
Esteban Robles Luna

Agile Managing of Web requirements
with WebSpec
– PhD. Thesis –

Advisors: Gustavo Rossi, Irene Garrigos Fernandez

Depto. Lenguajes y Sistemas Informáticos

Universidad de Alicante

Facultad de Informática
Universidad Nacional de La Plata

No creas lo que tus ojos te dicen. Sólo muestran limitaciones. Mira con tu entendimiento,
descubre lo que ya sabes, y hallarás la manera de volar.

Richard Bach. Juan Salvador Gaviota.

Don’t believe what your eyes are telling you. All they show is limitation. Look with your
understanding, find out what you already know, and you’ll see the way to fly.

Richard Bach. Jonathan Livingston Seagull.

Agradecimientos

Cuando decid́ı aventurarme en el doctorado no estaba muy seguro de cómo iba a terminar.
Aunque los que me conocen dirán que (en gral) lo que comienzo lo termino, la verdad es que
no siempre es aśı. En esta aventura me acompañaron y se sumaron muchas personas que me
dieron apoyo, contención y por sobre todo tiempo y paciencia. A todos aquellos que lean estas
ĺıneas les quiero decir GRACIAS sin olvidarme de ninguno de udes. Sin embargo, algunos de
udes merecen un reconocimiento más afectuoso.

A mis viejos y mi hermano por todo el apoyo que me dieron y porque me formaron. Gracias
por la paciencia que me tienen cuando digo alguna locura de irme a vivir a otro lugar o ir a
un congreso por un tiempo determinado.

A Sole, que me ha acompañado, tolerado y amado durante todo este tiempo. Me alegro
que podamos compartir juntos estas aventuras locas que se me están ocurriendo estos últimos
meses; espero que las experiencias y mi compañ́ıa lo valgan.

A mis directores Gustavo e Irene por toda la paciencia, ayuda y consejo en mi trabajo y
mi vida. Me siento afortunado de haber trabajado con Udes.

A mi familia más grande (t́ıos y primos) en particular a mis t́ıos Carlos y Alfredo y a mi
t́ıa Marisa con los cuales he tenido una relación más estrecha y les tengo un gran afecto.

A mis amigos, en particular a Pablo, Cristian, Santi y Hernán por todos los momentos que
hemos vivido y porque udes. me han ayudado a empujar y alcanzar lo que hoy estoy logrando.

A varios de mis profes del secundario: Julio Paladino, Roxana Rodŕıguez, Silvia Garćıa y
Liliana Boemo; ellos marcaron mi vida sustancialmente desde un punto de vista profesional a
muy temprana edad:

1. A Julio: vos me enseñaste que las cosas se pueden lograr, que teniendo un plan sensato
y haciendo algunos sacrificios las cosas salen. Aunque no lo crean, no estoy hablando de
ninguna materia/asignatura intelectual, sino del atletismo.

2. A Roxana y a Liliana: Porque fueron mis gúıas matemáticas; las que me acompañaron en
toda competencia donde queŕıa ir y quedaba clasificado, las que me formaron en muchas
áreas donde el secundario se quedaba corto y yo queŕıa alcanzar.

3. A Silvia: Porque en el momento donde me sent́ı más débil y no créıa en mi, ella estuvo ah́ı,
creyó en mi y me hizo revalorizarme. Esto fue bien al comienzo del secundario y aunque
fue un hecho puntual, todav́ıa lo recuerdo.

A mis compañeros del LIFIA y el DLSI por todos los momentos que hemos compartido.
En particular a Andres F, Julian G, Juan B, Norberto M, Paul H, Octavio G, Jose Alfonso A,
Nahuel L, Emiliano P, Santi, Matias R, Matias U, Seba P.E (espero no olvidarme de ninguno).
Con muchos de udes compartimos almuerzos, alguna mateada en el laboratorio, papers, chats
o llamadas de skype. Gracias chicos!

A mis compañeros y amigos de Globant y Mulesoft que soportaron las “locuras” de hablar
de papers y de discutir ideas más conceptuales. He pasado momentos muy agradables con udes
y he aprendido cosas de la vida que son más dif́ıciles de encontrar en ámbitos no laborales.

Acknowledgments

When I decided to start the adventure of a PhD I was not totally sure about its ending. Though
people who know me say that (in general) everything I start, I finish, the truth is that it is not
always like that. In this adventure I was not alone and several people joint me to give their
support and above all, time and patient. I want to say a big THANK YOU to all of them.

To my parents and my brother: for all their support and because they helped me to be a
better person. Thanks for your patient and comprehension when I say something insane like
living in a different country.

To Sole: because of her support, tolerance and love during this time. I’m glad that we can
share this crazy adventures that we are living in the last couple of months; I hope that the
experience and my presence worth it.

To my directors: Gustavo and Irene, because of their patience, help and advice in work and
life. I feel lucky of working with you.

To my big family (aunts, uncles and cousins), in particular to my uncles Carlos and Alfredo
and to my aunt Marisa with whom I have a close affective relationship.

To my friends, in particular to Pablo, Cristian, Santi and Hernan for all the moments we
have lived together and because you helped me to push and reach this thesis.

To several of my high school professors: Julio Paladino, Roxana Rodŕıguez, Silvia Garćıa y
Liliana Boemo; because they are important persons in my life and their presence affected my
professional thinking:

1. To Julio: because you taught me that objectives could be reached with a reasonable plan
and doing small sacrifices. Although you may not believe it, I’m not talking about any
intellectual subject, but of Athletics.

2. To Roxana and Liliana: Because they were my mathematics guiders which support me
in any mathematics competition and the ones who taught me in several areas where the
contents of high school were not enough.

3. To Silvia: Because in the moment where I felt weak and I did not believe in myself, she
was there to help me revaluate. Though this happened at the beginning of high school, it
was a fact I still remember.

To my partners of LIFIA and DLSI: for all the moments that we have lived together. In
particular to: Andres F, Julian G, Juan B, Norberto M, Paul H, Octavio G, Jose Alfonso A,
Nahuel L, Emiliano P, Santi, Matias R, Matias U, Seba P.E (I hope not to missed any of you).
We have shared lunch, mate at the lab, papers, chats and skype calls. Thanks Guys!

To my partners and friends of Globant and Mulesoft: because of their support and talks
about papers and conceptual ideas. We have lived pleasant moments and I have learnt things
about life that are more difficult to find outside work.

Preface

Web application development is a complex and time consuming process that involves different
stakeholders (ranging from customers to developers); these applications have some unique
characteristics like navigational access to information, sophisticated interaction features, etc.
However, there have been few proposals to represent those requirements that are specific to
Web applications. Consequently, validation of requirements (e.g. in acceptance tests) is usually
informal, and as a result troublesome.

To overcome these problems, this PhD Thesis proposes WebSpec, a domain specific lan-
guage for specifying the most relevant and characteristic requirements of Web applications:
those involving interaction and navigation. We describe WebSpec diagrams, discussing their
abstraction and expressive power.

As part of this work, we have created a test driven model based approach called WebTDD
that gives a good framework for the language. Using the language with this approach we have
test several of its features such as automatic test generation, management of changes in re-
quirements, and improving the understanding of the diagrams through application simulation.

This PhD Thesis is composed of a set of published and submitted papers. In order to write
this PhD Thesis as a collection of papers, several requirements must be taken into account
as stated by the University of Alicante. With regard to the content of the PhD Thesis, it
must specifically include a summary which is devoted to the description of initial hypotheses,
research objectives, and the collection of publications itself, thus justifying its coherence. It
should be underlined that this summary of the PhD Thesis must also include research results
and final conclusions. This summary corresponds to part I of this PhD Thesis (chapter 1 has
been written in Spanish while chapter 2 is in English).

This work has been partially supported by the following projects: MANTRA (GV/2011/035)
from Valencia Ministry, MANTRA (GRE09-17) from the University of Alicante and by the
MESOLAP (TIN2010-14860) project from the Spanish Ministry of Education and Science.

Alicante, June 2011 Esteban Robles Luna

Contents

Part I Summary

1 Śıntesis en Castellano . 3
1.1 Tesis Doctoral como Compendio de Art́ıculos . 3

1.1.1 Publicaciones Pertenecientes a esta Tesis Doctoral 3
1.1.2 Otras Publicaciones en Congresos Internacionales . 5

1.2 Objetivos de Investigación e Hipótesis Inicial . 6
1.3 Resumen del Contenido de la Tesis Doctoral . 7

1.3.1 WebTDD. 7
1.3.2 WebSpec . 8
1.3.3 Implementación . 15

1.4 Conclusiones . 20
References . 20

2 Summary in English . 23
2.1 PhD Thesis as a Collection of Papers . 23

2.1.1 Publications Included in this PhD Thesis . 23
2.1.2 Other publications in International conferences . 25

2.2 Research Objectives and Initial Hypotheses . 26
2.3 PhD Thesis in a Nutshell . 27

2.3.1 WebTDD. 27
2.3.2 WebSpec . 28
2.3.3 Implementation . 34

2.4 Conclusions . 39
References . 40

Part II PhD Thesis as a Collection of Papers

3 A context for WebSpec: The WebTDD approach . 43

4 Capture and Evolution of Web requirements using WebSpec 87

5 Integrating an early phase of requirements to WebSpec 105

6 Specifying personalizable and accessible web applications with WebSpec . 133

7 Change management and tool support for WebSpec . 159

Part III Appendix: Papers Already Submitted

XIV Contents

A WebSpec: a Visual Language for Specifying Interaction and Navigation
Requirements in Web Applications . 173

Part I

Summary

1

Śıntesis en Castellano

La presente tesis doctoral se ha realizado mediante la modalidad de compendio de art́ıculos.
Por tanto, este caṕıtulo está dedicado a describir los objetivos, hipótesis y el conjunto de
trabajos que forman parte de la tesis, quedando justificada su unidad temática. Cabe destacar
que en este caṕıtulo inicial también se sintetiza el contenido cient́ıfico de la tesis, presentando
un resumen global de los resultados obtenidos aśı como de las conclusiones finales. Por último,
debo resaltar que el contenido de este caṕıtulo ha sido escrito en castellano, mientras que el
caṕıtulo siguiente corresponde a su traducción en inglés.

1.1 Tesis Doctoral como Compendio de Art́ıculos

Los requisitos que debe cumplir una tesis doctoral para ser realizada en la Universidad de
Alicante mediante un compendio de publicaciones fueron definidos por el Pleno de la Comisión
de Doctorado de fecha 2 de marzo de 2005. A continuación, se exponen aquellos directamente
relacionados con el contenido de la tesis:

1. “La tesis debe incluir una śıntesis, en una de las dos lenguas oficiales de esta Comunidad
Autónoma, en la que se presenten los objetivos, hipótesis, los trabajos presentados y se
justifique la unidad temática.”

2. “Esta śıntesis debe incorporar un resumen global de los resultados obtenidos, de la discusión
de estos resultados y de las conclusiones finales. Esta śıntesis deberá dar una idea precisa
del contenido de la tesis.”

3. “Los trabajos deben ser publicados, o aceptados para la publicación, con posterioridad al
inicio de los estudios de doctorado. Los art́ıculos en periodo de revisión pueden formar
parte de la tesis como apéndices del documento, que debe presentarse adjunta a los art́ıculos
publicados.”

Por consiguiente, con el fin de cumplir estos requisitos, la estructura de esta tesis queda
definida en tres partes bien diferenciadas. La parte I consiste en un caṕıtulo de śıntesis en
castellano (caṕıtulo 1) y su correspondiente versión en inglés (caṕıtulo 2). La parte II presenta
el conjunto de art́ıculos publicados que forman el contenido principal de esta tesis doctoral. La
parte III presenta un art́ıculo en proceso de revisión.

1.1.1 Publicaciones Pertenecientes a esta Tesis Doctoral

Se ha seleccionado un conjunto de los art́ıculos de investigación publicados para que formen
parte de esta tesis doctoral por dos razones: (i) su contribución cient́ıfica y (ii) la relevancia de
dichas publicaciones. Estas publicaciones se describen brevemente en esta sección.

4 1 Śıntesis en Castellano

Caṕıtulo 3

Robles Luna E., Grigera J., Rossi G. Bridging Test and Model Driven Approaches in Web
Engineering. Proceedings of 9th International Conference on Web Engineering (ICWE 2009).
2009. San Sebastian, Spain. Acceptance rate: 24%. Core C.

Robles Luna E., Panach J.I., Grigera J., Rossi G., Pastor O. Incorporating Usability Re-
quirements in a Test/Model-Driven Web Engineering Approach. Journal of Web Engineering
(JWE). 2010. Impact factor: 0.531. JCR.

Este trabajo describe una metodoloǵıa de desarrollo de aplicaciones Web en la cual los tests
juegan un papel fundamental. Estos dirigen el desarrollo indicando que parte de la funcionalidad
requerida no ha sido implementada (al igual que en las metodoloǵıas dirigidas por tests [10]).
Sin embargo, a diferencia de las metodoloǵıas dirigidas por tests en las cuales el principal
objeto de desarrollo es el código; en esta se utiliza un desarrollo basado en modelos en la cual
los modelos abstraen pero no dirigen el desarrollo.

La metodoloǵıa presentada en este caṕıtulo define un buen marco de trabajo para que Web-
Spec (el principal aporte de esta tesis) sea utilizado. En particular porque en estas metodoloǵıas
no existe una traducción automática de requisitos a tests.

Caṕıtulo 4

Robles Luna E., Garrigos I., Grigera J., Winckler M. Capture and Evolution of Web re-
quirements using WebSpec. Proceedings of 10th International Conference on Web Engineering
(ICWE 2010). Vienna, Austria. Acceptance rate: 20%. Core C.

En este caṕıtulo se presenta el lenguaje de dominio espećıfico que es la parte central de esta
tesis. Se muestra su definición y su uso en las diferentes actividades de un ciclo de desarrollo.
Aunque, Webspec fue inicialmente pensado para ser utilizado con el enfoque presentado en
el caṕıtulo anterior, en este caṕıtulo también se muestra como puede ser utilizado en una
metodoloǵıa unificada.

Caṕıtulo 5

Robles Luna E., Garrigos I, Mazon J-N., Trujillo J., Rossi G. An i*-based Approach for
Modeling and Tesing Web Requirements. Journal of Web Engineering (JWE). 2010. Impact
factor: 0.531. JCR.

Algunas metodoloǵıas de desarrollo utilizan una etapa temprana en donde se definen los
objetivos y tareas del sistema/organización. Muchas veces se utiliza algún lenguaje para de-
scribir estas relaciones como es el caso de i*. En este caṕıtulo se muestra como se puede
utilizar WebSpec junto con i* para modelar los requisitos web. Al utilizarlos conjuntamente,
se pueden validar en forma semi automática que los objetivos descritos en el modelo de i* sean
implementados correctamente en la aplicación.

Caṕıtulo 6

Medina, N. M., Burella, J., Rossi G., Grigera J., Robles Luna E.. An Incremental Approach
for Building Accessible and Usable Web Applications. Proceedings of the 11th International
Conference on Web Information System Engineering (WISE 2010). Hong Kong, China. Ac-
ceptance rate: 18.8%. Core A.

