); %Calculo de la magnitud de A del TE al cuadrado=AE AE=1+((sin(s.*fE)./sin(fE)).*(sinh(2.*f1)).*(sin(del))).^2; %Calculo de la magnitud del tao alcuadrado de TE=taugE taugE=1./AE; %Calculo de la magnitud de TE TE(n1)=1-taugE end for i=1:1:100 t(i)=t1(i)/10;end plot(t,TE,'r') title ('grafica del campo TE(Rojo) ') xlabel('n1') ylabel('/r/.^2')

%********** variando n2 ************ clear.clf k0d1=input('ingrese el valor de k0d1') n1=input('ingrese el valor de n1') s=input('ingrese el valor de s') for n2=1:1:100 t1(n2)=n2; f1=(1./2).*log(n1./(n2./10));%Calculamos el coseno de Phi para TE del=k0d1.*n1.*(pi./180); argE=((cos(2.*del)-(tanh(f1)).^2).*((cosh(f1)).^2)); %Inversa del coseno de Phi para TE fE=acos(argE); %Calculo de la magnitud de A del TE al cuadrado=AE AE=1+((sin(s.*fE)./sin(fE)).*(sinh(2.*f1)).*(sin(del))).^2; %Calculo de la magnitud del tao alcuadrado de TE=tauqE tauqE=1./AE; %Calculo de la magnitud de TE TE(n)=1-tauqE end for i=1:1:100 t(i)=t1(i)/10;end plot(t,TE,'r') title ('grafica del campo TE(Rojo) ') xlabel('n2') ylabel('/r/.^2')

clear,clf n1=input('ingrese el valor de n1') n2=input('ingrese el valor de n2') s=input('ingrese el valor de s')

```
%n1=i
for k0d1=1:1:40
  t1(k0d)=k0d1;
f1=(1./2).*log((n1./10)./n2);
%Calculamos el coseno de Phi para TE
del=k0d1.*(n1./10).*(pi./180);
argE=((cos(2.*del)-(tanh(f1)).^2).*((cosh(f1)).^2));
%Inversa del coseno de Phi para TE
fE=acos(argE);
%Calculo de la magnitud de A del TE al cuadrado=AE
AE=1+((sin(s.*fE)./sin(fE)).*(sinh(2.*f1)).*(sin(del))).^2;
%Calculo de la magnitud del tao alcuadrado de TE=taugE
taugE=1./AE;
%Calculo de la magnitud de TE
TE(k0d1)=1-tauqE
end
n11=input('ingrese el valor de n11')
n21=input('ingrese el valor de n21')
for k0d1=1:1:40
  t1(k0d1)=k0d1;
f11=(1./2).*log((n11./10)./n21);
%Calculamos el coseno de Phi para TE
del1=k0d1.*(n11./10).*(pi./180);
argE1=((cos(2.*del1)-(tanh(f11)).^2).*((cosh(f11)).^2));
%Inversa del coseno de Phi para TE
fE1=acos(argE1);
%Calculo de la magnitud de A del TE al cuadrado=AE
AE1=1+((sin(s.*fE1)./sin(fE1)).*(sinh(2.*f11)).*(sin(del1))).^2;
%Calculo de la magnitud del tao alcuadrado de TE=taugE
tauqE1=1./AE1;
%Calculo de la magnitud de TE
TE1(k0d1)=1-taugE1
end
for i=1:1:40
  t(i)=t1(i)/10;
end
plot(t,TE,'r',t,TE1,'k')
title ('Figura 39')
xlabel('n1')
ylabel('/r/.^2')
```

```
% datos0.m
clear.clf
% Numero de capas dielectricas que constituyen la estructura
'Numero de capas'
n=input('n=')
% Polarizacion paralela p=1
% Polarizacion perpendicular p=2
'Numero que indica la polarizacion'
'Polarizacion paralela p=1'
'Polarizacion perpendicular p=2'
p=input('p=')
if p==1
  'Polarizacion Paralela'
end
if p = 2
  'Polarizacion parpendicular'
end
if p>2
  'Falta especificar la polarizacion de la onda incidente'
end
'Angulo de incidencia th, en grados'
th=input('th=')
'Frecuencia minimna fre1, en Ghz'
fre1=input('fre1=')
'Frecuencia maxima fre2, en Ghz'
fre2=input('fre2=')
'Incremento de frecuencia fre3, en Ghz'
fre3=input('fre3=')
'Frecuencia central de diseño fc, en Ghz'
fc=input('fc=')
'Parametro que especifica que hay despues de la ultima capa'
'existe aire ulcap=0'
'existe un material conductor ulcap=1'
ulcap=input('ulcap=')
if ulcap==0
  'Despues de la ultima capa hay aire'
end
if ulcap==1
  'Despues de la ultima capa hay un material conductor con espesor dmc, en
metros'
 dcm=input('dcm=')
end
'Parametro que lo que contienen los datos'
'Si cond=1 d(espesor),er(permit.elect.rel., sigma(Conductividad)'
```

```
'Si cond=0 d(espesor),er(permit.elect.rel., tand(Tang.de perdidas)'
```

```
cond=input('ccond=')
if cond==0
  'Datos de tangente en perdidas'
  if ulcap==1
    'Conductividad electrica del material conductor a la frecuencia fc, smc, en S/m '
   'smc(Cobre)=5.8e7;smc(alumino)=35.2e7;smc(plata)=3e7;smc(oro)4.26e7'
   smc=input('smc=')
   'Permitividad electrica relativa del conductor a la frecuencia fc, ermc'
   'por defecto, ermc=1'
   ermc=1
   'Tangente de perdidas del material conductor a la frecuencia fc,tanc'
   tanc=smc/(2*pi*fc*1e9*ermc*8.85e-12)
 end
end
if cond==1
    'Datos de la conductividad electrica'
  if ulcap==1
    'Conductividad electrica del material conductor a la frecuencia fc, smc, en S/m '
    'smc(Cobre)=5.8e7;smc(alumino)=35.2e7;smc(plata)=3e7;smc(oro)4.26e7'
   smc=input('smc')
   'Permitividad electrica relativa del conductor a la frecuencia fc, ermc'
   'por defecto, ermc=1'
   ermc=1
   'Tangente de perdidas del material conductor a la frecuencia fc,tanc'
   tanc=smc/(2*pi*fc*1e9*ermc*8.85e-12)
 end
end
if cond>1
  'Falta especificar los datos de la conductividad electrica o tangente de perdidas'
end
i=1
for j=1:n
  'Espesor en mm 1--n'
 datos(j,i)=input('d=')
end
i=2
for j=1:n
  'permitividad electrica relativa 1--n'
 datos(j,i)=input('er=')
end
i=3
for j=1:n
  'tangente de perdidas o conductividad electrica'
```

```
datos(j,i)=input('tand o sigma =')
```

```
end
% Programa principal
ifre1=1e3*fre1;
ifre2=1e3*fre2;
ifre3=1e3*fre3;
x_j(1,1)=0;
y0=1/376.7;
ii=sqrt(-1);
np1=n+1;
np2=n+2;
datos1=datos';
d=datos1(1,:);
dmm=1e-3*d;
er=[1 datos1(2,:) 0];
if cond==0
  if ulcap==0
   tand=[0 datos1(3,:) 0];
    'Tangente de perdidas de las capas 1 -- n'
    datos1(3,:);
    erc(1,1)=1;
    erc(1,np2)=erc(1,1);
    for i=2:np2-1
      im=i-1;
      x_i(1,i)=x_i(1,im)+dmm(1,im);
      erc(1,i)=er(1,i)*(1+ii*tand(1,i));
      yn(1,i)=y0*sqrt(erc(1,i));
    end
    yn(1,1)=y0;
    yn(1,np2)=yn(1,1);
    rad=pi/180;
    cst(1,np2)=sin(rad*th);
    cct(1,np2)=cos(rad*th);
    for i=np2-1:-1:1
      cst(1,i)=cst(1,i+1)*sqrt(erc(1,i+1)/erc(1,i));
      cct(1,i)=sqrt(1.-cst(1,i)*cst(1,i));
    end
    a(1,1)=1;
    b(1,1)=0;
    for i=1:np2
     yj(1,i)=0;
    end
    III=0;
```

```
for k=ifre1:ifre3:ifre2
    f=1.e6*k:
    III=III+1;
    for i=1:np2
      gamma(1,i)=ii*2e-8*pi*f*sqrt(erc(1,i))/3;
    end
    for j=1:np2-1
      ce1=exp(gamma(1,i+1)*xi(1,i)*cct(1,i+1));
      ce2=exp(-gamma(1,j)*xj(1,j)*cct(1,j));
      ce3=1/ce2:
      ce4=1/ce1;
      % Caso de polarizacion paralela
      if p==1
        a(1,j+1)=0.5*ce1*(a(1,j)*(yn(1,j+1)*cct(1,j)+yn(1,j)*cct(1,j+1)+...
          yj(1,j)*cct(1,j)*cct(1,j+1))*ce2+b(1,j)*(yn(1,j+1)*cct(1,j)-...
          yn(1,j)*cct(1,j+1)+yj(1,j)*cct(1,j)*cct(1,j+1))*ce3)/(yn(1,j+1)*cct(1,j+1));
        b(1,i+1)=0.5*ce4*(a(1,i)*(yn(1,i+1)*cct(1,i)-yn(1,i)*cct(1,i+1)-...
          yj(1,j)*cct(1,j)*cct(1,j+1))*ce2+b(1,j)*(yn(1,j+1)*cct(1,j)+...
          yn(1,j)*cct(1,j+1)-yj(1,j)*cct(1,j)*cct(1,j+1))*ce3)/(yn(1,j+1)*cct(1,j+1));
      end
      % Caso de polarizacion perpendicular
      if p = 2
        a(1,j+1)=0.5*ce1*(a(1,j)*(yn(1,j+1)*cct(1,j+1)+yn(1,j)*cct(1,j)+...
          yj(1,j))*ce2+b(1,j)*(yn(1,j+1)*cct(1,j+1)-...
          yn(1,j)*cct(1,j)+yj(1,j))*ce3)/(yn(1,j+1)*cct(1,j+1));
        b(1,j+1)=0.5*ce4*(a(1,j)*(yn(1,j+1)*cct(1,j+1)-yn(1,j)*cct(1,j)-...
          y_i(1,j)*ce2+b(1,j)*(yn(1,j+1)*cct(1,j+1)+...