Robles Luna E., Garrigos I., Rossi G. Capturing and Validating Personalization Require-
ments in Web Applications. Proceedings of the 1st Workshop on The Web and Requirements

1.1 Tesis Doctoral como Compendio de Art́ıculos 5

Engineering (WeRE 2010). Sydney, Australia.

En este caṕıtulo se presenta la utilización de WebSpec para especificar requisitos no fun-
cionales como son la accesibilidad y la personalización de las aplicaciones Web. En cada caso se
proveen pequeñas extensiones al lenguaje base con el fin de permitir la especificación de estos
requisitos en el contexto de la metodoloǵıa WebTDD.

Caṕıtulo 7

Burella J., Rossi G., Robles Luna E., Grigera J. Dealing with Navigation and Interaction
Requirement Changes in a TDD-Based Web Engineering Approach. Proceedings of the 11th In-
ternational Conference on Agile Software Development (XP 2010), Springer Verlag, LNCS,
2010. Trondheim, Norway. Core B.

Robles Luna E., Burella J., Grigera J, Rossi G. A Flexible Tool Suite for Change-Aware
Test-Driven Development of Web Applications. Proceedings of the ACM/IEEE 32nd Interna-
tional Conference on Software Engineering (ICSE 2010). 2010. Cape Town, South Africa.
Core A.

En este caṕıtulo se presenta el control de cambios de WebSpec el cual permite determinar
los artefactos de código afectados por un cambio. Para ello se establece una asociación entre
los cambios que se establecen en los requisitos con aquellos en la implementación. Además, se
presenta una demostración de la herramienta que da soporte a cada una de las caracteŕısticas
del lenguaje.

Apéndice A

Robles Luna E., Rossi G., Garrigos I. WebSpec: a Visual Language for Specifying Interac-
tion and Navigation Requirements in Web Applications. Requirements Engineering Journal. In
press. Impact factor: 0.931. JCR.

En este caṕıtulo se presenta la evolución del lenguaje base presentado en el Caṕıtulo 4 en
donde se detalla la especificación de requisitos para aplicaciones ricas en la Web. Además se
presentan los detalles referidos a la gramática del lenguaje y una extensión al caso de estudio.

1.1.2 Otras Publicaciones en Congresos Internacionales

Durante el desarrollo de esta tesis doctoral, se han publicado otros art́ıculos que no han sido
expĺıcitamente incluidos en este documento. Sin embargo, estos trabajos forman también parte
de la investigación llevada a cabo durante los estudios de doctorado y completan el trabajo de
tesis doctoral:

• Robles Luna E., Escalona M.J, Rossi G. A requirements metamodel for Rich Internet
applications. Proceedings of the 5th International Conference on Software and Data Tech-
nologies (ICSOFT 2010). Athens, Greece. Acceptance rate: 9%. Core B.

• Rivero J.M., Rossi G., Grigera J., Burella J., Robles Luna E., Gordillo S. From mockups
to user interface models: An extensible model driven approach. Proceedings of the 6th
Model-Driven Web Engineering Workshop. (MDWE 2010). Vienna, Austria.

• Robles Luna E., Rossi G., Burella J., Grigera J. Incremental Usability Improvement in
an Agile Approach for Web Applications. Proceedings of the 1st workshop Dealing with
Usabiliy in an Agile Domain, XP’2010 workshop. (Usability&Agile 2010), 2010. Trond-
heim, Norway.

• Robles Luna E., Grigera J., Rossi G., Panach J. I. and Pastor O. Introducing Usability
Requirements in a Test/Model-Driven Web Engineering Method. Proceedings of 8th Inter-
national Workshop on Web-Oriented Software Technologies (IWOOST 2009). 2009. San
Sebastian, Spain.

6 1 Śıntesis en Castellano

1.2 Objetivos de Investigación e Hipótesis Inicial

El desarrollo de aplicaciones Web es un proceso complejo y que consume mucho tiempo. A su vez
involucra a equipos de desarrollo multidisciplinarios (incluyendo clientes, diseñadores gráficos,
desarrolladores, aseguradores de calidad, etc.) y por lo tanto el entendimiento de la aplicación
vaŕıa entre los diferentes miembros del equipo. Además, estas aplicaciones poseen algunas
caracteŕısticas únicas como acceso a la información a través de la navegación e interacciones
sofisticadas lo cual hace que su desarrollo sea diferente respecto a las tradicionales aplicaciones
de escritorio. Como consecuencia, podemos encontrar en la literatura dos grandes grupos para
el desarrollo de aplicaciones Web: la ingenieŕıa Web dirigida por modelos (MDWE) y las
metodoloǵıas ágiles.

Por un lado, varias metodoloǵıas MDWE han sido propuestas durante los últimos 20 años
[11, 16, 18, 24, 27]. Todas ellas comparten un estilo arriba-abajo [28], construyendo la aplicación
Web describiendo un conjunto de modelos en diferentes niveles de abstracción:

• Modelo de Contenido (o Aplicación): define los objetos de dominio y sus relaciones.
• Modelo de Hipertexto (o Navegación): define los nodos de navegación y los enlaces que

publican información especificada en los objetos del modelo de Contenido.
• Modelo de Presentación: Refina el modelo de hipertexto con una interfaz de presentación

concreta con páginas y elementos de interfaz.

El proceso utilizado en estas metodoloǵıas es en general arriba-abajo entregando una apli-
cación Web final y utilizando transformaciones de modelo a una tecnoloǵıa destino.

Por otro lado, las metodoloǵıas ágiles promueven la interacción temprana y constante con
los clientes. De esta forma se comprueba continuamente que el software construido satisface sus
requisitos los cuales son desarrollados en peŕıodos de tiempo cortos. Las metodoloǵıas ágiles
argumentan que las especificaciones de software deben emerger naturalmente, mejorando los
prototipos existentes a lo largo del desarrollo hasta que la aplicación final es obtenida.

En resumen, mientras que las metodoloǵıas MDWE facilitan el software portable, el nivel
de abstracción y la productividad, fallan en proveer interacción ágil con los clientes porque los
resultados concretos son obtenidos demasiado tarde. Por otro lado, mientras que esta ultima
caracteŕıstica es lograda con claridad por las metodoloǵıas ágiles, están basadas en la imple-
mentación directa y por lo tanto fallan en proveer portabilidad, abstracción y productividad
mediante la generación de código automático.

De acuerdo a diversos estudios [22, 19] en la industria, la fase de captura de requisitos es una
de las más importantes de cualquier metodoloǵıa de desarrollo Web. Desafortunadamente, en
el contexto de MDWE, los requisitos son generalmente capturados con casos de uso [17] o una
modificación de ellos mientras que en las metodoloǵıas ágiles existe una tendencia a reemplazar
los casos de uso con historias de usuario [20]. Respecto al poder expresivo de ambos artefactos,
estos son muy pobres para expresar las particularidades de la Web (por ejemplo, su natu-
raleza de navegación e interacción). Además, la rápida evolución de las aplicaciones Web (en
pocas semanas) impone restricciones adicionales para el testing continuo y en tiempo respecto
a la especificación de requisitos [19] principalmente para validar que los nuevos requisitos han
sido implementados correctamente sin “romper” los existentes. En este contexto, la captura y
el modelado de requisitos debe ser lo suficientemente eficiente para cumplir con las restricciones
de tiempo. Por lo tanto es importante que los requisitos sean fácilmente entendidos para
proveer una evolución eficiente de la aplicación.

Tomando en cuenta estos puntos, la hipótesis de esta tesis doctoral es la mejora del
desarrollo de aplicaciones Web mediante:

• Una especificación formal de requisitos que automatice su validación, semi automatice la
derivación de la aplicación y ayude a mejorar el entendimiento de un requisito mediante la
simulación de la aplicación.

• Una metodoloǵıa hibrida de desarrollo que tome las ventajas de las metodoloǵıas MDWE
y ágiles para mejorar el desarrollo de aplicaciones Web.

1.3 Resumen del Contenido de la Tesis Doctoral 7

Aunque ya existe trabajo [9] referido a la integración de metodoloǵıas ágiles y dirigidas por
modelos, nuestro trabajo [26] fue el primero en mostrar que era posible lograrlo en el ámbito
Web. Este trabajo fue el disparador para el desarrollo de nuestro lenguaje de requisitos llamado
WebSpec [25] el cual permite las caracteŕısticas mencionadas con anterioridad.

En conclusión, el principal objetivo de investigación de esta tesis doctoral es el desar-
rollo de un lenguaje de dominio especifico (DSL) que permita la especificación de requisitos Web
formalmente. Como consecuencia, las siguientes tareas pueden ser automatizadas ayudando a
mejorar el proceso de desarrollo:

• Mejorar el entendimiento de un requisito mediante la simulación de la aplicación Web.
• Automatizar el testing de un requisito con la derivación automática de tests de interacción.
• Semiautomatizar la derivación de la aplicación a diferentes tecnoloǵıas no solo en la primera

iteración sino también cuando la aplicación evoluciona utilizando control de cambios.

1.3 Resumen del Contenido de la Tesis Doctoral

El objetivo de esta tesis doctoral es atacado primero entendiendo cómo y por qué las aplica-
ciones son construidas con dos acercamientos diferentes y como estos pueden ser combinados
para mejorar su desarrollo. Un punto en el cual los dos acercamientos se quedan cortos es que
el testeo manual es una tarea compleja; y como consecuencia nos da el punta pie para el de-
sarrollo de un DSL multipropósito para la especificación de requisitos Web. Como se muestra
en los diferentes caṕıtulos de esta tesis, el lenguaje fue originalmente creado para especificar
requisitos funcionales pero lo hemos extendido para permitir la validación de modelos de i*
(Caṕıtulo 5) y para expresar requisitos de personalización y accesibilidad (Caṕıtulo 6).

1.3.1 WebTDD

WebTDD es una metodoloǵıa ágil [26] para el desarrollo de aplicaciones Web; esta basado
en ciclos cortos de desarrollo (llamados sprints) que ayudan a obtener feedback rápido de los
clientes. Los tests son utilizados para dirigir el proceso de desarrollo y al mismo tiempo verificar
que los requisitos son correctamente implementados. Las tecnoloǵıas basadas en modelos son
utilizadas para desarrollar la aplicación creando y/o actualizando modelos y transformándolos
en código. En cada sprint de WebTDD, un conjunto de requisitos es implementado y una nueva
versión de la aplicación es entregada al cliente. Es común que los sprints duren 2 semanas y
cubran el ciclo completo de desarrollo desde la captura de los requisitos, el desarrollo y el
testing.

Al comienzo de cada sprint existe un conjunto de requisitos que necesitan ser implemen-
tados. WebTDD define un conjunto de actividades a ser desarrolladas para implementar cada
requisito (Fig 1.1):

1. Cada requisito es capturado en Mockups (páginas HTML simples) y diagramas WebSpec
(Paso 1 de la Fig. 1.1). Los mockups ayudan a acordar el look and feel de la aplicación y los
diagramas WebSpec permiten especificar los comportamientos de navegación e interacción.
Durante este proceso podemos mejorar la etapa de elicitación de requisitos utilizando la
simulación que WebSpec provee. Además, si el control de cambios de WebSpec esta acti-
vado, podemos capturar estos cambios para un uso posterior.

2. Luego derivamos en forma automática (Paso 2) un conjunto de tests que la aplicación debe
pasar para satisfacer los requisitos capturados. Este proceso es automático y una suite de
tests es derivada de cada diagrama.

3. Como en el desarrollo dirigido por tests (TDD [10]) “convencional”, ejecutamos los tests
antes de comenzar con la implementación (Paso 3) con el fin de chequear que la aplicación
todav́ıa no satisface los requisitos. Los tests que fallen mostraran que caminos de interacción
no son satisfechos por la aplicación aún.

8 1 Śıntesis en Castellano

Fig. 1.1. WebTDD

4. Luego las actividades de modelado comienzan (Paso 4); se crea o mejora un conjunto de
modelos en la tecnoloǵıa basada en modelos elegida para el proyecto (por ejemplo WebRatio
o MagicUWE). Si hab́ıamos activado el control de cambios de WebSpec, los cambios en
los requisitos pueden ser mapeados en forma semi automática en los modelos evitando
perdidas de tiempo.

5. Utilizando la derivación automática a código que la MDWE tool soporta, derivamos una
aplicación Web (Paso 5).

6. Finalmente, chequeamos que el requisito haya sido implementado correctamente ejecutando
los tests que hab́ıamos derivado previamente (Paso 6). Si al menos un test falla, entonces
tenemos que volver modificar los modelos y derivar la aplicación de nuevo hasta que todos
los tests pasen. Si todos los tests pasan, podemos comenzar el ciclo nuevamente con el
siguiente requisito hasta que no queden más requisitos por ser implementados en el sprint.

Debemos remarcar que WebTDD es independiente de la tecnoloǵıa basada en modelos que
se utilice ya que las diferentes actividades no dependen de los diferentes artefactos o mecanismos
de modelado [26].

1.3.2 WebSpec

WebSpec es un lenguaje de dominio espećıfico visual [14] que permite la especificación de
requisitos Web de navegación, interacción e interfaz gráfica. El principal artefacto para es-
pecificar requisitos es el diagrama WebSpec que puede contener interacciones, navegaciones y
comportamientos ricos.

Un diagrama WebSpec define un conjunto de escenarios que la aplicación Web debe sat-
isfacer. Puede contener 2 elementos principales: interacciones y transiciones (que a su vez
pueden ser navegaciones o comportamientos ricos). Las interacciones representan puntos donde
el usuario puede interactuar con la aplicación y las transiciones representan un movimiento de
un punto de interacción a otro. Por lo tanto, un diagrama WebSpec puede ser visto como
un grafo donde las interacciones son los nodos y las transiciones representan las aristas. Un
escenario es representado como una secuencia de interacciones y transiciones, por ejemplo
<interaction1, navigation1, interaction2, rich1, interaction3> define un posible camino de in-
teracción entre el usuario y la aplicación Web.

La Fig. 1.2 muestra un diagrama WebSpec para nuestra historia de usuario de ejemplo:
“Como cliente, quiero poder buscar productos por su nombre y ver sus detalles”. El diagrama
es construido iterativamente entre el cliente y el analista teniendo varias reuniones. Debido a
que el uso de WebSpec no esta atado a una metodoloǵıa en particular, podemos utilizar las
reuniones de larga duración t́ıpicas de métodos unificados o las reuniones cortas t́ıpicas de las

1.3 Resumen del Contenido de la Tesis Doctoral 9

metodoloǵıas ágiles. La construcción del diagrama puede ser mejorada utilizando mockups y
simulando la aplicación (como se muestra en los próximos caṕıtulos); sin embargo, esperamos
que con un poco de entrenamiento el cliente sea capaz de construir los diagramas solo. Como
ejemplo, en el diagrama de la Fig. 1.2 define los caminos de navegación que el usuario debe
seguir desde la página home a la página de resultados y luego a la página de detalle del
producto. Además, el usuario debe poder volver atrás en la página de resultados desde la de
detalle y también volver a la página home.

Fig. 1.2. Diagrama Webspec para el escenario de búsquedas por nombre

En un diagrama WebSpec, una interacción representa un punto donde el usuario inter-
actúa con la aplicación utilizando sus elementos de interfaz gráfica (widgets). Formalmente,
representan el estado de una página Web la cual ha sido cargada inicialmente o cuando ha
cambiado como consecuencia de un comportamiento rico. Las interacciones poseen un nom-
bre (único por diagrama) y pueden contener widgets tales como: etiquetas, listas, botones,
cajas de selección y paneles. Las etiquetas definen el contenido (información) mostrada por
la interacción. Existen 2 tipos de widgets para permitir la composición de estos: ListPanel y
Panel. El ListPanel representa una repetición de los elementos que contiene y el panel define
un simple contenedor de widgets. Las interacciones están representadas gráficamente con un
rectángulo con los bordes redondeados (Fig. 1.3) que contiene el nombre de la interacción y
sus widgets. Un diagrama WebSpec debe tener al menos una interacción inicial la cual se en-
cuentra representada con bordes punteados. Para especificar que propiedades debe satisfacer
la aplicación hacemos uso de invariantes (expresiones booleanas) en las interacciones del dia-
grama. Cada interacción (impĺıcitamente o expĺıcitamente) definen un invariante que especifica
las propiedades que deben ser satisfechas en los escenarios especificados por el diagrama (en el
caso que no se defina uno expĺıcitamente se asumen que el invariante es true).

Fig. 1.3. Una interacción en WebSpec

En WebSpec, una navegación esta representada gráficamente (Fig. 1.4) con flechas grises
mientras que su nombre, precondición y las acciones que la activan están mostradas como
etiquetas sobre ella. En particular, su nombre aparece con el carácter “#” como prefijo, su
precondición entre {} y las acciones en las siguientes ĺıneas. Debemos remarcar que la idea
detrás de las acciones de una transición (sean estas navegaciones o comportamientos ricos) es

10 1 Śıntesis en Castellano

que su ejecución produce una transición entre las interacciones y no al revés. Una transición
debe ser entendida como: “Si la precondición se satisface y el usuario ejecuta la secuencia de
acciones, la aplicación debe transitar a la interacción destino”.

Una navegación de una interacción a otra puede ser activada si su precondición se satisface,
ejecutando su secuencia de acciones tales como: cliquear en un botón, agregar texto a un
campo, etc. Asi como los invariantes, las precondiciones pueden referenciar a variables definidas
previamente en el diagrama. Las acciones están escritas de acuerdo a la siguiente sintaxis: var
:= expr | actionName(arg1,... argn) (una gramática BNF [12] completa puede ser encontrada
en el Apéndice A).

Fig. 1.4. Una navegación en WebSpec

Por otro lado, la aplicación puede cambiar el estado de la UI como consecuencia de algunas
acciones ejecutadas por el usuario. Por ejemplo, cuando el mouse esta “sobre” un widget, más
información debe ser mostrada en un pop-up o cuando se esta escribiendo texto en un campo de
texto, pueden aparecer opciones como en un campo de autocompletado. Estos cambios locales
son usuales en las tan llamadas aplicaciones ricas de Internet (RIA [13]) y es común hoy en d́ıa
que los clientes pidan requisitos de este estilo, tanto expĺıcitamente (“Yo quiero un campo auto-
complete”), o impĺıcitamente (“Quiero que la información aparezca como hace Amazon.com”).
Estos comportamientos ricos están siendo cada vez más usados en las aplicaciones Web 2.0
pero también en las tradicionales.

En una aplicación Web, un comportamiento rico es percibido como un cambio local en la
interfaz que no agrega un elemento nuevo a la navegación del explorador Web. Para especificar
un comportamiento rico en WebSpec, utilizamos flechas rojas con ĺıneas punteadas (Fig 1.5) y
poseen las mismas propiedades de una navegación (nombre, precondición y acciones).

Fig. 1.5. Un comportamiento rico en WebSpec

Mejorando el entendimiento de los requisitos con simulación

Con el objetivo de mejorar la etapa de elicitación de requisitos, los diagramas de WebSpec
pueden simular la aplicación en desarrollo. La simulación es importante para reducir la difer-
encia en el entendimiento de un requisito entre los clientes y los analistas y por lo tanto ayuda
a obtener feedback real de ellos. Usualmente, los artefactos para la captura de requisitos [23]
requieren un determinado nivel de conocimientos para que los clientes puedan entenderlos por
completo, causando problemas de entendimiento durante la etapa de elicitación que luego son
controlados cuando la aplicación se encuentra en pleno desarrollo.

1.3 Resumen del Contenido de la Tesis Doctoral 11

Fig. 1.6. La simulación de WebSpec en el contexto de WebTDD

En WebTDD, la simulación puede ser utilizada cuando creamos los mockups y los diagra-
mas. En la Fig. 1.6 mostramos en detalle la actividad de creación de Mockups y Webspec;
comenzamos creando mockups para darle un contexto a los clientes. Luego creamos los diagra-
mas WebSpec de acuerdo a los requisitos de estos y para chequear el comportamiento esperado,
simulamos los diferentes caminos de interacción. Una vez que hayamos acordado el requisito,
la actividad de creación de Mockups y WebSpec termina.

Para poder dar soporte a la simulación de la aplicación, WebSpec permite la asociación entre
las interacciones con los mockups y entre los widgets de WebSpec con sus correspondientes
elementos de interfaz en el mockup. Utilizando esta asociación, podemos cambiar entre la
especificación de WebSpec con el ejemplo de UI que tenemos en el mockup ayudando a entender
el requisito. Los mockups pueden ser creados con herramientas como Balsamiq [2], Axure [1]
o HTML plano. Por ejemplo, en la Fig 1.7, mostramos un mockup para la página de detalle
de productos creado con Balsamiq. El mockup muestra la información que debe ser mostrada
en la página: el nombre del producto, su descripción, precio y los links a la página home y a
los resultados. La Fig. 1.8 muestra una simple asociación entre el mockup de la Fig. 1.7 con su
correspondiente interacción y widgets.

Fig. 1.7. Mockup de Balsamiq para la página de detalle de productos

Nuestra simulación abre un navegador Web con los mockups desarrollados y muestra de-
scripciones y ejecuta acciones que muestran lo que un usuario hipotético de la aplicación haŕıa.
Es riguroso porque a diferencia de la simulación provista por herramientas como Balsamiq
[2], no solo mostramos las transiciones entre las páginas sino que también ejecutamos acciones
reales y proveemos descripciones de cuales serian las salidas reales de la aplicación directa-
mente sobre los mockups. Estas descripciones son generadas automáticamente y son fáciles
de comprender ya que están escritas en lenguaje natural. De esta forma para cada diagrama

12 1 Śıntesis en Castellano

WebSpec, un conjunto de simulaciones es generado automáticamente el cual puede ser utilizado
en cualquier momento por clientes para comprender el significado de un diagrama y proponer
cambios o mejoras.

Fig. 1.8. Asociación entre un mockup y una interacción

Validando la implementación de los requisitos con derivación automática de tests

Los requisitos nuevos deben ser validados para garantizar su correcta implementación mientras
que los previos siguen funcionando como se espera. Sin embargo, realizar esta tarea eficiente-
mente es una tarea complicada y por lo tanto mantener los requisitos actualizados se vuelve
extremadamente importante.

Una manera conocida de validar los requisitos consiste en ejecutar tests automatizados (que
expresan los requisitos) sobre la aplicación. Si uno de estos tests falla, entonces un requisito
no es satisfecho por la aplicación. En particular, los tests de interacción juegan un papel
fundamental en la industria ya que ejecutan un conjunto de acciones de la misma forma que un
usuario lo haŕıa en un navegador Web y por lo tanto su uso continua creciendo [21]. En la Fig.
1.9 mostramos en más detalle las actividades ejecutadas durante el ciclo WebTDD; primero
necesitamos elegir un conjunto de diagramas WebSpec que expresen el nuevo requisito (Paso
2.1) y de ellos derivar en forma automática un conjunto de tests de interacción (Paso 2.2).
Luego, ejecutamos dichos tests eligiendo su correspondiente test suite (Paso 3.1) que ha sido
derivada utilizando algún framework de tests (por ejemplo JUnit) (Paso 3.2).

Fig. 1.9. Derivación de tests de WebSpec en el contexto de WebTDD

1.3 Resumen del Contenido de la Tesis Doctoral 13

El proceso de transformación de los diagramas WebSpec en el conjunto de tests es au-
tomático y puede ser formalmente descrito en un algoritmo que es aplicado sobre los diagramas
(Caṕıtulo 4 y Apéndice A).

El algoritmo sigue los siguientes pasos:

1. Crear la test suite.
2. Computar todos los posibles caminos para el diagrama.
3. Para cada camino:

a) Crear un test.
b) Abrir la URL de la interacción inicial.
c) Agregar todos los pasos en el camino desde la interacción inicial hasta el fin del mismo

incluyendo las aserciones e invariantes.

Esta transformación es independiente de la tecnoloǵıa y puede ser luego utilizada para
derivar tests en alguna tecnoloǵıa en particular (por ejemplo Selenium tests).

Evolución semi automática de la aplicación utilizando el control de cambios de
WebSpec

La captura de los cambios en los requisitos es una caracteŕıstica importante para predecir el
impacto de estos en la aplicación. Aunque algunos artefactos para la captura de requisitos [17]
proveen extensiones para soportar el control de cambios, en el campo de la ingenieŕıa Web
estos aspectos han sido ignorados (revisar Caṕıtulo 4 y Apéndice A para más detalles).

Fig. 1.10. Derivación de la aplicación en el contexto de WebTDD

En WebSpec, los cambios son grabados en objetos de cambio (change objects) que agrupan
un conjunto de cambios en los diagramas. Los change objects son creados aun en las fases
iniciales (cuando el diagrama esta siendo creado). Los diagramas WebSpec pueden tener difer-
entes cambios de grano grueso, como el agregado o borrado de una interacción o transición.
Estos elementos también pueden ser modificados por el agregado o borrado de widgets a una
interacción, cambio en los invariantes, etc. Respecto a las transiciones, podemos agregar o mod-
ificar sus precondiciones, cambiar su origen y destino, o las acciones que las activan. Cuando
un usuario modifica un diagrama, un objeto de cambio es creado y la secuencia de cambios
es grabada como instancias en un metamodelo (Caṕıtulo 4 y Apéndice A). En la Fig 1.10 se
muestra las actividades en el contexto de WebTDD; cuando estamos creando o modificando
diagramas, activamos el control de cambios de WebSpec para grabar dichos cambios. Luego,
cuando comenzamos con las tareas de modelado podemos aplicar estos cambios en forma semi
automática a nuestros modelos para mejorarlos. Como WebSpec no soporta todos los tipos de

14 1 Śıntesis en Castellano

Fig. 1.11. Extensión del diagrama de búsqueda con una interacción de registro

cambios (especialmente aquellos relacionados con como fue modelada la aplicación) debemos
continuar con las tareas de modelado en forma manual.

Como ejemplo, supongamos que agregamos una interacción de registro (Register) con sus
widgets y un link desde la interacción Home (Fig. 1.11). Este cambio en el diagrama genera un
nuevo change object que contiene los siguientes elementos: una nueva interacción (Register),
una nueva navegación (Home − > Register), un nuevo link (register) en la interacción Home
y un nuevo conjunto de widgets en la interacción Register.

Fig. 1.12. Versión existente del modelo de UI antes de que el objeto de cambio haya sido aplicado

Asumiendo que estamos modelando la UI con un modelo de clases (Fig 1.12), lo podemos
actualizar en forma automática al mostrado en la Fig 1.13 utilizando el control de cambios
provisto por WebSpec (Caṕıtulo 4 y Apéndice A).

Fig. 1.13. Versión modificada del modelo de UI luego de haber aplicado el change object

1.3 Resumen del Contenido de la Tesis Doctoral 15

1.3.3 Implementación

Una tool para WebSpec ha sido implementada como plugin de Eclipse utilizando tecnoloǵıas
EMF [3] y GMF [4] y esta disponible actualmente como proyecto open source1.

Fig. 1.14. Plugin de Eclipse para WebSpec

El plugin soporta las siguientes caracteŕısticas:

• Creación de diagramas WebSpec: un editor visual permite la creación, modificación y actual-
ización de los diagramas. Las propiedades de los elementos pueden ser modificadas seleccio-
nando cada elemento y actualizando los editores de propiedades en la vista de propiedades.

• Asociación con mockups HTML: tomando como ventaja el framework de Eclipse, los mock-
ups HTML son archivos dentro del proyecto. El editor permite seleccionar una interacción
y su mockup HTML fácilmente. La asociación entre los widgets es realizada editando la
propiedad location del widget WebSpec en la vista de propiedades.

• Simulación de la aplicación: utilizando la asociación previa, el plugin abre los mockups
en un navegador Web y muestra descripciones de cual seŕıa el comportamiento esperado.
Esta caracteŕıstica ha sido implementada extendiendo el mecanismo de comunicación de
Selenium [6] y utilizando un plugin de JQuery [5] para mostrar las descripciones.

• Derivación de tests a selenium: Como mostramos anteriormente, cada diagrama es trans-
formado en un modelo de tests. Luego el plugin permite la traducción del modelo de tests
a tests de Selenium.

• Manejo de cambios: Utilizando el patrón observer [15] de EMF, nos registramos para recibir
notificaciones de los cambios en el diagrama y aśı el plugin crea el modelo de cambios. El
usuario del plugin es quien decide si comenzar a grabar los cambios o no. Cuando algunos
cambios han sido capturados y el usuario detiene el grabado, el modelo de cambios es
grabado en un archivo para ser usado luego.

• Generación/Actualización de clases GWT y Seaside: Utilizando el modelo de cambios
grabado con anterioridad, el modelo de UI puede ser generado automáticamente. Actual-
mente, el plugin soporta la generación de clases GWT y Seaside y maneja no solo la primera
versión de los cambios sino cambios incrementales.

1 Mirar http://code.google.com/p/webspec-language/ para más detalles

16 1 Śıntesis en Castellano

Fig. 1.15. La paleta de WebSpec

La Fig. 1.14 muestra una pantalla del plugin de Eclipse. En la Fig. 1.15 podemos ver
más detalles de la paleta de WebSpec que permite la creación de cada elemento WebSpec
realizando un drag and drop de cada elemento sobre el diagrama. Luego, si seleccionamos un
elemento, podemos editar sus propiedades en la vista de propiedades de Eclipse (Fig. 1.16). En
las próximas subsecciones daremos más detalles de como se han implementado cada una de las
caracteŕısticas presentadas por el plugin.

Fig. 1.16. Las propiedades de un diagrama WebSpec

Simulación

La caracteŕıstica de simulación implica la implementación de 3 elementos: la transformación
entre WebSpec y los modelos de simulación, la asociación entre los mockups y la ejecución de
la simulación. La transformación entre WebSpec y los modelos de simulación ha sido imple-
mentada directamente en Java debido a que es mucho más sencillo de realizar los algoritmos de
cómputo de caminos en este lenguaje que en QVT. Para realizar la transformación simplemente
abrimos el menú de WebSpec (Fig. 1.17) y elegimos el item Simulate.

1.3 Resumen del Contenido de la Tesis Doctoral 17

La asociación con los Mockups has sido implementada fácilmente tomando como ventaja
el ambiente de Eclipse. Agregamos una nueva propiedad para las interacciones y widgets que
abre un diálogo para elegir un archivo el cual permite elegir el mockup HTML.