          yn(1,j)*cct(1,j)-yj(1,j))*ce3)/(yn(1,j+1)*cct(1,j+1));
      end
    end
    frec(1,III)=f;
    rhoa=b(1,np2)/a(1,np2);
    refa(1,III)=abs(rhoa);
    tab=1/a(1,np2);
    tlab(1,III)=1-abs(rhoa).^2;
  end
end
```

```
end
```

if cond==0

```
if ulcap==1
 tand=[0 datos1(3,:) 0];
 tand(1,1)=tanc;
 er(1,1)=ermc;
 x_{j}(1,1)=dmc;
 'Tangente de perdidas de las capas 1--n'
 datos1(3,:);
 erc(1,np2)=1;
 for i=2:np2-1
   im=i-1:
   x_{j}(1,i)=x_{j}(1,im)+dmm(1,im);
   erc(1,i)=er(1,i)^{*}(1+ii^{*}tand(1,i));
   yn(1,i)=y0*sqrt(erc(1,i));
 end
 yn(1,np2)=y0;
 rad=pi/180;
 cst(1,np2)=sin(rad*th);
 cct(1,np2)=cos(rad*th);
 for i=np2-1:-1:1
   cst(1,i)=cst(1,i+1)*sqrt(erc(1,i+1)/erc(1,i));
   cct(1,i)=sqrt(1.-cst(1,i)*cst(1,i));
 end
 a(1,2)=1;
 b(1,2)=-1;
 for i=1:np2
   y_i(1,i)=0;
 end
 III=0:
 for k=ifre1:ifre3:ifre2
   f=1.e6*k;
   |||=|||+1;
   tand(1,1)=smc/((2*pi*f)*er(1,1)*8.85e-12);
   tand=[tand(1,1) datos1(3,:) 0];
   erc(1,1)=er(1,1)*(1+ii*tand(1,1));
   yn(1,1)=y0*sqrt(erc(1,1));
   for i=1:np2
      gamma(1,i)=ii*2e-8*pi*f*sqrt(erc(1,i))/3;
   end
   for j=1:np2-1
      ce1=exp(gamma(1,j+1)*xj(1,j)*cct(1,j+1));
      ce2=exp(-gamma(1,j)*xj(1,j)*cct(1,j));
      ce3=1/ce2;
      ce4=1/ce1;
              % Caso de polarizacion paralela
      if p==1
```
```
a(1,j+1)=0.5*ce1*(a(1,j)*(yn(1,j+1)*cct(1,j)+yn(1,j)*cct(1,j+1)+...
            yi(1,j)*cct(1,j)*cct(1,j+1))*ce2+b(1,j)*(yn(1,j+1)*cct(1,j)-...
            yn(1,j)*cct(1,j+1)+yj(1,j)*cct(1,j)*cct(1,j+1))*ce3)/(yn(1,j+1)*cct(1,j+1));
          b(1,i+1)=0.5*ce4*(a(1,i)*(yn(1,i+1)*cct(1,i)-yn(1,i)*cct(1,i+1)-...
            yj(1,j)*cct(1,j)*cct(1,j+1))*ce2+b(1,j)*(yn(1,j+1)*cct(1,j)+...
            yn(1,j)*cct(1,j+1)-yj(1,j)*cct(1,j)*cct(1,j+1))*ce3)/(yn(1,j+1)*cct(1,j+1));
        end
        % Caso de polarizacion perpendicular
        if p = 2
          a(1,j+1)=0.5*ce1*(a(1,j)*(yn(1,j+1)*cct(1,j+1)+yn(1,j)*cct(1,j)+...
            yj(1,j))*ce2+b(1,j)*(yn(1,j+1)*cct(1,j+1)-...
            yn(1,j)*cct(1,j)+yj(1,j))*ce3)/(yn(1,j+1)*cct(1,j+1));
          b(1,j+1)=0.5*ce4*(a(1,j)*(yn(1,j+1)*cct(1,j+1)-yn(1,j)*cct(1,j)-...
            y_i(1,i) (y_i(1,i))*(y_i(1,i+1)*(t_i,i+1)+...
            yn(1,j)*cct(1,j)-yj(1,j))*ce3)/(yn(1,j+1)*cct(1,j+1));
        end
      end
      frec(1,III)=f;
      rhoa=b(1,np2)/a(1,np2);
      refa(1,III)=abs(rhoa);
      tab=1/a(1,np2);
      tlab(1,III)=1-abs(rhoa).^2;
    end
  end
end
if cond==1
  if ulcap==0
    tand1=datos1(3,:)./((2*pi*1e9*fc)*datos1(2,:)*8.85e-12);
    tand=[0 tand1 0];
    'Tangente de perdidas de las capas 1--n acla frecuencia fc'
    tand1
    erc(1,1)=1;
    erc(1,np2)=erc(1,1);
    for i=2:np2-1
```

```
im=i-1;
```

```
x_i(1,i)=x_i(1,im)+dmm(1,im);
end
yn(1,1)=y0;
yn(1,np2)=yn(1,1);
rad=pi/180;
cst(1,np2)=sin(rad*th);
cct(1,np2)=cos(rad*th);
a(1,1)=1;
b(1,1)=0;
for i=1:np2
 yj(1,i)=0;
end
III=0;
for k=ifre1:ifre3:ifre2
  f=1.e6*k:
  III=III+1;
  tand1=datos1(3,:)./((2*pi*f)*datos1(2,:)*8.85e-12);
  tand=[0 tand1 0];
  for i=2:np2-1
    erc(1,i)=er(1,i)^{*}(1+ii^{*}tand(1,i));
    yn(1,i)=y0*sqrt(erc(1,i));
  end
  for i=1:np2
    gamma(1,i)=ii*2e-8*pi*f*sqrt(erc(1,i))/3;
  end
  for j=1:np2-1
    ce1=exp(gamma(1,j+1)*xj(1,j)*cct(1,j+1));
    ce2=exp(-gamma(1,j)*xj(1,j)*cct(1,j));
    ce3=1/ce2;
    ce4=1/ce1:
    % Caso de polarizacion paralela
    if p==1
      a(1,j+1)=0.5*ce1*(a(1,j)*(yn(1,j+1)*cct(1,j)+yn(1,j)*cct(1,j+1)+...
        yj(1,j)*cct(1,j)*cct(1,j+1))*ce2+b(1,j)*(yn(1,j+1)*cct(1,j)-...
        yn(1,i)*cct(1,i+1)+yi(1,i)*cct(1,i)*cct(1,i+1))*ce3)/(yn(1,i+1)*cct(1,i+1));
      b(1,j+1)=0.5*ce4*(a(1,j)*(yn(1,j+1)*cct(1,j)-yn(1,j)*cct(1,j+1)-...
        y_i(1,j)*cct(1,j)*cct(1,j+1)*ce2+b(1,j)*(y_n(1,j+1)*cct(1,j)+...
        yn(1,j)*cct(1,j+1)-yj(1,j)*cct(1,j)*cct(1,j+1))*ce3)/(yn(1,j+1)*cct(1,j+1));
    end
    % Caso de polarizacion perpendicular
    if p = 2
      a(1,i+1)=0.5*ce1*(a(1,i)*(yn(1,i+1)*cct(1,i+1)+yn(1,i)*cct(1,i)+...
        v_i(1,i) * ce2+b(1,i)*(v_n(1,i+1)* cct(1,i+1)-...
        yn(1,j)*cct(1,j)+yj(1,j))*ce3)/(yn(1,j+1)*cct(1,j+1));
      b(1,j+1)=0.5*ce4*(a(1,j)*(yn(1,j+1)*cct(1,j+1)-yn(1,j)*cct(1,j)-...
```

```
yj(1,j))*ce2+b(1,j)*(yn(1,j+1)*cct(1,j+1)+...
            yn(1,j)*cct(1,j)-yj(1,j))*ce3)/(yn(1,j+1)*cct(1,j+1));
       end
      end
      frec(1,III)=f;
      rhoa=b(1,np2)/a(1,np2);
      refa(1,III)=abs(rhoa);
      tab=1/a(1,np2);
      tlab(1,III)=1-abs(rhoa).^2;
    end
  end
end
if cond==1
  if ulcap==1
    tand1=datos1(3,:)./((2*pi*1e9*fc)*datos1(2,:)*8.85e-12);
    tand=[0 tand1 0];
    tand(1,1)=tanc;
    er(1,1)=ermc;
    x_{j}(1,1)=dmc;
    'Tangente de perdidas de las capas 1 -- n a la frecuencia fc'
    tand1
    erc(1,np2)=1;
    for i=2:np2-1
     im=i-1;
     x_i(1,i)=x_i(1,im)+dmm(1,im);
    end
   yn(1,np2)=y0;
    rad=pi/180;
    cst(1,np2)=sin(rad*th);
    cct(1,np2)=cos(rad*th);
    a(1,2)=1;
   b(1,2)=-1;
    for i=1:np2
     yj(1,i)=0;
    end
    III=0;
```

```
for k=ifre1:ifre3:ifre2
 f=1.e6*k:
 III=III+1;
 tand1=datos1(3,:)./((2*pi*f)*datos1(2,:)*8.85e-12);
 tand(1,1)=smc/((2*pi*f)*er(1,1)*8.85e-12);
 tand=[tand(1,1)tand1 0];
 erc(1,1)=er(1,1)*(1+ii*tand(1,1));
 yn(1,1)=y0*sqrt(erc(1,1));
 for i=2:np2-1
    erc(1,i)=er(1,i)^{*}(1+ii^{*}tand(1,i));
    yn(1,i)=y0*sqrt(erc(1,i));
 end
 for i=np2-1:-1:1
 cst(1,i)=cst(1,i+1)*sqrt(erc(1,i+1)/erc(1,i));
 cct(1,i)=sqrt(1.-cst(1,i)*cst(1,i));
 end
 for i=1:np2
    gamma(1,i)=ii*2e-8*pi*f*sqrt(erc(1,i))/3;
 end
 for j=1:np2-1
    ce1=exp(gamma(1,j+1)*xj(1,j)*cct(1,j+1));
    ce2=exp(-gamma(1,j)*xj(1,j)*cct(1,j));
    ce3=1/ce2:
    ce4=1/ce1:
    % Caso de polarizacion paralela
    if p==1
      a(1,j+1)=0.5*ce1*(a(1,j)*(yn(1,j+1)*cct(1,j)+yn(1,j)*cct(1,j+1)+...
        y_i(1,j)*cct(1,j)*cct(1,j+1)*ce2+b(1,j)*(y_n(1,j+1)*cct(1,j)-...