Fig. 1.17. El menú de WebSpec

La simulación en si fue la parte más compleja de implementar y requirió la extensión del
framework Selenium. Utilizamos el mecanismo de comunicación existente de Selenium para
abrir el navegador Web y ejecutar las acciones en el mismo. Como se muestra en la Fig.
1.18, mostramos descripciones sobre los mockups utilizando un plugin de JQuery. Para hacerlo
funcionar, tuvimos que extender el framework de Selenium para que se cargue dichas libreŕıas
y mostrar las descripciones cuando sea necesario. Debemos notar que el mismo mockup (el cual
puede ser más rico que una interacción debido a que posee más widgets) puede ser utilizado
en múltiples y diferentes simulaciones. Nuestro acercamiento mantiene el mockup en el mismo
estado en el cual fue construido sin quitar ninguno de los widgets existentes debido a que ellos
confundiŕıan a los clientes acerca de la presencia o ausencia de los mismos.

Fig. 1.18. Ejemplo de simulación en WebSpec

Validación de requisitos

Para permitir la validación de requisitos tuvimos que realizar 2 tareas: transformar a los di-
agramas en modelos de tests y luego derivar estos tests a una tecnoloǵıa en particular. La
transformación entre los modelos ha sido implementada aprovechando la arquitectura y trans-
formaciones existentes para la simulación debido a que ambas utilizan algoritmos de cómputo
de caminos.

18 1 Śıntesis en Castellano

Con el fin de transformar los modelos de tests a unos dependientes de la tecnoloǵıa, uti-
lizamos transformaciones de modelos a texto. Actualmente, el plugin soporta la derivación
de tests a Selenium y estamos trabajando en la derivación a Webdriver [7]. Como ejemplo
mostramos a continuación el código generado para nuestro caso de ejemplo en el framework
Selenium:

(01) selenium.open("http://localhost:8080/index.html");

(02) selenium.type("id=searchField", "Ipod");

(03) selenium.click("id=search");

(04) selenium.waitForPageToLoad("30000");

(05) selenium.click("id=product0");

(06) selenium.waitForPageToLoad("30000");

(07) assertTrue(selenium.getText("id=productName").equals("Ipod"));

(08) selenium.click("id=home");

(09) selenium.waitForPageToLoad("30000");

(10) selenium.type("id=searchField", "book");

(11) selenium.click("id=search");

(12) selenium.waitForPageToLoad("30000");

(13) selenium.click("id=product0");

(14) selenium.waitForPageToLoad("30000");

(15) assertTrue(selenium.getText("id=productName").equals("book"));

(16) selenium.click("id=home");

La ĺınea 1 abre la aplicación en el navegador Web. Las ĺıneas 02-04 buscan al producto
Ipod. Las ĺıneas 05-06 eligen el primer producto que fue obtenido como resultado y finalmente
la ĺınea 07 asegura que el producto elegido tiene el nombre Ipod. Las Ĺıneas 08-09 navegan a la
página Home. Las ĺıneas 10-12 buscan al producto book, las ĺıneas 13-14 seleccionan el primer
producto que fue obtenido como resultado y finalmente la ĺınea 15 asegura que el producto
seleccionado tiene como nombre book. La ĺınea 16 navega a la página Home.

Fig. 1.19. Un test que falla

Como ejemplo, los tests de Selenium pueden ser ejecutados en el Selenium IDE, la Fig 1.19
muestra un test que falla exponiendo que un requisito no ha sido correctamente implementado
en la aplicación aún.

1.3 Resumen del Contenido de la Tesis Doctoral 19

Cambios en los requisitos

Cuando un diagrama es modificado, grabamos sus cambios en un archivo de cambios. Este
archivo no es más que una serialización del modelo de cambios en formato XML. Para capturar
los cambios utilizamos el patrón observer e incrementalmente lo vamos construyendo; luego
lo serializamos a XML. Los archivos de cambios son léıdos y utilizamos para actualizar la
aplicación utilizando manejadores de cambios (un componente que se encarga de mapear los
cambios en WebSpec en los de una tecnoloǵıa en particular). El plugin soporta la generación
de clases y métodos compatibles con Seaside y GWT y estamos trabajando activamente para
derivar a modelos de WebRatio [8].

Como ejemplo del uso de manejadores de cambios, mostramos a continuación el uso de
objetos de cambio en nuestro ejemplo de actualización (el agregado de la registración que hemos
mostrado previamente) en GWT. Con el fin de mantener la discusión acotada mostramos la
clase RegisterView creada por el manejador de cambios de GWT.

Básicamente, las ĺıneas 09-15 definen las variables de instancia que representan a los widgets
y las ĺıneas 21-29 inicializan estos objetos con sus respectivas clases GWT. Debemos notar que la
clase RegisterView extiende de VerticalPanel (una clase base en GWT para la implementación
de UIs).

(01) package org.webspeclanguage.re;

(02)

(03) import com.google.gwt.user.client.ui.VerticalPanel;

(04) import com.google.gwt.user.client.ui.TextBox;

(05) import com.google.gwt.user.client.ui.Button;

(06)

(07) public class RegisterView extends VerticalPanel {

(08)

(09) private TextBox firstName;

(10) private TextBox lastName;

(11) private TextBox username;

(12) private TextBox password;

(13) private TextBox confirmPassword;

(14) private Button register;

(15) private Button cancel;

(16)

(17) public RegisterView() {

(18) this.initializeComponent();

(19) }

(20)

(21) public void initializeComponent() {

(22) this.firstName = new TextBox();

(23) this.lastName = new TextBox();

(24) this.username = new TextBox();

(25) this.password = new TextBox();

(26) this.confirmPassword = new TextBox();

(27) this.register = new Button();

(28) this.cancel = new Button();

(29) }

(30) }

En la Fig. 1.20 mostramos una representación visual de la clase RegisterView donde hemos
aplicado un poco de estilo para mejorar el look and feel de la misma.

20 1 Śıntesis en Castellano

Fig. 1.20. Una representación visual de la clase RegisterView

1.4 Conclusiones

El desarrollo de aplicaciones Web es un proceso complejo y que consume mucho tiempo. A su vez
involucra a equipos de desarrollo multidisciplinarios con diferentes conocimientos y roles. Para
estos equipos es común enfrentar el desaf́ıo de hacer evolucionar aplicaciones Web en peŕıodos
de tiempo corto con el fin de satisfacer los nuevos requisitos del mercado. Principalmente
porque actualizar una aplicación de acuerdo a los nuevos requisitos es una tarea complicada si
queremos evitar el problema de romper la funcionalidad existente.

En la literatura, la solución de facto han sido las metodoloǵıas MDWE que usan modelos
para desarrollar la aplicación. Sin embargo, estas son más pesadas que sus pares ágiles y el
feedback de los clientes es obtenido muy tarde. Por otro lado las metodoloǵıas ágiles están
centradas en el código y requieren un montón de esfuerzo manual para varias tareas incluidas
el testeo de la misma aplicación.

Para resolver estos problemas hemos presentado en esta tesis doctoral una metodoloǵıa
h́ıbrida llamada WebTDD que mezcla las ventajas de las metodoloǵıas MDWE con las ágiles.
Esta metodoloǵıa ha sido el disparador para el desarrollo del principal componente de esta
tesis; un DSL para la especificación de requisitos Web llamado WebSpec. Hemos mostrado
como especificar requisitos Web usando el lenguaje y al mismo tiempo simular la aplicación
en desarrollo. La simulación es soportada mediante el uso de mockups y esta ayuda a mejorar
el entendimiento del requisito por parte de los diferentes miembros del equipo. Como hemos
dicho anteriormente, el testing es crucial en este contexto y hemos mostrado como un conjunto
de tests han sido derivados de cada diagrama WebSpec permitiendo validar si el requisito ha
sido implementado correctamente o no. Finalmente, tomando ventaja del sistema de cambios
que WebSpec posee, hemos mostrado como actualizar la aplicación en forma semi automática.

Cabe mencionar que WebTDD es la primera metodoloǵıa h́ıbrida en mostrar que la com-
binación de métodos ágiles como métodos basados en modelos es posible en el ámbito Web.
Además, WebSpec es el primer DSL para la especificación de requisitos Web que permite las
caracteŕısticas mencionadas con anterioridad y es independiente del proceso de desarrollo. En
esta tesis hemos utilizado a WebTDD porque es un matching perfecto para las caracteŕısticas
de WebSpec.

References

1. Axure - wireframes, prototypes, specifications. available at: http://www.axure.com/.
2. Balsamiq. available at: http://www.balsamiq.com/products/mockups.
3. Eclipse emf. available at: http://www.eclipse.org/modeling/emf/.
4. Eclipse gmf. available at: http://www.eclipse.org/modeling/gmp/.
5. jquery: The write less, do more, javascript library. available at: http://jquery.com/.
6. Selenium web application testing framework. http://seleniumhq.org/.

References 21

7. Webdriver. available at: http://webdriver.googlecode.com.
8. The webratio tool suite. available at: http://www.webratio.com.
9. S. Ambler. Agile Modeling: Effective Practices for eXtreme Programming and the Unified Process.

John Wiley & Sons, Inc., New York, NY, USA, 2002.
10. Beck. Test Driven Development: By Example. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2002.
11. S. Ceri, P. Fraternali, and A. Bongio. Web modeling language (webml): a modeling language for

designing web sites. Computer Networks and Isdn Systems, 33:137–157, 2000.
12. N. Chomsky. Three models for the description of language. IEEE Transactions on Information

Theory, 2(3):113–124, Sept. 1956.
13. J. Duhl. Rich internet applications. a white paper sponsored by macromedia and intel, idc report,

2003.
14. M. Fowler. Domain Specific Languages. Addison-Wesley Professional, 1st edition, 2010.
15. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable object-

oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.
16. J. Gómez and C. Cachero. OO-H Method: extending UML to model web interfaces, pages 144–173.

IGI Publishing, Hershey, PA, USA, 2003.
17. I. Jacobson. Object-Oriented Software Engineering: a Use Case driven Approach. Addison–Wesley,

Wokingham, England, 1995.
18. N. Koch, A. Knapp, G. Zhang, and H. Baumeister. UML-BASED WEB ENGINEERING - An

approach based on standards, chapter 7, pages 157–191. Springer, 2008.
19. D. Lowe. Web system requirements: an overview. Requir. Eng., 8(2):102–113, 2003.
20. R. C. Martin. Agile Software Development: Principles, Patterns, and Practices. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 2003.
21. E. M. Maximilien and L. Williams. Assessing test-driven development at ibm. In ICSE ’03:

Proceedings of the 25th International Conference on Software Engineering, pages 564–569, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

22. A. Mcdonald and R. Welland. Web engineering in practice, 2001.
23. D. L. Moody. The é;physicsé; of notations: Toward a scientific basis for constructing visual nota-

tions in software engineering. IEEE Trans. Software Eng., 35(6):756–779, 2009.
24. O. Pastor, S. M. Abrahão, and J. Fons. An object-oriented approach to automate web applications

development. In Proceedings of the Second International Conference on Electronic Commerce and
Web Technologies, EC-Web 2001, pages 16–28, London, UK, 2001. Springer-Verlag.

25. E. Robles Luna, I. Garrigós, J. Grigera, and M. Winckler. Capture and evolution of web require-
ments using webspec. In Proceedings of the 10th international conference on Web engineering,
ICWE’10, pages 173–188, Berlin, Heidelberg, 2010. Springer-Verlag.

26. E. Robles Luna, J. Grigera, and G. Rossi. Bridging test and model-driven approaches in web
engineering. In M. Gaedke, M. Grossniklaus, and O. Dı́az, editors, Web Engineering, volume
5648 of Lecture Notes in Computer Science, pages 136–150. Springer Berlin / Heidelberg, 2009.
10.1007/978-3-642-02818-210.

27. G. Rossi and D. Schwabe. Modeling and implementing web applications with oohdm. In G. Rossi,
O. Pastor, D. Schwabe, and L. Olsina, editors, Web Engineering: Modelling and Implementing
Web Applications, Human-Computer Interaction Series, pages 109–155. Springer London, 2008.
10.1007/978-1-84628-923-16.

28. M. Wimmer, A. Schauerhuber, and H. Kargl. On the integration of web modeling languages:
Preliminary results and future challenges.

2

Summary in English

This PhD Thesis is composed of a set of published and submitted papers. Therefore, this
chapter is devoted to a description of initial hypotheses, research objectives, and the collection
of works that are part of this Thesis, thus justifying its coherence. It should be underlined that
this chapter summarizes the scientific content of this PhD Thesis, including research results
and final conclusions. Finally, the previous chapter has been written in Spanish, and then
translated into English as follows.

2.1 PhD Thesis as a Collection of Papers

In order to write this PhD Thesis as a collection of papers in the University of Alicante, a set
of requirements must be followed. These requirements were defined by “Pleno de la Comisión
de Doctorado de la Universidad de Alicante” on the 2nd of March, 2005; those related to the
content of the PhD Thesis are presented as follows:

1. “The PhD Thesis must include a summary written in one of the two official languages of
this region. It should contain objectives, hypotheses and works to justify the coherence of
the research.”

2. “This summary must include an abstract to present the results, a discussion of them and
the final conclusions. This summary must give an idea of the overall content of the PhD
Thesis.”

3. “The works presented in this PhD Thesis must be published or accepted for publication
after the beginning of the PhD. Papers under review can be included in the appendices of
the PhD Thesis.”

In order to fulfil the aforementioned requirements, this PhD Thesis is structured in three
parts. Part I consists of a summary in Spanish (Chapter 1) and its corresponding summary
in English (Chapter 2). Part II presents a collection of published papers that are the main
content of this PhD thesis. Part III presents an article under revision.

2.1.1 Publications Included in this PhD Thesis

A set of the published research papers have been selected to be part of this PhD Thesis due
to (i) their scientific contribution and (ii) their relevance. They are described in this section.

Chapter 3

Robles Luna E., Grigera J., Rossi G. Bridging Test and Model Driven Approaches in Web
Engineering. Proceedings of 9th International Conference on Web Engineering (ICWE 2009).
2009. San Sebastian, Spain. Acceptance rate: 24%. Core C

24 2 Summary in English

Robles Luna E., Panach J.I., Grigera J., Rossi G., Pastor O. Incorporating Usability Re-
quirements in a Test/Model-Driven Web Engineering Approach. Journal of Web Engineering
(JWE). 2010. Impact factor: 0.531. JCR.

This work describes a methodology for Web application development in which tests play
a fundamental role driving the development process. Failing tests indicate that part of the
required functionality has not been implemented (similar to test driven development [10]).
However, different from test driven approaches in which the main development artefact is the
code in our methodology we use a model based development in which models abstract but not
drive the development.

The methodology presented in this chapter defines a good framework for WebSpec (the
main contribution of this PhD thesis) being used. In particular, because these methodologies
don’t provide automatic translation from requirements to tests.

Chapter 4

Robles Luna E., Garrigos I., Grigera J., Winckler M. Capture and Evolution of Web re-
quirements using WebSpec. Proceedings of 10th International Conference on Web Engineering
(ICWE 2010). Vienna, Austria. Acceptance rate: 20%. Core C

In this chapter we present the domain specific language which is the core part of this PhD
thesis. We show its definition and use in the different activities of the development cycle.
Though Webspec was initially conceive to be used with the approach presented in chapter 3,
we show how it can be used with a unified methodology.