        yn(1,j)*cct(1,j+1)+yj(1,j)*cct(1,j)*cct(1,j+1))*ce3)/(yn(1,j+1)*cct(1,j+1));
      b(1,i+1)=0.5*ce4*(a(1,i)*(yn(1,i+1)*cct(1,i)-yn(1,i)*cct(1,i+1)-...)
        yj(1,j)*cct(1,j)*cct(1,j+1))*ce2+b(1,j)*(yn(1,j+1)*cct(1,j)+...
        yn(1,j)*cct(1,j+1)-yj(1,j)*cct(1,j)*cct(1,j+1))*ce3)/(yn(1,j+1)*cct(1,j+1));
    end
    % Caso de polarizacion perpendicular
    if p==2
      a(1,j+1)=0.5*ce1*(a(1,j)*(yn(1,j+1)*cct(1,j+1)+yn(1,j)*cct(1,j)+...
        y_i(1,i) (yn(1,i+1)*cct(1,i+1)-...
        yn(1,j)*cct(1,j)+yj(1,j))*ce3)/(yn(1,j+1)*cct(1,j+1));
      b(1,i+1)=0.5*ce4*(a(1,i)*(yn(1,i+1)*cct(1,i+1)-yn(1,i)*cct(1,i)-...
        v_i(1,i) ce_{2+b(1,i)}(v_n(1,i+1)) cc_{1,i+1}
        yn(1,j)*cct(1,j)-yj(1,j))*ce3)/(yn(1,j+1)*cct(1,j+1));
    end
 end
 frec(1,III)=f;
 rhoa=b(1,np2)/a(1,np2);
```

```
refa(1,III)=abs(rhoa);
    tab=1/a(1,np2);
    tlab(1,III)=1-abs(rhoa).^2;
   end
 end
end
frecg=frec*1e-9;
'Resultados'
'frec(GHz) ref perd.tx'
[frecg'refa'tlab']
title(['Angulo de incidencia=',num2str(th),'grados'])
subplot(2,1,1)
plot(frec,refa)
grid
xlabel('Frecuencia en GHz')
ylabel('Reflectividad')
subplot(2,1,2)
plot(frecg,tlab)
grid
xlabel('Frecuencia en GHz')
ylabel('Perdidas de transmision')
 PROGRAM CALCULA
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      PARAMETER (MAXI=69, MAXJ=69, MAXK=96)
      COMPLEX*16
A (MAXK, MAXK), BH (MAXK), BE (MAXK), CH (MAXK), CE (MAXK)
      DIMENSION WX (MAXK, 10), BME (2), BMH (2)
      COMPLEX*16 RH, RE, RE2, RH2
      COMPLEX*16 GZERO (2*MAXK)
      COMPLEX ZEQ(MAXI)
      DIMENSION
IBR(3,MAXI),MAXBR(MAXJ),IDLN(2,MAXI),PV(3,MAXJ),
     1 WV (MAXI), KC (MAXK)
      COMMON /KTPQC/ D1X, D2X, D2Y
      DATA PI/3.141592653589793/
      DATA RH, RH2, RE, RE2 /4*(0.,0.)/
      CALL
DATAIN (PV, WV, IBR, NBR, NODES, IRT, DMIL, D2XM, D2YM, F1, F2,
```

1

\perp
FINC, TH1, TH2, THINC, PHIDEG, ER, TMIL, IMODE, IPRINT, ZEQ, ISAME)
DCM=DMIL*2.54D-3
IF (FINC .LE. 0.) CALL ERRORM('MAIN ',21)
TE (THINC LE. 0.) CALL ERRORM('MAIN '.21)
CALL DATAO1 (PV. WV. IBR. NBR. NODES, DMIL, D2XM, D2YM.
1 FR TMIL IMODE $7FO$ ISAME)
$- 01 \times DCM$
$D2X = d2X III^2 = 5$
$DZY=aZym^2.54D-5$
$T = TMLL \times 2.54D - 5$
DEG=THI-THINC
1000 DEG=DEG+THINC
IF(DEG.GT.TH2) GO TO 9999
WRITE(6,1312)
WRITE (7, 1312)
1312 FORMAT(1H /)
IF (IRT.EQ.1) WRITE(6,116) PHIGRAD
IF (IRT .EQ. 1) WRITE(7,116) PHIGRAD
116 FORMAT(' COEFICIENTES DE TRANSMISION PHI = ',F6.2,/)
IF (IRT .EQ. 1) GO TO 532
WRITE(6,117) PHIDEG
WRITE(7,117) PHIDEG
117 FORMAT(' COEFICIENTES DE REFLEXION PHI = ', F6.2,/)
532 CONTINUE
WRITE(6,1311)
WRITE(7,1311)
1311 FORMAT(2X,4H GHZ,3X,4H DEG,12X,2HTM,18X,2HTE,/,
<pre>1 18X,40HAMP(DB) PHASE(GRAD) AMP(DB) PHASE(GRAD) ,/</pre>
TH=DEG*PI/180.
IF(ABS(TH).LT00001) TH=0.0
F=F1-FINC
2000 CONTINUE
F=F+FINC
IF(F.GT.F2) GO TO 1000
WL=.299793/F
FMC = F * 1000.
CALL DIGEST (NBR, NODES, WX, NEL, D1X, D2Y, IBR, MAXBR,
1 IDLN, PV, WV, KC, MAXI, MAXJ, MAXK, ZEO, IER)
IF (IER .NE. 0) CALL ERRORM('DIGEST', IER)
PH=PHIDEG*PI/180.
CALL
AMAT (GZERO, WX, KC, WL, NEL, TH, PH, ER, T, A, IMODE, ISAME, MAXK)
TF (TPRINT_LT_2) GO TO 602

```
WRITE (6, 1305)
      CALL PRINT (A, NEL)
 1305 FORMAT(9H A MATRIX/)
  602 CONTINUE
      BME(1) = 0.
      BME (2) = 1.
      BMH(1) = 1.
      BMH(2) = 0.
      IF (IPRINT .LT. 2) GO TO 601
      WRITE (6, 1303)
      WRITE (6,1304) (BH(I), BE(I), I=1, NEL)
 1303 FORMAT(15X, 3H BH, 22X, 3H BE/)
 1304 FORMAT (5X, 2E11.3, 5X, 2E11.3)
  601 CONTINUE
      CALL CMINV (A, NEL, IER)
      IF (IER .NE. 0) CALL ERRORM('CMINV ', IER)
      IF (IPRINT .LT. 2) GO TO 604
      WRITE (6, 1307)
 1307 FORMAT (10H A INVERSE/)
      CALL PRINT (A, NEL)
  604 CONTINUE
      WRITE (6,1308)
      WRITE (6,1304) (CH(I), CE(I), I=1, NEL)
 1308 FORMAT(15X, 3H CH, 22X, 3H CE/)
      IF (IRT .EQ. 0 ) CALL RFLCT
     . (GZERO, WL, TH, PH, ER, T, BMH, BME, CH, CE, RH, RH2, RE, RE2, NEL)
      IF (IRT .EQ. 1 ) CALL TRANS
     . (GZERO, WL, TH, PH, ER, T, BMH, BME, CH, CE, RH, RH2, RE, RE2, NEL)
      ARHDB=20.*ALOG10 (CABS (RH) +1.D-9)
      AREDB=20.*ALOG10(CABS(RE)+1.D-9)
      ARH2DB=20.*ALOG10(CABS(RH2)+1.D-9)
      ARE2DB=20.*ALOG10 (CABS (RE2)+1.D-9)
      DRH=180.*ATAN2(AIMAG(RH), DBLE(REAL(RH))+1.D-30)/PI
      DRE=180.*ATAN2 (AIMAG (RE), DBLE (REAL (RE))+1.D-30) / PI
      DRH2=ATAN2 (AIMAG (RH2), DBLE (REAL (RH2))+1.D-30)*180./PI
      DRE2=ATAN2 (AIMAG (RE2), DBLE (REAL (RE2)) +1.D-30) *180./PI
      WRITE (6,1309) F, DEG, ARHDB, DRH, AREDB, DRE
      WRITE(6,1329) ARH2DB, DRH2, ARE2DB, DRE2
      WRITE (7,1309) F, DEG, ARHDB, DRH, AREDB, DRE
      WRITE(7,1329) ARH2DB, DRH2, ARE2DB, DRE2
1309 FORMAT (2F7.2, F10.3, F10.2, F10.3, F10.2)
 1329 FORMAT(14X, F10.3, F10.2, F10.3, F10.2)
      IF (IPRINT .EO. 1)
     1 CALL MOMOUT (FMC, NBR, IDLN, IBR, PV, WV, KC, CH, ZEQ)
      IF (IPRINT .EQ. 1)
```

```
1 CALL MOMOUT (FMC, NBR, IDLN, IBR, PV, WV, KC, CE, ZEQ)
     GO TO 2000
9999 CONTINUE
     STOP
     END
     SUBROUTINE KMPQ(M, X1, X2, WL, TH, PH, P, Q)
     IMPLICIT DOUBLE PRECISION (A-H, O-Z)
     INTEGER P,Q
     CALL KTPQ (TH, PH, WL, P, Q, XKT, YKT)
     AKT=SQRT (XKT*XKT+YKT*YKT)
     IF (AKT .NE. 0.) GO TO 4
      XKT=COS (PH)
      YKT=SIN(PH)
      AKT=1.0
   4 IF(M.EO.2) GO TO 1
     X1=XKT/AKT
     X2=YKT/AKT
     RETURN
   1 X1=-YKT/AKT
     X2=XKT/AKT
     RETURN
     END
     SUBROUTINE RMPQ(M, P, Q, ER, WL, TH, PH, T, R, Y, YPLUS)
     IMPLICIT DOUBLE PRECISION (A-H, O-Z)
     INTEGER P,Q
     COMPLEX*16 R, GAMMA, Y, YPLUS, AJ, CX
     DATA AJ/(0.,1.)/
     E_{0}=1.0
     CALL YMPQ (M, E0, WL, TH, PH, P, Q, GAMMA, YPLUS)
     CALL YMPQ(M, ER, WL, TH, PH, P, Q, GAMMA, Y)
     CX = CEXP(-AJ*2.*T*GAMMA)
     R = (Y - YPLUS) * CX / (Y + YPLUS)
     RETURN
     END
     SUBROUTINE YMPQ (M, ER, WL, TH, PH, P, Q, GAMMA, Y)
     IMPLICIT DOUBLE PRECISION (A-H, O-Z)
     INTEGER P,Q
     COMPLEX*16 GAMMA, Y
     DATA PI/3.141592653589793/
     AK=2.*PI*SORT(ER)/WL
     ETA1=SQRT(ER)/(120.*PI)
     CALL KTPQ(TH, PH, WL, P, Q, XK, YK)
     SOK=XK*XK+YK*YK
     AKAK=AK*AK
     IF (AKAK.GE.SQK) GO TO 1
```

```
GAMMA=CMPLX(0.,-SQRT(SQK-AKAK))
     GO TO 2
1
     GAMMA=CMPLX(SQRT(AKAK-SQK),0.)
2
     IF(M.EQ.2) GO TO 3
     Y=AK*ETA1/GAMMA
     RETURN
3
     Y=ETA1*GAMMA/AK
     RETURN
     END
     SUBROUTINE BMAT (GZERO, WL, TH, PH, ER, T, BME, BMH, BE, BH, NEL)
     IMPLICIT DOUBLE PRECISION (A-H, O-Z)
     DIMENSION BME(2), BMH(2)
     DIMENSION XK(2), YK(2)
     COMPLEX*16 BE(1), BH(1), GX, GY, R, Y, YPLUS
     COMPLEX*16 DOT1, DOT2, RM(2), GZERO(1)
     DO 200 MM=1,2
     CALL KMPQ(MM, X1, X2, WL, TH, PH, 0, 0)
     CALL RMPQ (MM, 0, 0, ER, WL, TH, PH, T, R, Y, YPLUS)
     R = (1 - R) / (1 + R)
     R=((YPLUS-R*Y)/(YPLUS+R*Y))+1.
     RM(MM) = R
     XK(MM) = X1
     YK(MM) = X2
 200 CONTINUE
     DO 1000 I=1, NEL
     GX=CONJG (GZERO(I))
     GY=CONJG (GZERO (I+NEL))
     DOT1 = (XK(1) * GX + YK(1) * GY) * RM(1)
     DOT2 = (XK(2) * GX + YK(2) * GY) * RM(2)
     BE (I) = BME (1) * DOT1 + BME (2) * DOT2
     BH(I) = BMH(1) * DOT1 + BMH(2) * DOT2
1000 CONTINUE
     RETURN
     END
     SUBROUTINE RFLCT (GZERO, WL, TH, PH, ER, T, BMH, BME, CH, CE, RH,
                         RH2, RE, RE2, NEL)
     IMPLICIT DOUBLE PRECISION (A-H, O-Z)
     DIMENSION BMH(2), BME(2)
     COMPLEX*16 CH(1), CE(1), R, Y, YPLUS, RH, RH2, RE, RE2
     COMPLEX*16 GZERO(1)
     COMPLEX*16 RPE, RPH, RSE, RSH, DOT, ETA
     COMPLEX*16 REX, REY, RHX, RHY
     COMMON /KTPQC/ D1X, D2X, D2Y
     REX = (0., 0.)
     REY = (0., 0.)
```

```
RHX = (0., 0.)
     RHY = (0., 0.)
     EIEX=0.0
     EIEY=0.0
     EIHX=0.0
     EIHY=0.0
     DO 2000 M=1,2
     CALL KMPQ (M, X1, X2, WL, TH, PH, 0, 0)
     CALL RMPQ(M, 0, 0, ER, WL, TH, PH, T, R, Y, YPLUS)
     R=Y^{*}(1.-R)/(1.+R)
     ETA=YPLUS+R
     R=(YPLUS-R)/ETA
     RSE = (0., 0.)
     RSH = (0., 0.)
     DO 300 N=1,NEL
     DOT=X1*GZERO(N)+X2*GZERO(N+NEL)
     RSE=RSE+CE(N)*DOT
     RSH=RSH+CH(N) * DOT
 300 CONTINUE
     RPE=R*BME(M)-RSE/(ETA*D1X*D2Y)
     RPH=R*BMH (M) -RSH/ (ETA*D1X*D2Y)
     EIEX=EIEX+BME(M)*X1
     EIEY=EIEY+BME(M) *X2
     EIHX=EIHX+BMH(M)*X1
     EIHY=EIHY+BMH(M) *X2
     REX=REX+RPE*X1
     REY=REY+RPE*X2
     RHX=RHX+RPH*X1
     RHY=RHY+RPH*X2
2000 CONTINUE
     RE=EIEX*REX+EIEY*REY
     RH=EIHX*RHX+EIHY*RHY
     RE2=-EIEY*REX+EIEX*REY
     RH2=-EIHY*RHX+EIHX*RHY
     RETURN
     END
     SUBROUTINE TRANS (GZERO, WL, TH, PH, ER, T, BMH, BME,
    1CH, CE, RH, RH2, RE, RE2, NEL)
     IMPLICIT DOUBLE PRECISION (A-H, O-Z)
     DIMENSION BMH(2), BME(2)
     COMPLEX*16 CH(1), CE(1), R, Y, YPLUS, ETA, RH, RH2, RE, RE2
     COMPLEX*16 RPE, RPH, RSE, RSH, DOT, GZERO (1)
     COMPLEX*16 TM00, GAM, GAMP, AJ
     COMPLEX*16 REX, REY, RHX, RHY
     COMMON /KTPQC/ D1X, D2X, D2Y
```

```
DATA AJ/(0.,1.)/
     REX = (0., 0.)
     REY = (0., 0.)
     RHX = (0., 0.)
     RHY = (0., 0.)
     EIEX=0.0
     EIEY=0.0
     EIHX=0.0
     EIHY=0.0
     E0=1.0
     DO 2000 M=1,2
     CALL KMPQ(M, X1, X2, WL, TH, PH, 0, 0)
     CALL RMPQ(M, 0, 0, ER, WL, TH, PH, T, R, Y, YPLUS)
     CALL YMPQ(M, ER, WL, TH, PH, 0, 0, GAM, Y)
     CALL YMPQ (M, E0, WL, TH, PH, 0, 0, GAMP, YPLUS)
     TM00=(CEXP(AJ*T*(GAMP-GAM))+R*CEXP(AJ*T*(GAMP+GAM)))
    1
                      /(1.+R)
     R = (1 - R) / (1 + R)
     ETA=YPLUS+Y*R
     R=((YPLUS-R*Y)/(YPLUS+R*Y))+1.
     RSE = (0., 0.)
     RSH = (0., 0.)
     DO 300 N=1,NEL
     DOT=X1*GZERO(N)+X2*GZERO(N+NEL)
     RSE=RSE+CE (N) *DOT
     RSH=RSH+CH(N) *DOT
 300 CONTINUE
     RPE=R*BME(M)-RSE/(ETA*D1X*D2Y)
     RPE=RPE*TM00
     RPH=R*BMH(M)-RSH/(ETA*D1X*D2Y)
     RPH=RPH*TM00
     EIEX=EIEX+BME(M) *X1
     EIEY=EIEY+BME(M) *X2
     EIHX=EIHX+BMH(M) *X1
     EIHY=EIHY+BMH(M) *X2
     REX=REX+RPE*X1
     REY=REY+RPE*X2
     RHX=RHX+RPH*X1
     RHY=RHY+RPH*X2
2000 CONTINUE
     RE=EIEX*REX+EIEY*REY
     RH=EIHX*RHX+EIHY*RHY
     RE2=-EIEY*REX+EIEX*REY
     RH2=-EIHY*RHX+EIHX*RHY
     RETURN
```

```
END
      SUBROUTINE GEOM (P, NPS, X, NX, A, JC, KC, ZBRNCH, MAXK)
      COMPLEX ZBRNCH
      DATA PI /3.141592653589793/
      DISQ=0.
      DO 10 I=1,3
      DISQ=(P(2,I)-P(1,I))**2+DISQ
  10 CONTINUE
      DISL=SORT (DISQ)
      N=NPS
      N=N/2
      N=2*N
      IF(N .EQ. 0) N=2
      XV = (P(2, 1) - P(1, 1)) / DISL
      YV = (P(2,2) - P(1,2)) / DISL
      ZV=(P(2,3)-P(1,3))/DISL
      THETA=ATAN2 (SQRT (XV*XV+YV*YV+1.D-30), ZV) *180./PI
      PHI=ATAN2 (YV, XV+1.D-30) *180./PI
      DELTA=DISL/N
      XP = P(1, 1)
      YP = P(1, 2)
      ZP = P(1, 3)
      RD=PI/180.
      JJC=IABS (JC)
      NM1=N-1+JJC
      DO 20 I=1,NM1
      JC2=JC+2
      GO TO (427,428,429,430) JC2
427
      KC(NX+NM1) = -1
      GO TO 431
428
      KC(NX+I)=0
      GO TO 431
430
      KC (NX+NM1) = -1
429
      KC(NX+1) = 1
431
      II=I
      IF(JC.GT.0)II=I-1
      SX=DELTA*SIN(THETA*RD)*COS(PHI*RD)*II
      SY=DELTA*SIN(THETA*RD)*SIN(PHI*RD)*II
      SZ=DELTA*COS (THETA*RD) *II
      LOC=NX+I
      X(LOC, 1) = XP + SX
      X(LOC, 2) = YP + SY
      X(LOC, 3) = ZP + SZ
      X(LOC, 4) = THETA*PI/180.
      X(LOC, 5) = COS(PHI*PI/180.)
```

```
X(LOC, 6) = SIN(PHI*PI/180.)
      X(LOC, 7) = DELTA
      X(LOC, 8) = A
      X(LOC, 9) = REAL(ZBRNCH)
      X(LOC, 10) = AIMAG(ZBRNCH)
  20 CONTINUE
      NX=NX+NM1
      RETURN
      END
      SUBROUTINE PRINT (A, NN)
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      COMPLEX*16 A(NN,NN),C
      DIMENSION AA(10), BB(10)
      NT = (NN-1)/10+1
      DO 50 L=1,NT
      NTL=10*(L-1)
      NK = NN-NTL
      IF ( NK .GT. 10) NK = 10
      DO 4 J=1, NN
      DO 61 I=1,NK
      INTL=I+NTL
      C=A(J, INTL)
      AA(I) = REAL(C)
      BB(I) = AIMAG(C)
   61 CONTINUE
      WRITE(6,5)(AA(K), K=1,NK)
      WRITE(6,5)(BB(K),K=1,NK)
    4 WRITE (6,6)
    5 FORMAT (1P10E12.3)
    6 FORMAT(1H0)
      WRITE(6,6)
50
      CONTINUE
      RETURN
      END
      SUBROUTINE CMMPY2 (A, NEL, BH, BE, CH, CE)
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      COMPLEX*16 A (NEL, NEL), BH (1), BE (1), CH (1), CE (1)
      DO 200 I=1,NEL
      CH(I) = (0., 0.)