Chapter 5

Robles Luna E., Garrigos I, Mazon J-N., Trujillo J., Rossi G. An i*-based Approach for
Modeling and Tesing Web Requirements. Journal of Web Engineering (JWE). 2010. Impact
factor: 0.531. JCR.

Some development methodologies use an early phase of requirements in which objectives and
tasks of the system/organization are defined before more capturing detailed requirements (like
the one done with WebSpec). Several times a formal language like i* is used to describe these
relationships. In this chapter we show how to use WebSpec with i* to model Web requirements.
When we used both artefacts we can semi automatically validate that the objectives described
in the i* model are correctly implemented in the application by using the automatic derivation
of tests that WebSpec provides.

Chapter 6

Medina, N. M., Burella, J., Rossi G., Grigera J., Robles Luna E.. An Incremental Approach
for Building Accessible and Usable Web Applications. Proceedings of the 11th International
Conference on Web Information System Engineering (WISE 2010). Hong Kong, China. Ac-
ceptance rate: 18.8%. Core A

Robles Luna E., Garrigos I., Rossi G. Capturing and Validating Personalization Require-
ments in Web Applications. Proceedings of the 1st Workshop on The Web and Requirements
Engineering (WeRE 2010). Sydney, Australia.

In this chapter we show how to use WebSpec for the specification of non functional re-
quirements like accessibility and personalization of Web application. In each case we provide
small extensions to the core language with the intent of allowing the specification of these
requirements in the context of WebTDD.

2.1 PhD Thesis as a Collection of Papers 25

Chapter 7

Burella J., Rossi G., Robles Luna E., Grigera J. Dealing with Navigation and Interaction
Requirement Changes in a TDD-Based Web Engineering Approach. Proceedings of the 11th In-
ternational Conference on Agile Software Development (XP 2010), Springer Verlag, LNCS,
2010. Trondheim, Norway. Core B.

Robles Luna E., Burella J., Grigera J, Rossi G. A Flexible Tool Suite for Change-Aware
Test-Driven Development of Web Applications. Proceedings of the ACM/IEEE 32nd Interna-
tional Conference on Software Engineering (ICSE 2010). 2010. Cape Town, South Africa.
Core A.

In this chapter we present WebSpec’s change management which allows detecting the code
pieces affected by a requirement change. To allow this feature, we establish an association
between the changes that happen at the requirement level with those in the implementation.
In addition, we present a demonstration of WebSpec’s Eclipse tool which gives support for each
of the language’s features.

Appendix A

Robles Luna E., Rossi G., Garrigos I. WebSpec: a Visual Language for Specifying Interac-
tion and Navigation Requirements in Web Applications. Requirements Engineering Journal. In
press. Impact factor: 0.931. JCR.

In this chapter we present an evolution of the core language presented in chapter 4 in which
we detail the specification of requirements for rich internet applications. In addition, we present
details about the language’s grammar and an extension of the case of study.

2.1.2 Other publications in International conferences

During the development of this PhD thesis we have publish other articles which have not been
explicitly included in this document. However, these papers are part of the research done during
my PhD studies and complement this PhD thesis:

• Robles Luna E., Escalona M.J, Rossi G. A requirements metamodel for Rich Internet
applications. Proceedings of the 5th International Conference on Software and Data Tech-
nologies (ICSOFT 2010). Athens, Greece. Acceptance rate: 9%. Core B.

• Rivero J.M., Rossi G., Grigera J., Burella J., Robles Luna E., Gordillo S. From mockups
to user interface models: An extensible model driven approach. Proceedings of the 6th
Model-Driven Web Engineering Workshop. (MDWE 2010). Vienna, Austria.

• Robles Luna E., Rossi G., Burella J., Grigera J. Incremental Usability Improvement in
an Agile Approach for Web Applications. Proceedings of the 1st workshop Dealing with
Usabiliy in an Agile Domain, XP’2010 workshop. (Usability&Agile 2010), 2010. Trond-
heim, Norway.

• Robles Luna E., Grigera J., Rossi G., Panach J. I. and Pastor O. Introducing Usability
Requirements in a Test/Model-Driven Web Engineering Method. Proceedings of 8th Inter-
national Workshop on Web-Oriented Software Technologies (IWOOST 2009). 2009. San
Sebastian, Spain.

26 2 Summary in English

2.2 Research Objectives and Initial Hypotheses

Web application development is a complex and time consuming process that involves different
stakeholders. It is typical that development teams are usually multidisciplinary (including
customers, visual designers, developers, QA staff, etc) and therefore the understanding of the
application varies between the team members. In addition, these applications have some unique
characteristics like navigational access to information and sophisticated interaction features
making their development different from traditional desktop application. As a consequence
we can find in the literature different development approaches to build them. However, there
are two distinctive groups for web application development: model driven web engineering
(MDWE) and agile methodologies.

On one hand, several MDWE approaches have been proposed during the last 20 years
[11, 16, 18, 24, 27]. All of them share a common top-down style [28], constructing the web
application by describing a set of models at different abstraction levels:

• Content (or Application) Model: defines domain objects and their relationships.
• Hypertext (or Navigation) Model: defines navigation nodes and links that publish informa-

tion specified by objects in Content Model.
• Presentation Model: refines the Hypertext Model with concrete user interface presentation

features like pages, concrete widgets, layout, etc.

The process used in these methodologies is generally top-down, delivering a final web Ap-
plication in a specific technology using automatic model transformations.

On the other hand, agile methodologies promote early and constant interaction with cus-
tomers. In this way they can assert that the software built complies with their requirements by
constantly delivering prototypes which are developed in short periods of time. Agile approaches
argue that software specifications must emerge naturally, enhancing former prototypes along
the development until the final application is obtained.

To summarize, while MDWE methodologies facilitate software specification portability,
abstraction and productivity, they fail in providing agile interaction with customers because
concrete results are obtained too late. On the other hand, while this feature is clearly provided
by agile methodologies, they are heavily based on direct implementation and thus fail to provide
abstraction, portability and productivity through automatic code generation.

According to several studies [22, 19] in industrial cases, the requirements phase is one of
the most important phases of any web development approach. Unfortunately, in the context of
MDWE, requirements are generally captured using Use cases [17] or a modified version of them
while in agile approaches their is a tendency to replace Use cases with User stories [20]. Regard-
ing the expressive power of both artefacts, they are very poor to express the particularities
of the Web (e.g. their interactive and navigation-driven nature). In addition, the fast evolution
of Web applications (within few weeks) poses additional constraints to allow continuous and
timely application testing against the requirement specification [19] mainly to validate that
new requirements have been correctly implemented without “breaking” previous ones. In this
context, capturing and modeling requirements should be efficient enough to accomplish the
time constraint. Therefore, it is important that requirements need to be clearly understood
to provide efficient application evolution.

Taking into account these considerations, the hypothesis of this PhD thesis is the
improvement of web application development by:

• A formal requirements specification language that automates the requirements validation
phase, semiautomates the derivation of the application and helps to understand the require-
ment through web application simulation.

• An hybrid development approach which takes the advantages of MDWE and agile method-
ologies to improve web application development.

Though existing work [9] propose the idea of combining agile methodologies with Model
driven development our work [26] was the first to show that the approach was feasible in the

2.3 PhD Thesis in a Nutshell 27

Web context. This work was the trigger for the development of our requirement language called
WebSpec [25] that allows the aforementioned automatic features.

In conclusion, the main research objective of this PhD thesis is the development of a do-
main specific language (DSL) to allow specifying web requirements formally. As a consequence
the following tasks could be automated and help to improve the development process:

• Improve the understanding of the requirement through web application simulation.
• Automate the testing of the requirement with the automatic derivation of interaction tests.
• Semiautomate the derivation of the application to different technologies not only in the

first iteration but also when the application evolves using change management support.

2.3 PhD Thesis in a Nutshell

The objective of this PhD thesis is tackled by first understanding how and why applications
are built using two different approaches and how they could be combined to improve web
application development. One point that both approaches clearly fall short is that manual
testing is a hard task; therefore it motivates the development of a multipurpose DSL to specify
web requirements. As shown in the different chapters of this thesis, the language was originally
created for specifying functional requirements but we have extended it to validate i* models
(Chapter 5) and to allow expressing personalization and accessibility requirements (Chapter 6).

2.3.1 WebTDD

WebTDD is an agile approach [26] for developing web applications; it is based on short develop-
ment cycles (called sprints) that helps to gather quick feedback from customers. Tests are heavy
used to drive the development approach while validating that requirements are correctly im-
plemented. Model based technologies are used to develop the application by creating/updating
models and transforming into code. In each sprint of WebTDD, a set of requirements is im-
plemented and a new version of the application is delivered to the customer. It is typical that
sprints last 2 weeks and cover the full development cycle from requirements capture, develop-
ment and testing.

Fig. 2.1. WebTDD

At the beginning of each sprint, there are a set of requirements that need to be implemented.
WebTDD poses a set of activities to be performed to implement each requirement (Fig 2.1):

28 2 Summary in English

1. Each requirement is captured with mockups (stub HTML pages) and WebSpec diagrams
(Step 1 of Fig. 2.1). Mockups help to agree in the look and feel of the application, and
WebSpec diagrams capture navigation and interaction behaviours. During this process we
can improve the elicitation of requirements using WebSpec simulation. Also, if WebSpec’s
change management support is activated, we can capture the changes in the diagrams for
later use.

2. Next we automatically derive (Step 2) a set of meaningful tests that the application must
pass to satisfy the captured requirements directly from WebSpec diagrams. This process is
automatic and a test suite is derived from each diagram.

3. As in “conventional” test driven development (TDD [10]), we run them prior to the imple-
mentation (Step 3) in order to check that the application does not satisfy the requirements
yet. The failing tests will show which are the interaction paths that the application does
not satisfy yet.

4. Afterwards, the modelling activities begin (Step 4); we create or enhance a set of models
in the model based techonology chosen for the project (e.g. WebRatio or MagicUWE). If
we have activated the change management support that WebSpec provides, the changes
in the requirements could be mapped semiautomatically in the models avoiding wastes of
time.

5. Using the automatic model transformation that the MDWE tool supports we derive the
web application (Step 5).

6. Finally, we check whether the requirement has been successfully implemented by running
the previous tests (Step 6). If at least one test fails, we have to go back, tweak the models
and derive the application again until all tests pass. If all tests pass then we can start the
process again with the next requirement until we run out of requirements to be implemented
in the sprint.

We must notice that WebTDD is independent of the model based technology used for
the modelling activities as the different activities does not depend on the specific modelling
artefacts or mechanics [26].

2.3.2 WebSpec

WebSpec is a visual domain specific language [14] that allows specifying navigation, interaction
and UI Web requirements. The main artefact for specifying requirements is the WebSpec
diagram which can contain interactions, navigations and rich behaviours.

A WebSpec diagram defines a set of scenarios that the Web application must satisfy. It can
contain two main elements: interactions and transitions (which can be in turn navigations or
rich behaviours). Interactions represent points where the user can interact with the application
and transitions represent a movement from one point of interaction to another. Therefore, a
WebSpec diagram could be seen as a graph where interactions are the nodes of the graph and
transitions represent the edges. A scenario is represented by a sequence of interactions and
transitions, e.g. <interaction1, navigation1, interaction2, rich1, interaction3> that defines a
possible path of interactions between the user and the Web application.

Fig. 2.2 shows a WebSpec diagram for our exemplar user story: “As a customer, I would
like to search products by name and see its details”. The diagram is constructed iteratively
between the customer and the analyst by having several meetings. Since the use of WebSpec
is not tight to any particular development process, we can use the long duration meetings of
unified development approaches or short meetings where customers are really involved and are
typical in agile development. Diagrams’ construction could be improved by using mockups and
simulating the application (as shown next); however, we expect that with some training the
customer would be able to solely build a diagram. As an example, the diagram of Fig. 2.2
defines the navigation paths that the user can follow from the home page to the search results
page and then to the details of the products. Also, the user is able to go back to the search
results page from the detail of the product or go back to the home page.

2.3 PhD Thesis in a Nutshell 29

Fig. 2.2. Webspec diagram of the Search by name scenario

In a WebSpec diagram, an interaction represents a point where the user can interact with
the application by using its interface objects (widgets). Formally, they represent the state
of a Web page either when it is loaded after user’s navigation or when it has changed as a
consequence of a rich behaviour. Interactions have a name (unique per diagram) and may
have widgets such as: labels, list boxes, buttons, radio buttons, check boxes and panels. Labels
define the content (information) shown by an interaction. There are two types of widgets that
allow defining widgets composition: ListPanel and Panel. A ListPanel represents a repetition of
the elements that it contains and the Panel defines a simple placeholder that can contain any
simple or composed widget. Interactions are graphically represented with a rounded rectangle
(Fig. 2.3) which contains the interaction’s name and widgets. A WebSpec diagram must have
at least one starting interaction represented with dashed lines. To specify which properties
must be satisfied by the application we use invariants (Boolean expressions) on the diagrams’
interactions. Every interaction (either implicitly or explicitly) defines an invariant that specifies
which properties must be satisfied in the set of scenarios specified by the diagram (in case that
we do not define one explicitly, it is implicitly assumed that the invariant is true).

Fig. 2.3. WebSpec’s interaction

In WebSpec, a navigation is graphically represented (Fig. 2.4) with grey arrows while its
name, precondition and triggering actions are displayed as labels over them. In particular,
its name appears with a prefix of the character “#”, the precondition between {} and the
actions in the following lines. We must remark that the idea behind the transitions’ actions
(either navigations or rich behaviours) is that the execution of them produces the transition
between interactions and not in the other way. A transition should be understood like: “if the
precondition holds and the user executes the sequence of actions then the application should
transit to the target interaction”.

A navigation from one interaction to another can be activated if its precondition holds,
by executing the sequence of triggering actions such as: clicking a button, adding some text
in a text field, etc. As well as invariants, preconditions can reference variables declared pre-
viously in the diagram. Actions are written according to the following syntax: var := expr |
actionName(arg1,... argn) (a complete BNF [12] grammar can be found in Appendix A).

On the other hand, the application may change its UI state as a consequence of some
actions performed by the user (e.g. on some interface widgets). For example, when the mouse

30 2 Summary in English

Fig. 2.4. WebSpec’s navigation

is “on” a widget, some additional information might pop-up, or while entering text in a field,
the text might be auto-completed. These “local” changes are common in the so-called rich
Internet applications [13] and it is nowadays usual that customers pose requirements of this
type, either explicitly (“I want an auto-complete feature in this field”), or implicitly (“I want
that information appears as in Amazon.com”). These “rich” behaviours are being increasingly
used not only in Web 2.0 applications but also in traditional, e.g. e-commerce, ones.

In a Web application, a rich behaviour is perceived by a local change in the UI of the
Web application and it does not add a new element in the browsing history. To specify a rich
behaviour in Webspec, we use a red dashed arrow (Fig 2.5) though it has the same properties
that a navigation has (name, precondition and actions).