      CE(I) = (0., 0.)
      DO 200 J=1,NEL
      CH(I) = A(I, J) * BH(J) + CH(I)
 200 CE (I) = A(I, J) * BE(J) + CE(I)
      RETURN
      END
```

```
SUBROUTINE KTPQ (TH, PH, WL, P, Q, XK, YK)
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      INTEGER P,Q
      COMMON /KTPQC/ D1X, D2X, D2Y
      DATA TPI /6.2831853071796/
      SINTH=SIN(TH)
      COSPH=COS (PH)
      SINPH=SIN(PH)
      XK=TPI*(SINTH*COSPH/WL+P/D1X)
      YK=TPI* (SINTH*SINPH/WL-P*D2X/(D1X*D2Y)+Q/D2Y)
      RETURN
      END
      SUBROUTINE MOMOUT (FMC, NBR, IDLN, IBR, PV, WV, KC, CURR, Z)
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION IDLN(1), IBR(1), PV(1), KC(1), WV(1)
      COMPLEX*16 CURR(1), CURRS
      COMPLEX Z(1)
      WRITE(6,110)
      FORMAT(/, ' -----', /)
110
      PC=FMC*1.D-4/2.99793
      WRITE(6,101) FMC
      FORMAT(/' FREQUENCY = ', F10.2, ' MHZ'/)
101
      DO 10 I=1, NBR
      LOC = 3 * (I - 1)
      WRITE (6,102) I, IBR (LOC+1), IBR (LOC+2)
      FORMAT(/' BRANCH NO. ', I3,' FROM NODE ', I3,' TO NODE
102
',I3)
      WRITE (6,103)
103
      FORMAT(' POSICION DEL VECTOR ')
      FORMAT (' X= ',E15.5,' Y= ',E15.5)
104
      J1 = 3 * (IBR (LOC+1) - 1)
      J2=3*(IBR(LOC+2)-1)
      X1=PV(J1+1)*PC
      Y1=PV(J1+2)*PC
      WRITE(6,104) X1,Y1
      X1=PV(J2+1)*PC
      Y1 = PV(J2 + 2) * PC
      WRITE(6,104) X1,Y1
      WIDTH=WV(I) * PC
      WRITE(6,109) VECTW
109
     FORMAT(/' VECTW =', E15.5)
      LOC2=2*(I-1)
      N2=IDLN(LOC2+2)
      N1=IDLN (LOC2+1)
      NS=N2-N1+1
```

```
IF(KC(N2).NE.0) NS=NS-1
      IF(KC(N1).NE.0) NS=NS-1
      WRITE(6,105) NS
105
      FORMAT (/' ....NO. OF SEGMENTOS = ', I3, /)
      IF ( CABS(Z(I)) .NE. 0.0) WRITE (6,108) Z(I)
108
      FORMAT (' Z IMPEDANCIA = ', E15.5, '+ J*', E15.5, /)
      WRITE (6, 106)
      FORMAT(' CURRIENTES'/' MAGNITUD .. REAL ..... IMAG',
106
     X' ..... KC'/)
      DO 20 J=N1,N2
      CURRS = CURR(J)
      AMAG=CABS (CURRS)
      WRITE (6,107) AMAG, CURRS, KC (J)
      FORMAT ( 3E12.3, I7)
107
20
      CONTINUE
10
      CONTINUE
      WRITE (6, 110)
      RETURN
      END
      SUBROUTINE GNPQ(GS,XK,YK,WX,KC,NEL,MAXK)
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION KC (MAXK), WX (MAXK, 10), WXS (8)
      COMPLEX*16 GI,GX,GY,CX
      COMPLEX*16 J
      COMPLEX*16 GS (2*MAXK)
      PARAMETER (NPP1=49, MAXKS=96)
      PARAMETER (PI=3.141592653589793)
      PARAMETER (J = (0.0, 1.0))
      PARAMETER (DTR=0.0174532925199433)
      COMMON /CSPSI/ CPSI(NPP1,MAXKS),SPSI(NPP1,MAXKS)
      IF (MAXK .NE. MAXKS) CALL ERRORM ('GNPQ ',9)
      ICNT=0
      DO 220 N=1,NEL
      XN = WX(N, 1)
      YN = WX(N, 2)
      COSPSI=WX(N,5)
      SINPSI=WX(N,6)
      DS=WX(N,7)
      V = (YK*COSPSI-XK*SINPSI)*WX(N,8)/2.
      WFACT=1.-V*V/6.
      IF (ABS(V) .GT. 1.D-3) WFACT=SIN(V)/V
      XZ=XK*COSPSI+YK*SINPSI
      ZDS=XZ*DS
      IF(XZ.NE.0.) OZ2=1./(XZ*XZ)
      IF(KC(N).EQ.1) GO TO 39
```

```
XNM1=XN-DS*COSPSI
     YNM1=YN-DS*SINPSI
     XP=XK*XNM1+YK*YNM1
     CX = CEXP(J * XP)
     IF (ABS(CABS(CX)-1.) .GT. 1.D-6) THEN
      WRITE(6,1001) CX
1001 FORMAT (' ERROR EN CEXP ', 2D15.5)
      STOP
     ENDIF
     GI=DS*DS*(.5+J*ZDS/3.)
     IF (ABS(ZDS) .GE. .0001)
         GI = (OZ2 - J*DS/XZ) * CEXP (J*ZDS) - OZ2
     GI=GI*WFACT
     GX=(CX*GI/DS)*COSPSI
     GY = (CX*GI/DS)*SINPSI
     IF (KC(N) .EQ. -1) GO TO 410
     IF (KC(N) .EQ. 0) GO TO 40
  39 GX = (0., 0.)
     GY = (0., 0.)
  40 XNP1=XN+DS*COSPSI
     YNP1=YN+DS*SINPSI
     XP=XK*XNP1+YK*YNP1
     CX = CEXP(J * XP)
     GI=DS*DS*(.5-J*ZDS/3.)
     IF (ABS(ZDS) .GE. .0001)
         GI = (OZ2+J*DS/XZ)*CEXP(-J*ZDS)-OZ2
     GI=GI*WFACT
     GX=(CX*GI/DS)*COSPSI+GX
     GY=(CX*GI/DS)*SINPSI+GY
     GO TO 410
 400 CONTINUE
     ICNT=ICNT+1
     DO 530 IDUM=1,8
     WXS(IDUM)=WX(N, IDUM)
 530 CONTINUE
     CALL GNPQJ(WXS,XK,YK,GX,GY,CPSI(1,ICNT),SPSI(1,ICNT))
 410 CONTINUE
     GS(N) = GX
     GS(N+NEL)=GY
 220 CONTINUE
     RETURN
     END
     SUBROUTINE JCONNX (JNODE, NBR, IBR, IB)
     IMPLICIT DOUBLE PRECISION (A-H, O-Z)
     DIMENSION IBR(1), IB(1)
```

```
I=1
      DO 10 IS=1,NBR
      LOC=3*(IS-1)
      IF (IBR(LOC+1)-JNODE) 50,60,50
   50 IF (IBR(LOC+2)-JNODE) 10,60,10
   60 CONTINUE
      IB(I) = IS
      I=I+1
   10 CONTINUE
      RETURN
      END
      SUBROUTINE CPSIS (N1, N2, N3, PV, PSI0, ALPHA, PSI1, PSI2)
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION X(3), Y(3), PV(1)
      DATA RAD /57.29577951/
      LOC = 3 * (N1 - 1)
      X(1) = PV(LOC+1)
      Y(1) = PV(LOC+2)
      LOC = 3 * (N2 - 1)
      X(2) = PV(LOC+1)
      Y(2) = PV(LOC+2)
      LOC = 3 * (N3 - 1)
      X(3) = PV(LOC+1)
      Y(3) = PV(LOC+2)
      PSI1=ATAN2(Y(2)-Y(1),X(2)-X(1))*RAD
      IF (PSI1 .LT. 0.) PSI1=PSI1+360.
      PSI2=ATAN2(Y(3)-Y(2),X(3)-X(2))*RAD
      IF (PSI2 .LT. 0.) PSI2=PSI2+360.
      ALPHA=ABS (PSI1-PSI2)
      IF (ALPHA .GT. 180.) ALPHA = 360.-ALPHA
      PSI0=90.+(PSI1+PSI2)/2.
      IF (PSI2 .GT. PSI1) PSI0=PSI0+180.
      IF (PSI0 .GT. 360.) PSI0=PSI0-360.
      RETURN
      END
      SUBROUTINE GNPQJ(WXS,XK,YK,GX,GY,ACPSI,ASPSI)
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      COMPLEX*16 GX, GY, FW, J, CONST, CX, WJ3
      PARAMETER (PTS=48.)
      PARAMETER (NPP1=49)
      PARAMETER (PI=3.141592653589793)
      PARAMETER (J = (0.0, 1.0))
      DIMENSION WXS(8)
      DIMENSION
XII(NPP1+1), XIR(NPP1+1), YII(NPP1+1), YIR(NPP1+1)
```

```
DIMENSION ACPSI(1), ASPSI(1)
    XC=WXS(1)
    YC=WXS(2)
    DL=WXS(3)
    DR=WXS(4)
    PSIO=WXS(5)
    ALPHA=WXS(6)
    W = WXS(7)
    W3=WXS(8)
    DALPHA=ALPHA/PTS
    WS2=W*W*.5
    WJ3=J*W3
    DO 10 I=1,NPP1
    SINPSI=ASPSI(I)
    COSPSI=ACPSI(I)
    Z=XK*COSPSI+YK*SINPSI
    ZW = Z * W
    FW=WS2+Z*WJ3
    IF (ABS(ZW) .GE. .01) FW = ((1 - J^*ZW) * CEXP(J^*ZW) - 1.) / (Z^*Z)
    XIR(I) =-SINPSI*REAL(FW)
    XII(I) =-SINPSI*AIMAG(FW)
    YIR(I) = COSPSI*REAL(FW)
    YII(I) = COSPSI*AIMAG(FW)
 10 CONTINUE
    HT=DALPHA/3.
    SUMA=XIR(1)+4.*XIR(2)+XIR(3)
    SUMB=XII(1)+4.*XII(2)+XII(3)
    SUMC=YIR(1)+4.*YIR(2)+YIR(3)
    SUMD=YII(1)+4.*YII(2)+YII(3)
    DO 4 I=5,NPP1,2
    SUMA=SUMA+XIR(I-2)+4.*XIR(I-1)+XIR(I)
    SUMB=SUMB+XII(I-2)+4.*XII(I-1)+XII(I)
    SUMC = SUMC + YIR(I-2) + 4 \cdot YIR(I-1) + YIR(I)
    SUMD = SUMD + YII(I-2) + 4. * YII(I-1) + YII(I)
4
    CONTINUE
    Z=XK*XC+YK*YC
    CONST = CEXP(J \times Z)
    CX=HT*CONST/W
    GX=CX* (SUMA+J*SUMB)
    GY=CX* (SUMC+J*SUMD)
    PSIDR=PSIO-ALPHA/2.
    PHI1=PSIDR-PI/2.
    SPHI1=SIN(PHI1)
    CPHI1=COS (PHI1)
    V=-XK*SPHI1+YK*CPHI1
```

```
Z=XK*CPHI1+YK*SPHI1
      VW2=V*W/2.
      ZDR=Z*DR
      SVV=1.
      IF (ABS(VW2) .GT. .0001) SVV=SIN(VW2)/VW2
      CX=DR
      IF (ABS(ZDR) .GT. .0001) CX=DR*(CEXP(J*ZDR)-1.)/(J*ZDR)
      CX=CX*SVV*CEXP(J*VW2)*CONST
      GX=GX-SIN(PSIDR)*CX
      GY=GY+COS (PSIDR) *CX
      PSIDL=PSIO+ALPHA/2.
      PHI2=PSIDL+PI/2.
      SPHI2=SIN(PHI2)
      CPHI2=COS (PHI2)
      V=-XK*SPHI2+YK*CPHI2
      Z=XK*CPHI2+YK*SPHI2
      VW2=V*W/2.
      ZDL=Z*DL
      SVV=1.
      IF (ABS(VW2) .GT. .0001) SVV=SIN(VW2)/VW2
      CX=DL
      IF (ABS(ZDL) .GT. .0001) CX=DL*(CEXP(J*ZDL)-1.)/(J*ZDL)
      CX=CX*SVV*CEXP(-J*VW2)*CONST
      GX=GX-SIN(PSIDL)*CX
      GY=GY+COS (PSIDL) *CX
      RETURN
      END
      SUBROUTINE SIGELM (I, WX, KC, DIAMAT, DSO, ISAME, MAXK)
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION WX (MAXK, 10), KC (1)
      COMPLEX*16 DIAMAT, SIGMAI, AREAF, AREAH, AREAB
      PARAMETER (PI=3.141592653589793)
      PARAMETER (TPI=PI*2.)
      SIGMAI = WX(I, 9) + (.0, 1.) * WX(I, 10)
      AREAF=WX(I,7)*WX(I,8)*SIGMAI/DSQ
      AREAH=AREAF/2.
      WW = WX(I,7)
AREAB=((WX(I,3)+WX(I,4))*WW+WW*WW*WX(I,6)/2.)*SIGMAI/DSO
      GOTO (10,20,30,40) KC(I)+2
```

- 10 DIAMAT=AREAH RETURN
- 20 DIAMAT=AREAF RETURN
- 30 DIAMAT=AREAH

```
RETURN
   40 DIAMAT=.0
      IF (ISAME.NE.0) DIAMAT=AREAB
      RETURN
      END
      SUBROUTINE
AMAT (GZERO, WX, KC, WL, NEL, TH, PH, ER, T, A, IMODE, ISAME, MAXK)
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      PARAMETER (PI=3.141592653589793)
      PARAMETER (TPI=PI*2.)
      PARAMETER (MAXKS=96)
      INTEGER P,Q,QMAX,PMAX
      DIMENSION WX (MAXK, 10), KC (1)
      COMPLEX*16 A(NEL, NEL)
      COMPLEX*16 C1, C2, C3, C4, DIAMAT
      COMPLEX*16 GAMMA, AJ, R, Y(2), YPLUS(2), ETAD1, ETAD2
      COMPLEX*16 ETAEQ, FACT, DOTI, DOTJ, CX
      COMPLEX*16
GS (2*MAXKS), GZERO (2*MAXK), GSA (MAXKS), GSB (MAXKS)
      COMPLEX*16 CGSA (MAXKS), CGSB (MAXKS)
      COMMON /KTPQC/ D1X, D2X, D2Y
      IF (MAXK .NE. MAXKS) CALL ERRORM ('AMAT ',9)
      DSQ=D1X*D2Y
      SINTH=SIN(TH)
      SINPH=SIN(PH)
      COSPH=COS (PH)
      AK=TPI/WL
      ETA1=1./(120.*PI)
      AKAK=AK*AK
      AKER=AK*SQRT (ER)
      ETA1ER=ETA1*SQRT(ER)
      AKAKER=AKAK*ER
      DO 1000 I=1,NEL
      DO 1000 J=I,NEL
      A(I, J) = (0., 0.)
      A(J, I) = (0., 0.)
 1000 CONTINUE
      PMAX=IMODE
      QMAX=PMAX
      IPMAX=2*PMAX+1
      IOMAX=2*OMAX+1
      XK0=TPI*SINTH*COSPH/WL
      YKO=TPI*SINTH*SINPH/WL
      OD1X=TPI/D1X
      DP=TPI*D2X/(D1X*D2Y)
```

```
OD2Y=TPI/D2Y
      DO 110 IP=1, IPMAX
      P= IP-1-PMAX
      DO 100 IQ=1, IQMAX
      Q = IQ - 1 - QMAX
      XKT=XK0+P*OD1X
      YKT=YK0-P*DP+Q*OD2Y
      CALL GNPQ(GS,XKT,YKT,WX,KC,NEL,MAXK)
      SQK=XKT*XKT+YKT*YKT
      AKT=SQRT (SQK)
      IF (AKT .NE. 0) GO TO 4
      X1A=COSPH
      X2A=SINPH
      X1B=-SINPH
      X2B=COSPH
      GO TO 10
    4 CONTINUE
      OAKT=1./AKT
      X1A=XKT*OAKT
      X2A=YKT*OAKT
      X1B=-YKT*OAKT
      X2B=XKT*OAKT
10
     IF (AKAK.GE.SQK) GO TO 11
      GAMMA=CMPLX(0., -SQRT(SQK-AKAK))
      GO TO 12
 11
     GAMMA=CMPLX(SQRT(AKAK-SQK),0.)
 12
      CONTINUE
      YPLUS(1) = AK*ETA1/GAMMA
      YPLUS (2) = ETA1 * GAMMA/AK
      IF (AKAKER .GE. SQK) GO TO 21
      GAMMA=CMPLX(0., -SQRT(SQK-AKAKER))
      GO TO 22
 21
      GAMMA=CMPLX(SQRT(AKAKER-SQK), 0.)
 22
      CONTINUE
      Y(1) = AKER*ETA1ER/GAMMA
      Y(2) = ETA1ER*GAMMA/AKER
      CX = CEXP(-AJ * 2 \cdot T * GAMMA)
      R=(Y(1)-YPLUS(1))*CX/(Y(1)+YPLUS(1))
      ETAEQ=YPLUS(1)+Y(1)*(1.-R)/(1.+R)
      FACT=ETAEQ*DSQ
      ETAD1=1./FACT
      R = (Y(2) - YPLUS(2)) * CX / (Y(2) + YPLUS(2))
      ETAEQ=YPLUS(2)+Y(2)*(1.-R)/(1.+R)
      FACT=ETAEQ*DSQ
      ETAD2=1./FACT
```

```
DO 80 I=1,NEL
     GSA(I) = X1A*GS(I) + X2A*GS(I+NEL)
     GSB(I) = X1B*GS(I) + X2B*GS(I+NEL)
     CGSA(I) = CONJG(GSA(I))
     CGSB(I)=CONJG(GSB(I))
  80 CONTINUE
     DO 1001 I=1, NEL-1
     DOTI=GSA(I)
     DOTJ=GSB(I)
     C1=CONJG (DOTI) *ETAD1
     C2=CONJG (DOTJ) *ETAD2
     C3=DOTI*ETAD1
     C4=DOTJ*ETAD2
     A(I,I) = A(I,I) + DOTI * C1 + DOTJ * C2
     DO 1001 J=I+1,NEL
     A(I, J) = A(I, J) + GSA(J) * C1 + GSB(J) * C2
     A(J, I) = A(J, I) + CGSA(J) * C3 + CGSB(J) * C4
1001 CONTINUE
     DOTI=GSA(NEL)
     DOTJ=GSB(NEL)
     A(NEL, NEL) = A(NEL, NEL) + DOTI * CONJG(DOTI) * ETAD1
                             +DOTJ*CONJG (DOTJ) *ETAD2
     IF (IP.NE.1+PMAX.OR.IQ.NE.1+QMAX) GOTO 100
     DO 98 KK=1,2*NEL
     GZERO (KK) =GS (KK)
  98 CONTINUE
 100 CONTINUE
     WRITE(6,401) IP-PMAX-1
 401 FORMAT(' COMPLETED P = ', I3)
 110 CONTINUE
     DO 1002 I=1,NEL
     CALL SIGELM(I,WX,KC,DIAMAT,DSQ,ISAME,MAXK)
1002 A(I,I) = A(I,I) + DIAMAT
     RETURN
     END
     SUBROUTINE DIGEST (NBR, NODES, X, NEL, D1X, D2Y, IBR, MAXBR,
    1 IDLN, PV, WV, KC, MAXI, MAXJ, MAXK, Z, IER)
     IMPLICIT DOUBLE PRECISION (A-H, O-Z)
     PARAMETER (DTR= .0174532925199433)
     PARAMETER (TPI=6.2831853071796)
     PARAMETER (PTS=48.0, NPP1=49, MAXKS=96)
     DIMENSION P(2,3), X(MAXK, 10)
     DIMENSION PSI(MAXKS), IB(10)
     COMPLEX Z(MAXI)
     DIMENSION AMXLP (MAXKS, MAXKS)
```

```
DIMENSION
IBR(3,MAXI),MAXBR(MAXJ),IDLN(2,MAXI),PV(3,MAXJ),
     1 WV(MAXI), KC(MAXK)
      COMMON /CSPSI/ CPSI (NPP1, MAXKS), SPSI (NPP1, MAXKS)
      IER = 0
      IF (NBR .GT. MAXI) IER=1
      IF (NODES .GT. MAXJ) IER=IER+2
      IF (MAXKS .NE. MAXK) IER=9
      IF( IER .NE. 0) RETURN
      DO 50 J=1, NODES
      MAXBR(J) = 0
      DO 55 I=1,NBR
      DO 55 J2=1,2
      IF (J . EQ. IBR(J2, I)) MAXBR(J) = MAXBR(J) + 1
55
      CONTINUE
50
      CONTINUE
      IF (IER .NE. 0) RETURN
      ICNT=0
      NX=0
      DO 10 I=1, NBR
      DO 20 J2=1,2
      JN=IBR(J2,I)
      DO 20 K=1,3
      P(J2, K) = PV(K, JN)
20
      CONTINUE
      N1 = IBR(1, I)
      N2 = IBR(2, I)
      W=WV(I)
      NC1=0
      IF (MAXBR(N1) .GT. 1) GO TO 600
      IF (ABS(P(1,1)-D1X/2.) .LT. 1.D-4) GO TO 665
      IF (ABS(P(1,1)+D1X/2.) .LT. 1.D-4) GO TO 665
      IF (ABS(P(1,2)-D2Y/2.) .LT. 1.D-4) GO TO 665
      IF (ABS(P(1,2)+D2Y/2.) .LT. 1.D-4) GO TO 665
      GO TO 200
  665 CONTINUE
      NC1=1
      IF (ABS(P(1,1)-D1X/2.) .LT. 1.D-4 .AND. ABS(P(1,2)-
P(2,2))
     1 .LT. 1.D-5) GO TO 200
      IF (ABS(P(1,1)+D1X/2.) .LT. 1.D-4 .AND. ABS(P(1,2)-
P(2,2))
     1 .LT. 1.D-5) GO TO 200
      IF (ABS(P(1,2)-D2Y/2.) .LT. 1.D-4 .AND. ABS(P(1,1)-
P(2,1))
```

```
1 .LT. 1.D-5) GO TO 200
      IF (ABS(P(1,2)+D2Y/2.) .LT. 1.D-4 .AND. ABS(P(1,1)-
P(2,1))
     1 .LT. 1.D-5) GO TO 200
      PSI2=ATAN2(P(2,2)-P(1,2),P(2,1)-P(1,1))/DTR
      TANP2=TAN (PSI2*DTR)
      RLPRME=W*TANP2/2.