Fig. 2.5. WebSpec’s rich behaviour

Improving requirement understanding using simulation

With the aim of improving the requirement elicitation phase, WebSpec diagrams allow the
simulation of the application under development. Simulation is important to bridge the gap
between the understanding of customers and analysts about requirements, thus helping to get
real feedback from them. Usually, requirement artefacts [23] require some level of knowledge
from customers to be fully understood, causing understanding problems during elicitation that
are handled lately when the application is under active development.

Fig. 2.6. WebSpec’s simulation in the context of WebTDD

2.3 PhD Thesis in a Nutshell 31

In WebTDD, simulation can be used during requirement gathering while we create the
mockups and the diagrams. In Fig. 2.6 we show a detailed view of the “Create Mockups and
WebSpec” activity; we first start creating some mockups which help to give a context of work
to customers. Then we create the WebSpec diagrams according to the requirements from the
customers and to double check the expected behaviour of the application we simulate some of
their interaction paths. When we have agreed with the customer about the requirement, the
“Create Mockups and WebSpec” activity ends.

To support the simulation of the application, WebSpec allows associating interactions with
mockups and WebSpec widgets with their concrete UI elements in the mockup. Using this
association, we can switch between the specifications in WebSpec with an exemplar UI that
will help to understand the requirements. Mockups can be created with tools such as Balsamiq
[2], Axure [1] or plain HTML. For example in Fig 2.7, we show a mockup of the product details
page created with Balsamiq. The mockup shows the information that must be presented on that
page: the product name, its description, price and the links to the home and search results.
Fig. 2.8 shows a simple association between the mockup of Fig. 2.7 with its corresponding
interaction and widgets.

Fig. 2.7. Balsamiq mockup of Product details page

Our simulation basically opens a Web browser with the developed mockups and show
descriptions and performs actions that show how a hypothetical user would interact with the
application. It is rigorous, because differently from the simulation provided by tools such as
Balsamiq [2], we not only show transitions between the pages but also execute real actions
and provide descriptions of what would be the real output of the application, directly over
mockups. These descriptions are generated automatically from the WebSpec diagrams, and
they are easy to understand because they are written in natural language. In this way, from
every WebSpec diagram, a set of simulations is automatically generated which can be used
at any time by customers to understand the meaning of the diagram and suggest changes or
improvements to the analyst.

Fig. 2.8. Association between interaction and mockup

32 2 Summary in English

Validating requirement implementation with automatic test derivation

New requirements must be validated to guarantee their correct implementation while previous
ones still work as intended. However, it is hard to perform this task efficiently, therefore keeping
the requirements updated is extremely important.

A well known way of validating requirements consists in running automated tests (that
express the requirements) over the application. If one of these tests fails, then a requirement
is not satisfied by the application. In particular, interaction tests play an important role in
industrial settings as they execute a set of actions in the same way a user would do it on a
real Web browser, thus their use is continuously growing [21]. In Fig. 2.9 we show in more
detail the activities performed during a WebTDD cycle; first we need to select the set of
WebSpec diagrams that express the new requirement (Step 2.1) and automatically derive a set
of interaction tests (Step 2.2). Afterwards, we run those tests by selecting the new test suite
(Step 3.1) that has been derived and run them using an automated framework (e.g. JUnit)
(Step 3.2).

Fig. 2.9. WebSpec’s test derivation in the context of WebTDD

The process of transforming WebSpec diagrams into test suites is automated and can be for-
mally described in an algorithm that is applied over the diagrams (Chapter 4 and Appendix A).
The algorithm follows these steps:

1. Create the test suite.
2. Compute all the possible paths of the diagram.
3. For each path:

a) Create a test class.
b) Open the URL of the initial interaction.
c) Add all the steps in the path from the initial interaction to the tail of the path including

assertions for the invariants.

This transformation is technology agnostic and can be later refined into a technology de-
pendent one (e.g. Selenium tests).

Semiautomatic application evolution using WebSpec change management

Capturing requirements changes is an important feature to predict their impact in the appli-
cation. Though some mature requirement artefacts [17] provide extensions to support change
management, in the Web engineering field this issue has been often ignored (see Chapter 4 and
Appendix A for details).

2.3 PhD Thesis in a Nutshell 33

Fig. 2.10. WebSpec’s code derivation in the context of WebTDD

In WebSpec, changes are recorded into change objects that group a set of changes. Change
objects are created even in the initial stage (when a diagram is being created). WebSpec
diagrams can suffer different coarse grained changes, such as the addition or deletion of an
interaction or transition element. These elements can be modified too, by the addition or
deletion of widgets to an interaction, changes in invariants, etc. As for transitions, we can
add or delete preconditions, change their source, target, or the actions that triggers them.
When the user modifies the diagram, a change object is created and the sequence of changes
is recorded as instances in a metamodel (Chapter 4 and Appendix A). In Fig 2.10 we present
these activities in the context of WebTDD; when we are creating or modifying diagrams, we
activate WebSpec’s change management to record these changes. Later, when we start with the
modelling activities, we apply these changes automatically to our models to “upgrade” them.
As WebSpec does not support all possible “upgrades” (specially those related with how the
application has been modelled) we continue the modelling phase manually.

Fig. 2.11. Extension of the search diagram with a Register interacion

As an example, let us suppose that we add a Register interaction with its widgets and
a link to it from the Home interaction (Fig. 2.11). The change in the diagram generates a
new change object which has the following elements: the new interaction (Register), a new
navigation (Home − > Register), a new link (register) in the Home interaction and set of
widgets in the Register interaction.

34 2 Summary in English

Fig. 2.12. Existing version of the UI model before applying the change object

Assuming we are modelling our UI with a class based model (Fig 2.12), we can upgrade
it automatically to the one shown in Fig 2.13 using WebSpec change management (Chapter 4
and Appendix A).

Fig. 2.13. Modified version of the UI model after applying the change object

2.3.3 Implementation

A WebSpec tool has been implemented as an Eclipse plugin using EMF [3] and GMF [4]
technologies and it is currently available as an open source project1.

The plugin supports the following features:

• Creation of WebSpec diagrams: a visual editor allows creating, modifying and updating dia-
grams. The properties of the elements can be modified by selecting each item and updating
the property editors in the properties view.

• Association with HTMLmockups: taking advantage of the Eclipse framework, HTMLmock-
ups are files inside the project. The editor allows selecting an interaction and associating
it with the HTML file. Association between Webspec’s widgets and HTML widgets is per-
formed by editing the location property of Webspec’s widget.

• Simulation of the application: Using the previous association, the plugin opens the mockups
in the Web browser and show descriptions of what is the expected behaviour. This feature
has been implemented by extending the Selenium [6] communication mechanism and using
a JQuery plugin [5] for showing the descriptions.

• Selenium test derivation: As previously shown, each diagram is transformed into a test
model. Then, the plugin allows the translation of the test model into a Selenium test.

• Change recording: Using the EMF observer pattern [15], we hook on all changes that are
performed in the diagram and the plugin creates a change model. The user of the plugin can
decide when should the plugin start recording changes and when not. When some changes
are captured and the user stops recording, the change model is stored into a file for later
use.

1 See http://code.google.com/p/webspec-language/ for further details

2.3 PhD Thesis in a Nutshell 35

Fig. 2.14. WebSpec’s Eclipse plugin

• Generation/Update of GWT and Seaside UI classes: Finally, using the previous stored
change model, the UI model can be generated. Currently, the plugin allows the generation
of GWT and Seaside classes and handles not only a first version of changes but also an
incremental set of changes.

Fig. 2.15. WebSpec’s palette

36 2 Summary in English

Fig. 2.14 shows a screenshot of the WebSpec’s Eclipse plugin. In Fig. 2.15 we can see in
more detail WebSpec’s palette which allows the creating of each WebSpec element by simply
drag and drop an element into the diagram. Then by selecting an element we can edit its
properties using Eclipse’s properties view (Fig. 2.16). In the following subsections we provide
more details regarding the implementation of the aforementioned features in the plugin.

Fig. 2.16. WebSpec’s properties

Dealing with Simulation

The simulation feature comprises three elements: transformation between WebSpec and Simu-
lation models, association with mockups and execution of the simulation. The transformation
between WebSpec and the Simulation models has been implemented directly in Java as it
was much simpler to deal with path computing algorithms than using QVT. To perform this
transformation we simply open WebSpec’s menu (Fig. 2.17) and select Simulate.

Mockups association has been easily implemented by taking advantage of the Eclipse envi-
ronment. We add a new property for interactions and widgets and a file dialog to let the user
choose the right HTML mockup.

Fig. 2.17. WebSpec’s menu

The actual simulation aspect was more complex and required the extension to the Selenium
framework. We used the existing communication mechanisms of Selenium to open the Web
browser and execute actions. As shown in Fig. 2.18, we show descriptions over the mockups
by using a JQuery plugin. To make it work, we had to extend the Selenium framework to
load these libraries and actually show the descriptions when necessary. We must notice that
the same mockup (which could be richer than the interaction since it has more widgets) could
be used in multiple and different simulations. Our approach maintains the mockup as it is
without removing any existing widgets because doing so will confuse the stakeholders about
their presence or absence.

2.3 PhD Thesis in a Nutshell 37

Fig. 2.18. WebSpec’s simulation

Requirements validation

The support for requirements validation has been implemented in a two phase process: trans-
formation from WebSpec to Test models, and test derivation to a specific automated test tech-
nology. The transformation between the models has been implemented by taking advantage of
the existing simulation architecture (the transformation module), since both transformations
use path computing algorithms.

In order to perform test derivation to a specific technology, we transformed the test models
into a plain text representation of the test. The plugin currently supports the derivation to
Selenium and we are working on the derivation to Webdriver [7]. As an example we show next
the generated code for the Selenium framework for our example scenario:

(01) selenium.open("http://localhost:8080/index.html");

(02) selenium.type("id=searchField", "Ipod");

(03) selenium.click("id=search");

(04) selenium.waitForPageToLoad("30000");

(05) selenium.click("id=product0");

(06) selenium.waitForPageToLoad("30000");

(07) assertTrue(selenium.getText("id=productName").equals("Ipod"));

(08) selenium.click("id=home");

(09) selenium.waitForPageToLoad("30000");

(10) selenium.type("id=searchField", "book");

(11) selenium.click("id=search");

(12) selenium.waitForPageToLoad("30000");

(13) selenium.click("id=product0");

(14) selenium.waitForPageToLoad("30000");

(15) assertTrue(selenium.getText("id=productName").equals("book"));

(16) selenium.click("id=home");

Line 1 opens the application in the Web browser. Lines 02-04 search for Ipod product, lines
05-06 selects the first product and finally line 07 asserts that the selected product has the name
Ipod. Lines 08-09 navigate to the Home page. Lines 10-12 search for book product, lines 13-14
select the first product and finally line 15 asserts that the selected product has the name book.
Line 16 navigates to the Home page.

As an example, Selenium tests can be run in the Selenium IDE, Fig 2.19 shows a failing
test exposing a requirement that has not been implemented by the application yet.

Requirement changes

When a diagram is modified, we record its changes and store them in change files. A change
file is a serialization version of the change model in XML format. To capture the changes we

38 2 Summary in English

Fig. 2.19. Failing test

use the observer pattern and incrementally build the change model; afterwards we serialize it
into an XML file.

Changes are read and used to upgrade the application models by effect handlers (a compo-
nent that is able to map changes in the WebSpec level to technology ones). The plugin supports
the generation of classes and methods compatible with Seaside and GWT, and we are actively
working to provide a derivation to WebRatio design models [8].

As an example of the use of effect handlers, we next show how to use the change objects of
our exemplar upgrade (Add a register functionality) to generate classes and methods in GWT.
For the sake of conciseness we show the new RegisterView class created by the GWT effect
handler.

Basically, lines 09-15 define the instance variables representing the widgets, and lines 21-29
initialize the objects with the proper GWT classes. Also, notice that RegisterView extends
VerticalPanel (a GWT base class for implementing UIs).

(01) package org.webspeclanguage.re;

(02)

(03) import com.google.gwt.user.client.ui.VerticalPanel;

(04) import com.google.gwt.user.client.ui.TextBox;

(05) import com.google.gwt.user.client.ui.Button;

(06)

(07) public class RegisterView extends VerticalPanel {

(08)

(09) private TextBox firstName;

(10) private TextBox lastName;

(11) private TextBox username;

(12) private TextBox password;

(13) private TextBox confirmPassword;

(14) private Button register;

(15) private Button cancel;

(16)

(17) public RegisterView() {

(18) this.initializeComponent();

(19) }

(20)

2.4 Conclusions 39

(21) public void initializeComponent() {

(22) this.firstName = new TextBox();

(23) this.lastName = new TextBox();

(24) this.username = new TextBox();

(25) this.password = new TextBox();

(26) this.confirmPassword = new TextBox();

(27) this.register = new Button();

(28) this.cancel = new Button();

(29) }

(30) }

Fig. 2.20 shows a visual representation of the RegisterView class with some styling applied
to improve the look and feel of the UI.

Fig. 2.20. A visual representation of the RegisterView class

2.4 Conclusions

Web application development is a complex and time consuming process that involves different
stakeholders with different knowledge and roles. In addition, it is common for these teams to
face the challenge of evolving web applications in short periods of time to meet the new market
requirements. Primarily, because upgrading the application according to the new requirements
is a hard task if we want to avoid the problem of breaking existing functionality.

In the literature, the solution the facto has been MDWE approaches that use models to de-
velop the application. However, these approaches are more heavy than agile ones and feedback
from customers is obtained too late. On the other hand, agile approaches are code centric and
requires a lot of manual effort for several tasks including web application testing.

To deal with these problems, we have presented in this PhD thesis a hybrid approach called
WebTDD that mixes the advantages of MDWE approaches with agile ones. This approach
has been the trigger to develop the main element of this thesis; a DSL for specifying Web
requirements called WebSpec. We have shown how we can specify Web requirements using
the language and at the same time simulate the application under development. Simulation
is supported when it is used with Mockups and helps to improve the understanding of the
requirement by the different stakeholders. As aforementioned, testing is crucial in this context
and we have shown how a complete test suite is derived from each WebSpec diagram allowing
to validate whether the requirement has been correctly implemented or not. Finally, taking
advantage of the change management support that WebSpec provides, we have shown how we
can upgrade the application under development in a semi automatic way.

40 2 Summary in English

It is worth to mention that WebTDD is the first hybrid approach to show that the combi-
nation between agile and model based approaches is feasible in the Web field. Also, WebSpec
is the first DSL for specifying Web requirements that allows the aforementioned features and
is independent of the development process. In this thesis we have used WebTDD because it is
a perfect match for WebSpec’s features.

References

1. Axure - wireframes, prototypes, specifications. available at: http://www.axure.com/.
2. Balsamiq. available at: http://www.balsamiq.com/products/mockups.
3. Eclipse emf. available at: http://www.eclipse.org/modeling/emf/.
4. Eclipse gmf. available at: http://www.eclipse.org/modeling/gmp/.
5. jquery: The write less, do more, javascript library. available at: http://jquery.com/.
6. Selenium web application testing framework. http://seleniumhq.org/.
7. Webdriver. available at: http://webdriver.googlecode.com.
8. The webratio tool suite. available at: http://www.webratio.com.
9. S. Ambler. Agile Modeling: Effective Practices for eXtreme Programming and the Unified Process.

John Wiley & Sons, Inc., New York, NY, USA, 2002.
10. Beck. Test Driven Development: By Example. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2002.
11. S. Ceri, P. Fraternali, and A. Bongio. Web modeling language (webml): a modeling language for

designing web sites. Computer Networks and Isdn Systems, 33:137–157, 2000.
12. N. Chomsky. Three models for the description of language. IEEE Transactions on Information

Theory, 2(3):113–124, Sept. 1956.
13. J. Duhl. Rich internet applications. a white paper sponsored by macromedia and intel, idc report,

2003.
14. M. Fowler. Domain Specific Languages. Addison-Wesley Professional, 1st edition, 2010.
15. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable object-

oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.
16. J. Gómez and C. Cachero. OO-H Method: extending UML to model web interfaces, pages 144–173.

IGI Publishing, Hershey, PA, USA, 2003.
17. I. Jacobson. Object-Oriented Software Engineering: a Use Case driven Approach. Addison–Wesley,

Wokingham, England, 1995.
18. N. Koch, A. Knapp, G. Zhang, and H. Baumeister. UML-BASED WEB ENGINEERING - An

approach based on standards, chapter 7, pages 157–191. Springer, 2008.
19. D. Lowe. Web system requirements: an overview. Requir. Eng., 8(2):102–113, 2003.
20. R. C. Martin. Agile Software Development: Principles, Patterns, and Practices. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 2003.
21. E. M. Maximilien and L. Williams. Assessing test-driven development at ibm. In ICSE ’03:

Proceedings of the 25th International Conference on Software Engineering, pages 564–569, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

22. A. Mcdonald and R. Welland. Web engineering in practice, 2001.
23. D. L. Moody. The é;physicsé; of notations: Toward a scientific basis for constructing visual nota-

tions in software engineering. IEEE Trans. Software Eng., 35(6):756–779, 2009.
24. O. Pastor, S. M. Abrahão, and J. Fons. An object-oriented approach to automate web applications

development. In Proceedings of the Second International Conference on Electronic Commerce and
Web Technologies, EC-Web 2001, pages 16–28, London, UK, 2001. Springer-Verlag.

25. E. Robles Luna, I. Garrigós, J. Grigera, and M. Winckler. Capture and evolution of web require-
ments using webspec. In Proceedings of the 10th international conference on Web engineering,
ICWE’10, pages 173–188, Berlin, Heidelberg, 2010. Springer-Verlag.

26. E. Robles Luna, J. Grigera, and G. Rossi. Bridging test and model-driven approaches in web
engineering. In M. Gaedke, M. Grossniklaus, and O. Dı́az, editors, Web Engineering, volume
5648 of Lecture Notes in Computer Science, pages 136–150. Springer Berlin / Heidelberg, 2009.
10.1007/978-3-642-02818-210.

27. G. Rossi and D. Schwabe. Modeling and implementing web applications with oohdm. In G. Rossi,
O. Pastor, D. Schwabe, and L. Olsina, editors, Web Engineering: Modelling and Implementing
Web Applications, Human-Computer Interaction Series, pages 109–155. Springer London, 2008.
10.1007/978-1-84628-923-16.

28. M. Wimmer, A. Schauerhuber, and H. Kargl. On the integration of web modeling languages:
Preliminary results and future challenges.

Part II

PhD Thesis as a Collection of Papers

3

A context for WebSpec: The WebTDD approach

The content of this chapter corresponds with the following papers:

Robles Luna E., Grigera J., Rossi G. Bridging Test and
Model Driven Approaches in Web Engineering. Proceedings of 9th
International Conference on Web Engineering (ICWE 2009).
2009. San Sebastian, Spain. Acceptance rate: 24%. Core C.

Robles Luna E., Panach J.I., Grigera J., Rossi G., Pastor O.
Incorporating Usability Requirements in a Test/Model-Driven Web
Engineering Approach. Journal of Web Engineering (JWE). 2010.
Impact factor: 0.531. JCR.

This chapter describes the WebTDD approach: a test driven model based approach for web ap-
plication development in which tests play a fundamental role driving the development process.
Failing tests indicate the part of the required functionality that has not been implemented
(similar to test driven development [10]). However, different from test driven approaches in
which the main development artefact is the code, in our methodology we use a model based
development in which models abstract but not drive the development.

The content of this chapter corresponds with the framework where we will applied WebSpec,
the main contribution of this PhD thesis. As a reference we show in the figure below the
structure that corresponds to this chapter.

Fig. 3.1. The WebTDD approach

The content of this chapter is a paper published in the International Conference of Web
Engineering Support Systems (ICWE) and another one in the Journal of Web Engineering
(JWE). ICWE aims at promoting research and scientific excellence on Web Engineering and
at bringing together scientists and practitioners interested in technologies, methodologies, tools,
and techniques used to develop and maintain Web-based applications. On the other hand, the
JWE aims to provide a forum for advancing the scientific state of knowledge in all areas of Web
Engineering. JWE articles address significant issues and problems, and potential solutions.

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 136 – 150, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Bridging Test and Model-Driven Approaches
in Web Engineering

Esteban Robles Luna1,2, Julián Grigera1, and Gustavo Rossi1,2

1 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{esteban.robles,julian.grigera,gustavo}@lifia.info.unlp.edu.ar

2 Also at CONICET

Abstract. In the last years there has been a growing interest in agile methods
and their integration into the so called “unified” approaches. In the field of Web
Engineering, agile approaches such as test-driven development are appealing
because of the very nature of Web applications, while model-driven approaches
provide a less error-prone code derivation; however the integration of both
approaches is not easy. In this paper, we present a method-independent
approach to combine the agile, iterative and incremental style of test-driven
development with the more formal, transformation-based model-driven Web
engineering approaches. We focus not only in the development process but also
in the evolution of the application, and show how tests can be transformed
together with model refactoring. As a proof of concept we show an illustrative
example using WebRatio, the WebML design tool.

1 Introduction

Agile methods [7, 16] are particularly appealing for Web applications, given their
short development and life-cycle times, the need of small multidisciplinary
development teams, fast evolution, etc. In these methods applications are built
incrementally, usually with intense feedback of different stakeholders to validate
running prototypes.

Unfortunately most solid Model-Driven Web Engineering (MDWE) approaches,
even claiming to favor incremental and iterative development, use a more formal1 and
waterfall style of development. Web engineering methods like UWE [14], WebML
[6], OOWS [18], OO-H [9] or OOHDM [22] define a set of abstract models such as
content (called also data or application), navigation and presentation model, which
allow the generation of running applications by automatic (error free) model
transformations. This approach is attractive because it raises the abstraction level of
the construction process, allowing developers to focus on conceptual models instead
of code. The growing availability of techniques and tools in the universe of model-
driven development (e.g. transformation tools) adds synergy to the approach.

1 While Agile approaches might be also “formal” (see [7]), more popular ones tend to encourage

a handcrafted style.

 Bridging Test and Model-Driven Approaches in Web Engineering 137

Many agile methods seem to follow a different direction. For example Test-Driven
Development (TDD) uses small cycles to add behavior to the application [3]. The
cycle starts with a set of requirements expressed with use cases [11] or user stories
[13] that describe the application’s expected behavior informally. The developer
abstracts concepts and behavior, and writes a set of meaningful test cases which will
fail on their first run, prior to the implementation. Then, he writes the necessary code
to make the tests pass and run them again, until the whole test suite passes. The
process is iterative and continues by adding new requirements, creating new tests and
running them to check that they fail, then writing code to make them pass, and so on.
In these cycles the developer might have to refactor [8] the code when necessary.

This strategy gives a good starting point for the development process, because
developers specify the programs expected behavior first, making assertions about the
return values right before the development itself begins. The process follows the idea
of “Test first, by intention” [13], which is based on two key principles:

• Specify program's behavior (test first), and write code only when you have a test
that doesn't work.

• Write your code without thinking about how to do a thing, instead think about what
you have to do (intention).

Moreover, when using a static typed language like Java, the tests code may not
even compile, as the involved classes and methods still don't exist. Thus, writing the
tests first, guides us to create the classes and methods of the domain model. TDD
allows better communication among different stakeholders, as short cycles favor the
permanent evaluation of requirements and their realization in incremental prototypes.
TDD is also claimed to reduce the number of problems found on the implementation
stage [21] and therefore its use is growing fast in industrial settings [15].

In the Web Engineering area, efforts to integrate agile and model-driven
development styles are just beginning [2], and most methods lack clear heuristics of
how to improve the development life-cycle with the incorporation of these new ideas.

In this paper we present a novel, method-independent approach, to bridge the gap
between TDD and MDWE approaches. The overall process has the same structure as
TDD, but instead of writing code, we generate it from the well-known content,
navigational and presentation models using a MDWE tool. We also create automated
tests (that can be run without manual interaction) and deal with Web refactoring
interventions [17]. These navigational and presentation tests allow us to manage
evolution in a TDD fashion. Also, like in traditional TDD, we specify the
application’s behavior prior to its development in terms of tests, and use them to
specify the application models, as they express (and validate) the expected
functionality. We also relax some of the assumptions in TDD (based on its inherent
bottom-up approach), as they are not appropriated for highly interactive applications.
We illustrate our approach showing how to use these ideas in the context of the
WebML methodology, using the WebRatio [24] tool.

The main contributions of the paper are the following:

• We present a novel TDD-like process to improve Model-Driven Web Engineering.
• We propose the use of black box interaction tests as essential elements for

validating the application’s navigational and interface behavior.

138 E. Robles Luna, J. Grigera, and G. Rossi

• We present an approach for dealing with navigation and interface test evolution
during the refactoring process.

It should be noticed that our focus is in the development process and not in the
tests themselves. Rather, we see tests as tools for driving the web application’s
construction and evolution.

The structure of the paper is the follows: In Section 2 we review some related
work; In Section 3 we present our approach, and using a case study we explain how
we map requirements into test models, and how the cycle proceeds after generating
the application. We end the technical description of our approach by discussing, in
Section 4 and 5, refactoring issues, both in the application and in the test models.
Finally, we conclude and present some further work we are pursuing.

2 Related Work and Discussion

The advantages of using agile approaches in Web application development processes
have been early pointed out in [16]. The authors not only argue in favor of agile
approaches, but also propose a specific one (AWE) that, being independent of the
underlying Web engineering method, could in theory be used with any of them.
However, AWE is “just” a process; it does not indicate how software artifacts are
obtained or how the process is supposed to be integrated in a model-driven
development style.

Most Web Engineering methods such as WebML, UWE, OOHDM, OOWS or OO-
H, have already claimed to use incremental and iterative styles, though support for
specific agile approaches has not been reported yet in the literature.

In the broader field of software engineering, agile approaches have flourished,
though most of them are presented as being centered in coding, much more than in the
modeling and design activities. An interesting and controversial point of view in this
debate can be found in [19], in which the author proposes to use an extreme “non-
programming” approach, by only using models as development artifacts. In this arena,
Test-Driven Development has been presented as one of the realizations of Extreme
Programming [13], where tests are developed previously to code. In a recent paper
[12] however, the authors clearly indicate that TDD is also appropriated as a design
technique, and show examples in which TDD is used beyond “extreme” approaches.

The interest of using TDD in interactive applications is relatively new, given that
the artifacts elicited from tests are usually “far” from the interface realm, and also
because unit testing [4], which focuses on individual classes, is unsuitable for
complex GUIs. In [1], the authors present a technique for organizing both the code
and the development activities to produce fully tested GUI applications from
customer stories. Similarly, [20] proposes to use TDD as an approach to develop Web
applications, focusing on the development of the different parts of the MVC triad,
again emphasizing coding more than modeling.

 Also, in relation to our approach, as TDD makes a heavy use of requirements
models, it is important to say that most Web engineering approaches have either
automatic ways or explicit heuristics to derive content and navigation models from
requirements documents; particularly, in OOWS [18], the conceptual model can be
generated from requirements using model-to-model transformations; earlier in [5], the

 Bridging Test and Model-Driven Approaches in Web Engineering 139

authors have presented an attractive way to map use cases into navigation models in
the context of OO-H and UWE, giving much more relevance to the requirement
documents. The concept of Navigation Semantic Unit in [5] has inspired our idea of
Navigation Unit Testing (see Section 3).

In a different direction, though still related with our ideas, [10] show how to
systematically generate test cases from requirements, particularly from use cases.
These proposals however deal with tests as usual in non-agile processes, therefore
running them against a “final” application, instead of profiting from them during the
whole development process.

3 An Overview of Our Approach

In the TDD approach, new functionality is specified in terms of automated tests
derived from individual requirements, and then the code to make them pass is written.
A further step involves refactoring this code by removing duplication, for example.
Obviously TDD does not deny the need to perform a thorough testing process of the
final application; the tests in TDD are a perfect start to assess how the application
fulfills the client’s requirements beyond its correctness.

Our approach follows the same structure, but given the nature of Web applications
instead of focusing on unit testing, we emphasize the use of navigation and interaction
level tests, which we first run against user interface (UI) mockups using a black box
approach. We then replace the coding by a modeling step, generating the code using a
MDWE tool. We also add an intermediate step to adapt the tests, in order to trim the
differences between the mockups and the generated application prototype.

Even though we face application generation using MDWE tools, this stage of our
process differs slightly from the conventional model-driven approach, as we work at a
very fine granularity level: in the extreme case, we build models for one requirement
at a time, generating tested and running prototypes incrementally, leading each
requirement through a lightweight version of a full MDWE step. In this way, we
come closer to the TDD short-cycle style, while still profiting from the advantages of
working with models.

Briefly explained, our approach mixes TDD and MDWE techniques to make Web
development more agile. We first gather user requirements with use cases [11], User
Interaction Diagrams (UIDs) [22] and presentation mockups [25]. Then, we choose a
use case and derive an interaction test against the related presentation mockup, with
which we specify the navigation and UI interaction prior to the development. We next
get a running prototype of the application by creating models and generating code in a
short MDWE cycle, and check its correctness using the test. Should these tests fail,
we would go back to tweak the models, regenerate the application and run them back
again, repeating the process until they pass. As in TDD, the complete method is
repeated with all use cases, until a full-featured prototype is reached. Fig. 1 shows a
simplified view of our approach, confronting it with the “traditional” TDD.

While the application evolves, tests will also help to check that functionality is
preserved after applying navigation and presentation refactorings (i.e. usability
improvements that don’t alter the application behavior [17]).

140 E. Robles Luna, J. Grigera, and G. Rossi

Fig. 1. TDD life cycle comparison

In the following subsections we illustrate the approach with the development of
TDDStore, a simplified online bookstore, similar to Barnes&Noble. As we use
WebML and WebRatio, which support data-intensive applications, we focus mainly
on navigation and UI tests, also contemplating some business operations.

3.1 Capturing Requirements with Mockups and UIDs

Similarly to a MDWE approach, we begin gathering and modeling the set of
requirements. Particularly, we propose employing use cases, UIDs and mockups.
With these artifacts, the analyst can easily specify UI, navigation and business
requirements that the application must satisfy. For each use case, we specify the
corresponding UID that serves as a partial, high-level navigation model, and provides
abstract information about interface features. As an example of an interaction
diagram, we show in Fig. 2 the UID corresponding to the case when the user is
presented with a list of books, indicated with “…” in state 1, containing some
information about each book (¨title, author…”) , and selects a book from the list
(transition marked with 1) to see the full book details (state 2).