      IF (ABS(P(1,2)-D2Y/2.) .LT. 1.D-4) RLPRME=W/(2.*TANP2)
      IF (ABS(P(1,2)+D2Y/2.) .LT. 1.D-4) RLPRME=W/(2.*TANP2)
      RLPSTR=RLPRME
      IF (RLPRME .LT. 0.) RLPSTR=-RLPRME
      GO TO 610
  600 CONTINUE
      NC1=1
      CALL JCONNX (N1, NBR, IBR, IB)
      IF (IB(1) .EQ. I) GO TO 310
      DO 320 IS=2, MAXBR(N1)
      IF (IB(IS) .EQ. I) GO TO 330
  320 CONTINUE
  330 ISTORE=IB(1)
      IB(1) = IB(IS)
      IB(IS)=ISTORE
  310 CONTINUE
      RLPSTR=0.0
      DO 340 IS=2, MAXBR(N1)
      N3=IBR(1, IB(IS))
      N4 = IBR(2, IB(IS))
      NC=N3
      IF (NC .EQ. N1) NC=N4
      CALL CPSIS (N2, N1, NC, PV, PSIO, ALPHA, PSI1, PSI2)
      RLPRME=W*TAN (ALPHA*DTR/2.)/2.
      IF (RLPRME .LT. 0.) IER=7
      IF (RLPRME .GT. RLPSTR) RLPSTR=RLPRME
  340 CONTINUE
      AMXLP(N1, I) = RLPSTR
  610 CONTINUE
      SX=P(1,1)-P(2,1)
      SY = P(1, 2) - P(2, 2)
      PSIR=ATAN2(P(1,2)-P(2,2),P(1,1)-P(2,1))
      DIS=SQRT(SX*SX+SY*SY)
      IF (RLPSTR .GT. DIS) IER=7
      DX=RLPSTR*COS(PSIR)
      DY=RLPSTR*SIN(PSIR)
      P(1, 1) = P(1, 1) - DX
      P(1,2) = P(1,2) - DY
```

```
200 CONTINUE
      NC2=0
      IF (MAXBR(N2) .GT. 1) GO TO 670
      IF (ABS(P(2,1)-D1X/2.) .LT. 1.D-4) GO TO 675
      IF (ABS(P(2,1)+D1X/2.) .LT. 1.D-4) GO TO 675
      IF (ABS(P(2,2)-D2Y/2.) .LT. 1.D-4) GO TO 675
      IF (ABS(P(2,2)+D2Y/2.) .LT. 1.D-4) GO TO 675
      GO TO 210
  675 CONTINUE
      NC2=-1
      IF (ABS(P(2,1)-D1X/2.) .LT. 1.D-4 .AND. ABS(P(1,2)-
P(2,2))
     1 .LT. 1.D-5) GO TO 210
      IF (ABS(P(2,1)+D1X/2.) .LT. 1.D-4 .AND. ABS(P(1,2)-
P(2,2))
     1 .LT. 1.D-5) GO TO 210
      IF (ABS(P(2,2)-D2Y/2.) .LT. 1.D-4 .AND. ABS(P(1,1)-
P(2,1))
     1 .LT. 1.D-5) GO TO 210
      IF (ABS(P(2,2)+D2Y/2.) .LT. 1.D-4 .AND. ABS(P(1,1)-
P(2,1))
     1 .LT. 1.D-5) GO TO 210
      PSI2=ATAN2(P(1,2)-P(2,2),P(1,1)-P(2,1))/DTR
      TANP2=TAN(PSI2*DTR)
      RLPRME=W*TANP2/2.
      IF (ABS(P(2,2)-D2Y/2.) .LT. 1.D-4) RLPRME=W/(2.*TANP2)
      IF (ABS(P(2,2)+D2Y/2.) .LT. 1.D-4) RLPRME=W/(2.*TANP2)
      RLPSTR=RLPRME
      IF (RLPRME .LT. 0.) RLPSTR=-RLPRME
      GO TO 680
  670 CONTINUE
      NC2=-1
      CALL JCONNX (N2, NBR, IBR, IB)
      IF (IB(1) .EQ. I) GO TO 410
      DO 420 IS=2, MAXBR (N2)
      IF (IB(IS) .EO. I) GO TO 430
  420 CONTINUE
  430 ISTORE=IB(1)
      IB(1) = IB(IS)
      IB(IS)=ISTORE
  410 CONTINUE
      RLPSTR=0.0
      DO 440 IS=2, MAXBR (N2)
      N3=IBR(1, IB(IS))
      N4 = IBR(2, IB(IS))
```

```
NC=N3
      IF (NC .EQ. N2) NC=N4
      CALL CPSIS (N1, N2, NC, PV, PSIO, ALPHA, PSI1, PSI2)
      RLPRME=W*TAN (ALPHA*DTR/2.)/2.
      IF (RLPRME .LT. 0.) IER=7
      IF (RLPRME .GT. RLPSTR) RLPSTR=RLPRME
  440 CONTINUE
      AMXLP(N2, I) = RLPSTR
  680 CONTINUE
      SX=P(2,1)-P(1,1)
      SY=P(2,2)-P(1,2)
      PSIR=ATAN2(P(2,2)-P(1,2),P(2,1)-P(1,1))
      DIS=SQRT(SX*SX+SY*SY)
      IF (RLPSTR .GT. DIS) IER=7
      DX=RLPSTR*COS(PSIR)
      DY=RLPSTR*SIN(PSIR)
      P(2, 1) = P(2, 1) - DX
      P(2,2) = P(2,2) - DY
  210 CONTINUE
      JC=NC1+NC2
      NC1NC2=NC1*NC2
      IF (NC1NC2) 4, 5, 5
4
      JC=2
      GO TO 60
5
      IF (NC1.EQ.1) JC=1
      IF (NC2.EQ.-1) JC=-1
60
      CONTINUE
      NX1=NX+1
      NPL=IBR(3,I)
      CALL GEOM(P,NPL,X,NX,W,JC,KC,Z(I),MAXK)
      IF (NX .GT. MAXK) GO TO 230
      IDLN(1, I) = NX1
      IDLN(2, I) = NX
10
      CONTINUE
      DO 220 J=1, NODES
      IF (MAXBR(J) .EO. 0) GO TO 220
      IF (MAXBR(J) .GT. 1) GO TO 710
      DO 720 K=1,3
      P(1, K) = PV(K, J)
  720 CONTINUE
      IF (ABS(P(1,1)-D1X/2.) .LT. 1.D-4) GO TO 770
      IF (ABS(P(1,1)+D1X/2.) .LT. 1.D-4) GO TO 770
      IF (ABS(P(1,2)-D2Y/2.) .LT. 1.D-4) GO TO 770
      IF (ABS(P(1,2)+D2Y/2.) .LT. 1.D-4) GO TO 770
      GO TO 220
```

```
770 CONTINUE
    IF (ABS(P(1,1)+D1X/2.) .LT. 1.D-4) PSI1=0.
    IF (ABS(P(1,1)-D1X/2.) .LT. 1.D-4) PSI1=180.
    IF (ABS(P(1,2)-D2Y/2.) .LT. 1.D-4) PSI1=270.
    IF (ABS(P(1,2)+D2Y/2.) .LT. 1.D-4) PSI1=90.
    CALL JCONNX (J, NBR, IBR, IB)
    NC = IBR(1, IB(1))
    IF (NC .EQ. J) NC = IBR(2, IB(1))
    DO 730 K=1,3
    P(2, K) = PV(K, NC)
730 CONTINUE
    PSI2=ATAN2(P(2,2)-P(1,2),P(2,1)-P(1,1))/DTR
    IF (PSI2 .LT. 0.) PSI2=PSI2+360.
    ALPHA=ABS (PSI1-PSI2)
    IF (ALPHA .GT. 180.) ALPHA=360.-ALPHA
    IF (ABS(ALPHA) .LT. .001) GO TO 220
    PSI0=90.+(PSI1+PSI2)/2.
    IF (PSI2 .GT. PSI1) PSI0=PSI0+180.
    IF (PSI0 .GT. 360.) PSI0=PSI0-360.
    W = WV(IB(1))
    DL=0.
    DR=0.
    XC = PV(1, J)
    YC = PV(2, J)
    IF (ABS(P(1,1)+D1X/2.) .LT. 1.D-4) THEN
    WP=W/(2.*COS(PSI2*DTR))
    YP=WP
    IF (PSI2 .GT. 180.) YP=-WP
    XP=0.
    ENDIF
    IF (ABS(P(1,1)-D1X/2.) .LT. 1.D-4) THEN
    WP = -W/(2.*COS(PSI2*DTR))
    YP=WP
    IF (PSI2 .GT. 180.) YP=-WP
    XP=0.
    ENDIF
    IF (ABS(P(1,2)-D2Y/2.) .LT. 1.D-4) THEN
    WP=W/(2.*SIN(PSI2*DTR))
    YP=0.
    XP=WP
    IF (PSI2 .GT. 270.) XP=-WP
    ENDIF
    IF (ABS(P(1,2)+D2Y/2.) .LT. 1.D-4) THEN
    WP=W/(2.*SIN(PSI2*DTR))
    YP=0.
```

```
XP=WP
    IF (PSI2 .GT. 90.) XP=-WP
    ENDIF
    YC=YC+YP
    XC=XC+XP
    LOC=NX+1
    X(LOC, 1) = XC
    X(LOC, 2) = YC
    X(LOC, 3) = DL
    X(LOC, 4) = DR
    X(LOC, 5) = PSI0 * DTR
    X(LOC, 6) = ALPHA*DTR
    X(LOC, 7) = W
    X(LOC, 8) = W * W * W / 3.
    X(LOC, 9) = REAL(Z(1))
    X(LOC, 10) = AIMAG(Z(1))
    ICNT=ICNT+1
    DALPHA=X(LOC, 6)/PTS
    PSI(1) = X(LOC, 5) - 0.5 \times X(LOC, 6)
    CPSI(1, ICNT) = COS(PSI(1))
    SPSI(1,ICNT)=SIN(PSI(1))
    DO 717 KK=2,NPP1
    PSI(KK) = PSI(KK-1) + DALPHA
    CPSI(KK, ICNT) = COS(PSI(KK))
    SPSI(KK,ICNT)=SIN(PSI(KK))
717 CONTINUE
    NX=NX+1
    KC(NX) = 2
    GO TO 220
710 CONTINUE
    CALL JCONNX (J, NBR, IBR, IB)
    NB=MAXBR(J)
    NBM1=NB-1
    DO 510 II=1, NBM1
    DO 510 JJ=II+1,NB
    IB1=IB(II)
    IB2=IB(JJ)
    N1 = IBR(1, IB1)
    N2=J
    IF (N1 .EQ. J) N1=IBR(2, IB1)
    N3=IBR(1, IB2)
    IF (N3 .EQ. J) N3=IBR(2, IB2)
    CALL CPSIS (N1, N2, N3, PV, PSI0, ALPHA, PSI1, PSI2)
    IF (ABS(ALPHA) .LT. .001 .AND. MAXBR(J) .EQ. 2) GO TO
```

510

```
DRA=PSIO-ALPHA/2.-90.
    IF (DRA .LT. 0.) DRA = DRA+360.
    DLA=PSI0+ALPHA/2.+90.
    IF (DLA .GT. 360.) DLA=DLA-360.
    IF (DLA .LT. 0.) DLA = DLA+360.
    IBDL=IB1
    IBDR=IB2
    PSI1=ATAN2(PV(2,N1)-PV(2,N2),PV(1,N1)-PV(1,N2))/DTR
    PSI2=ATAN2(PV(2,N3)-PV(2,N2),PV(1,N3)-PV(1,N2))/DTR
    IF (ABS(PSI2-DRA) .LT. .001) GO TO 520
    IF (ABS(PSI2-DRA-360.) .LT. .001) GO TO 520
    IF (ABS(PSI2-DRA+360.) .LT. .001) GO TO 520
    IBDL=IB2
    IBDR=IB1
    IF (ABS(PSI2-DLA) .LT. .001) GO TO 520
    IF (ABS(PSI2-DLA-360.) .LT. .001) GO TO 520
    IF (ABS(PSI2-DLA+360.) .LT. .001) GO TO 520
    IER=8
520 CONTINUE
    W=WV(IBDL)
    RLPRME=W*TAN (ALPHA*DTR/2.)/2.
    DL=AMXLP(J, IBDL)-RLPRME
    DR=AMXLP(J, IBDR)-RLPRME
    WP=W/(2.*COS(ALPHA*DTR/2.))
    XP=WP*COS (PSI0*DTR)
    YP=WP*SIN(PSI0*DTR)
    XC = PV(1, N2)
    YC = PV(2, N2)
    XC=XC-XP
    YC=YC-YP
    LOC=NX+1
    X(LOC, 1) = XC
    X(LOC, 2) = YC
    X(LOC, 3) = DL
    X(LOC, 4) = DR
    X(LOC, 5) = PSIO * DTR
    X(LOC, 6) = ALPHA*DTR
    X(LOC, 7) = W
    X(LOC, 8) = W * W * W / 3.
    X(LOC, 9) = REAL(Z(1))
    X(LOC, 10) = AIMAG(Z(1))
    ICNT=ICNT+1
    DALPHA=X(LOC, 6)/PTS
    PSI(1) = X(LOC, 5) - 0.5 * X(LOC, 6)
    CPSI(1, ICNT) = COS(PSI(1))
```

```
SPSI(1, ICNT) = SIN(PSI(1))
    DO 217 KK=2,NPP1
    PSI(KK)=PSI(KK-1)+DALPHA
    CPSI(KK, ICNT) = COS(PSI(KK))
    SPSI(KK, ICNT) = SIN(PSI(KK))
217 CONTINUE
    NX=NX+1
    KC(NX) = 2
510 CONTINUE
220 CONTINUE
230 NEL=NX
    IF (NEL.GT. MAXK) IER=5
    RETURN
    END
    SUBROUTINE CMINV(A, N, IER)
    IMPLICIT DOUBLE PRECISION (A-H, O-Z)
    PARAMETER (MAXDIM=200)
    COMPLEX*16 A(N,N), DETERM
    COMPLEX*16 PIVOT (MAXDIM), AMAX, T, SWAP, U
    DIMENSION IPIVOT (MAXDIM), INDEX (MAXDIM, 2)
    IER=0
    IF (N .GT. MAXDIM) IER=10
    IF (IER .NE. 0) RETURN
    DETERM = (1., 0.)
    DO 20 J=1,N
 20 IPIVOT(J)=0
    DO 550 I=1,N
    AMAX = (0., 0.)
    DO 105 J=1,N
    IF (IPIVOT(J)-1) 60,105,60
 60 DO 100 K=1,N
    IF (IPIVOT(K)-1) 80, 100, 740
 80 IF (CABS (AMAX) - CABS (A (J, K))) 85,85,100
 85 IROW=J
    ICOLUM=K
    AMAX = A(J, K)
100 CONTINUE
105 CONTINUE
    IPIVOT (ICOLUM) = IPIVOT (ICOLUM) +1
    IF (IROW-ICOLUM) 140, 260, 140
140 DETERM=-DETERM
    DO 200 L=1,N
    SWAP=A(IROW, L)
    A(IROW, L) = A(ICOLUM, L)
200 A(ICOLUM, L)=SWAP
```

```
260 INDEX(I, 1) = IROW
      INDEX(I,2)=ICOLUM
      PIVOT(I) = A (ICOLUM, ICOLUM)
      U = PIVOT(I)
      DETERM = DETERM*U
С
      IF(CABS(PIVOT(I))) 330,720,330
  330 A(ICOLUM, ICOLUM) = (1., 0.)
      U = PIVOT(I)
      DO 350 L=1,N
  350 A(ICOLUM, L) = A(ICOLUM, L)/U
      DO 550 L1=1,N
      IF(L1-ICOLUM) 400, 550, 400
  400 T=A(L1, ICOLUM)
      A(L1, ICOLUM) = (0., 0.)
      DO 450 L=1,N
      U = A(ICOLUM, L)
  450 A(L1,L) = A(L1,L) - U^{*}T
  550 CONTINUE
      DO 710 I=1,N
      L=N+1-I
      IF (INDEX(L,1)-INDEX(L,2)) 630, 710, 630
  630 JROW=INDEX(L,1)
      JCOLUM=INDEX(L,2)
      DO 705 K=1,N
      SWAP=A(K, JROW)
      A(K, JROW) = A(K, JCOLUM)
      A(K, JCOLUM) = SWAP
  705 CONTINUE
  710 CONTINUE
      RETURN
  720 IER=11
  740 RETURN
      END
      SUBROUTINE
DATAIN (PV, RV, IBR, NBR, NODES, IRT, D1XM, D2XM, D2YM, F1, F2,
     1
FINC, TH1, TH2, THINC, PHIDEG, ER, TMIL, IMODE, IPRINT, ZEQ, ISAME)
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION PV(1), RV(1), IBR(1)
      COMPLEX ZEQ(1),Z
      OPEN(UNIT=5,FILE='calculo.dat',STATUS='OLD')
      READ(5,101) IRT
      READ(5,102) D1XM, d2xm, d2ym
      READ(5,102) F1,F2,FINC
      READ(5,102) TH1, TH2, THINC, PHIgrad
```

```
READ(5,102) ER,TMIL
      READ(5,101) IMODE, IPRINT
      READ(5,105) NODES
      DO 10 I=1, NODES
      READ(5,103) N,X1MIL,Y1MIL
      X1=X1MIL*2.54D-5
      Y1=Y1MIL*2.54D-5
      Z1=0.0
      J=3*(N-1)
      PV(1+J)=X1
      PV(2+J)=Y1
      PV(3+J) = Z1
10
      CONTINUE
      READ(5,105) NBR
      DO 20 I=1, NBR
      J = 3*(I-1)
      READ(5,104)
IBR(1+J), IBR(2+J), IBR(3+J), RVMIL, ZREAL, ZIMAG
      ZEQ(I) = CMPLX(ZREAL, ZIMAG)
      RV(I) = RVMIL * 2.54D - 5
   20 CONTINUE
      Z=ZEQ(1)
      ISAME=1
      DO 250 I=1,NBR
      IF (Z .NE. ZEQ(I)) ISAME=0
  250 CONTINUE
  101 FORMAT(/,2112)
  102 FORMAT(/,4F12.5)
  103 FORMAT(I12, 3F12.5)
  104 FORMAT(3112,3F12.5)
  105 FORMAT(/, I12, /)
      RETURN
      END
```