Fig. 2. UID for simple navigation

Using UI mockups, we agree with the client on broad aspects of the application
look and feel, prior to the development. This is a very convenient way for interacting
with stakeholders and gathering quick feedback from them. There are two additional
reasons to use UI mockups: we will perform UI and navigational tests against them,
and they will become the application’s final look and feel.

In Fig. 3.a we show an initial and simplified mockup of our application’s main page,
where all books are listed. Fig. 3.b shows a mockup for the book details page. In the

 Bridging Test and Model-Driven Approaches in Web Engineering 141

 (a) (b)

Fig. 3. a) Books list mockup; b) Book details mockup

next sub-section we show how to specify a test against this mockup to verify the UID
in Fig. 2. To make the example realistic, we also included some other features in the
mockup, though they will be tested in further iterations, when being involved in a use
case and UID.

3.2 Writing Tests

Mockups and UIDs help to understand the expected behavior of the application. UIDs
refine use cases to show how the user interacts with the application, and mockups
complement UIDs to give a sample of the application look and feel. However, these
useful tools fall short to provide by themselves an artifact capable of being run to
validate the application’s expected behavior. By incorporating interaction tests, we
provide a better way to validate the application.

Following the process we create a test for the mentioned use case, using as a basis
the UID in Fig. 2 and the mockup in Fig. 3. For the sake of clarity and concreteness
instead of an abstract test specification, we tie our description to a standard test tool
like Selenium [23], to specify the interactions between the user and the application
(other similar tools can be used for this task). These tests rely on the DOM structure
of the tested document, so they are agnostic of the process by which the application
has been generated, as well as the applied styles. The following test validates that the
UI shows the book list and the navigation between the book list and the book’s detail:

public class BookListTestCase extends SeleneseTestCase {
 public void testBookListToProdDetailNav() throws Exception {
(1) sel.open("file:///dev/bookstore/Mockups/books-list.html");
(2) assertEquals("all books", sel.getText("//div[@id='tb']/p[1]"));
(3) sel.click("link=The Digital Photography Book");
(4) sel.waitForPageToLoad("30000");
(5) sel.assertLocation("/bookDetail*");
(6) assertEquals("The Di...”, sel.getText("//div[@id='prod']/h2"));
(7) assertEquals("The ...", sel.getText("//div[@id='p-d']/p[1]"));
(8) assertEquals("+ Add to...", sel.getText("//div[@id='p-d']/a"));
 }
}

The test begins by opening the page (the mockup file) (1) and asserting that a

specific element has some content (2); in this way we can assert that we are in the
book list page. Then we specify to click on a specific link (3) and wait until the page

142 E. Robles Luna, J. Grigera, and G. Rossi

is loaded (4) and validate our location (5) thus validating our navigation. Then, we
assert that several html elements contain the specific text (6-8) which validates that
the UI has changed. When we try to run the test using the Selenium runner it fails
because we have not yet developed the running application. This scenario is the same
as in TDD where the test is expected to fail after it has been written.

These tests are similar to traditional unit tests but performed on small “navigation
units” arising from a single use case, so we call them navigation unit tests.

This kind of tests simulate user interactions (click on a link, fill a text box, etc.)
and add assertions about the elements of the page. Navigation unit tests are
independent of the MDWE tool used because they run using a web browser. We
found this type of tests suitable for testing most of the business, navigation and UI
logic as perceived by the user. However, in complex Web applications there are many
scenarios in which unit and integration tests [4] (the usual TDD type of tests) should
be used. One example is the integration between Web applications using Web
services. Another one are application’s behaviors performed “in the shadows” (e.g.
support for the shipping process in an e-store). In both cases, interaction tests are not
useful because the user might not be interacting with the application. We don’t
include these examples as illustrations as they are not novel in TDD. For these tests
our approach remains unchanged: specify a test (e.g. a unit test), check that it fails,
specify the corresponding models (e.g. using WebML units, UWE classes, etc.),
generate the application, etc.

At this point, we can start using our design artifacts (mockups and UIDs) to derive
the application, navigation and presentation models.

3.3 Deriving Design Models

Once requirements have been (at least partially) gathered, and the tests specified for a
particular use case, the next step is to generate a running application. As mentioned
before, here is where we differ from a pure TDD approach, as we chose to use a
MDWE tool, instead of writing code. Throughout the development of our proofs of
concept we have used the WebML’s MDD tool, WebRatio [24]. We will concentrate
on the navigational (hypertext) model for several reasons; first, it is the distinctive
model in Web applications; besides we want to emphasize the differences between
typical TDD and TDD in Web applications and show how navigation unit tests work.
Additionally, as said before, WebRatio’s (and WebML) content model is a data and
not an object-oriented model, thus some of the typical issues in TDD (originally
devised to work with classes and methods) do not apply exactly as they were
conceived, as we discuss below.

A first data model is derived using the UIDs as a starting point, identifying the
entities needed to satisfy the specified interactions, e.g. by using the heuristics
described in [22]. As Web Ratio supports the specification of ER models at this stage
of the development, the application behavior will be specified later, in the so-called
logic model. Following with our example, we need to build an application capable of
listing books, and exhibiting links to their corresponding details pages, so the book
and author entities come out immediately from the UID in Fig. 2. Then, we map the
navigation sequence in the UID to a WebML hypertext diagram, as shown in Fig. 4.

 Bridging Test and Model-Driven Approaches in Web Engineering 143

Fig. 4. WebML diagram for the UID

WebRatio is now ready to generate the application. Once we have a running
prototype, we can adapt the tests (this process is detailed in section 3.4) and run them
to check if the models (and therefore the application) conform with the requirements.

Finally, we need to adjust the application’s presentation. WebML does not define a
presentation model; instead presentation is considered like a document transformation
from a WebML specification of a page into a specific language page like JSP or
ASP.NET. In another methodology, the mockups and UIDs would be used to also
specify the presentation model. Since we already had developed mockups for our
current UID, this part of the process is straightforward: we only need to slice up the
mockup, and input it as an XHTML template into WebRatio. We can run the tests
again to ensure no interaction is corrupted while the template is being modified.

3.4 Test Adaptation

After building the models, we need to make sure the implementation generated from
them is valid according to the requirements specification. In particular, we want to
confirm that business, navigation and UI behavior are correct with respect to the tests
defined in section 3.2. However, if we try to run the tests as they are written, they will
fail because they still reference mockups files, and although the layout may be the
same, the location in terms of an XPath expression [26] may have changed.

On one hand, the generation may have renamed the URLs of each page. For
instance, if we chose to transform templates into JSP pages, URLs change their names
to end with “.jsp”. We can prevent this scenario by defining the name of the mockups
upfront, according to the technology. Another problem may arise if we use
components that generate HTML code in a different way than what we had expected.
We face this problem, for example, when we display a collection of objects using
WebRatio`s Table component. This could be also prevented by using a customized
template, in which we manually iterate over the collection of objects.

Although both scenarios could be prevented, we should consider the case in which
they are not. In that situation we must adapt the test to the current implementation.
Fortunately, the adaptation of tests is easy to perform manually, and its mechanics can
be automated in a straightforward way. As an example, we show how to adapt the test
of section 3.2 to be compliant to the current implementation.

public class BookListTestCase extends SeleneseTestCase {
 public void testBookListToProdDetailNav() throws Exception {
(1) sel.open("http://127.0.0.1:8180/TDDStore/page1.do");
(2) assertEquals("all…", sel.getText("//div[@id='page1FB']/p[1]"));
(3) sel.click("link=The Digital Photography Book");

144 E. Robles Luna, J. Grigera, and G. Rossi

(4) sel.waitForPageToLoad("30000");
(5) sel.assertLocation("/page2*");
(6) assertEquals("The ...", sel.getText("//div[@id='p2FB']/h2"));
(7) assertEquals("The D...", sel.getText("//div[@id='p2FB']/p[1]"));
(8) assertEquals("+ Add to...", sel.getText("//div[@id='p2FB']/a"));
 }
}

In the above test we first changed the URL to start the test by just finding the right
URL and changing it (1, 5). Then, as the layout of the list of products has changed
due to the derivation process of WebRatio, the XPath expressions we had used are no
longer valid as WebRatio has included a different DOM structure. This can be
changed for example by accessing the url with a tool such as the XPather plugin [27].
Just right click over the item, shown in XPather and then copy the XPath expression
to the test (2, 6-8). Next we can re-run the test, and verify it succeeds.

3.5 Towards a New Iteration

Having our iteration complete (i.e. all tests run correctly), we are ready to add new
functionality to the application. We will incorporate the possibility of adding a book
to a shopping cart, so we go through the same steps of the first example:

1. Model the new requirements, with use cases and UIDs.
2. Create a new mockup if necessary, or extend a previous one.
3. Write a new navigation unit test for the added functionality and run it against the

corresponding mockup.
4. Upgrade the model and generate the application, implementing the new

functionality to make the tests pass.
5. Adapt the new test, as previously shown in section 3.4
6. Run the new test and check that the new functionality has been correctly added. If

the test fails, then go back to step 3 until it passes.

In order to introduce the new add-to-cart functionality we need to illustrate the
interaction with a new UID (1) that slightly extends the one in Fig. 2 with a new
navigational transition with the product being added to the cart. We need to expand
the book details mockup by adding an "add to cart" link (2). Then we write the test in
the same way as we did previously on section 3.2.

public class BookListTestCase extends SeleneseTestCase {
 public void testAddBookToShoppingCart() throws Exception {
(1) sel.open("file:///dev/bookstore/Mockups/books-list.html");
(2) assertEquals("The D...", sel.getText("//div[@id='p-i']/h4/a"));
(3) sel.click("//div[@id='product-info']/a");
(4) sel.waitForPageToLoad("30000");
(5) assertEquals("The Dig...", sel.getText("/ul[@id='s-p']/li[1]"));
(6) sel.assertLocation("/cart*");
 }
}

The test above opens the book list (1) and asserts the name of the product. Then

clicks on the “add to cart” link of the product (3) and waits for the page to load (4). It
asserts that the selected book has been added to the cart by asserting that the book's
title is present in the shopping cart page (5) and that navigation has succeeded (6).

 Bridging Test and Model-Driven Approaches in Web Engineering 145

As we show in Fig. 5, an extended WebML hypertext diagram including the
AddToCart operation is derived from the new UID.

Fig. 5. Upgraded WebML diagram

We regenerate the application and run the whole test suite against the derived
application. Notice that the test suite will be composed of the previously adapted test,
and the new one after the corresponding adaptation.

4 Dealing with Application Evolution

Web applications tend to evolve constantly and in short periods of time; the evolution
is driven mainly by two reasons:

• New requirements: Generally, new requirements arise because of clients or users’
requests to enhance the application’s functionality. For example, the book store’s
owner may want to categorize books, which would require defining new model
elements (entities, page types, links, etc).

• Web refactorings: We might want to improve the application’s usability, by either
modifying the interface or the navigation facilities. This kind of model changes,
usually driven by non-functional requirements (usability, accessibility, etc), have
been called elsewhere Web model refactorings [17]. Web refactorings may
eventually occur in a TDD cycle, for example if the developer notices an
opportunity to improve the user experience.

Next, we analyze both cases and show how we deal with them during the test-
driven development process.

4.1 New Requirements

After the application has been deployed (or even during its development), the client
may want to add new functionality, such as organizing books in categories. New
requirements have to be described using the artifacts we have previously mentioned
(UIDs, mockups) and following the process we have summarized in Section 3.5:

1. Add the label that shows the category name of the book, to the mockup of books
list and books’ details.

2. Add the assertions to the adapted tests of the books list and books’ details pages,
with the XPath expression obtained from the mockups.

3. Run the tests and ensure they fail.

146 E. Robles Luna, J. Grigera, and G. Rossi

4. Enhance the domain, navigation and the UI models (entities, units and templates in
WebRatio) to show the category.

5. Generate the application.
6. Run the tests (adapt them if necessary). If they fail go back to step 4.

After finishing this cycle, we will have a new requirement added to the application
and a new test that validates the UI of the book list and book detail pages. Obviously,
we might want to navigate through categories but the process remains similar just by
adding some new use cases and UIDs before 2 and building the corresponding tests.

4.2 Web Refactorings

Web refactorings seek to improve application’s usability with small model changes. A
catalog of such refactorings has been presented in [17]. In order to illustrate the
process we selected a fairly simple one, Turn Information into Link, which consists in
converting a text string into a link leading to a page with information about the object
represented by the text. In our case, we will enhance the authors’ names on the book
details page and transform them into links, leading to a list of their books . Once
again, we will follow the steps of our approach as follows:

1. Refactor the book details mockup to show a link where each author name appears,
as shown in Fig. 6.

Fig. 6. Refactored book details mockup

2. Transform the UI test of the book detail page (3) by changing the XPath
expression. Previously it was an h2 element, but now it is a link, so we have to
change it to an a element. Also, add a test to validate the navigation from the book
detail to the author page (8-13).

public class BookDetailTestCase extends SeleneseTestCase {
 public void testBookDetailUI() throws Exception {
(1) sel.open("http://127.0.0.1:8180/TDDStore/page2.do?oid=2");
(2) assertEquals("The ...", sel.getText("//div[@id='p2FB']/h2[1]"));
(3) assertEquals("Sc...", sel.getText("//div[@id='prod-d']/a"));
(4) assertEquals("Book R...", sel.getText("//div[@id='p2FB2']/h3"));
(5) assertEquals("The ...", sel.getText("//div[@id='p2FB2']/p[1]"));
(6) assertEquals("$19.99", sel.getText("//div[@id='p2FB2']/p[2]"));
(7) assertEquals("+ Add t...", sel.getText("//div[@id='p2FB2']/a"));
 }
 public void testBookDetailNavigationToAuthor() throws Exception {
(8) sel.open("file:///dev/bookstore/Mockups/books-detail.html ");
(9) assertEquals("Scott Kelby", sel.getText("//div[@id='p-d']/a"));
(10) sel.click("//div[@id='p-d']/a");

 Bridging Test and Model-Driven Approaches in Web Engineering 147

(11) sel.waitForPageToLoad("30000");
(12) assertEquals("Books f...", sel.getText("//div[@id='p-l']/h2"));
(13) sel.assertLocation("/byAuthor*");
 }
}

3. Run the tests and ensure they fail.
4. Modify the corresponding WebML hypertext model and the corresponding

presentation
5. Derive the application.
6. Run the tests (adapt them if necessary). If they fail go to step 4.

At the end of this cycle we have a complete refactoring applied over the applica-
tion and tests transformed and added to the test suite. We next show how we can
automate this kind of tests transformations.

5 Towards Automated Test Evolution

During the development cycle, “old” tests should always succeed (except that some
already processed requirement has changed dramatically). However, Web refactorings
pose a new challenge for the developer: even not being originated by new
requirements, they can make navigation tests fail, as they might (slightly) change the
navigational and/or interface structure of the application. In other words, and as
shown in 4.2, tests must be adapted to be useful after a refactoring, i.e. to correctly
assess if it was safely performed. Fortunately, refactorings can be catalogued,
because, as well as design patterns, they record and convey good design practices.
Therefore, it is feasible to automate the process of test transformation. This
refactoring-driven transformation of tests must be performed after the mockup and
UIDs have been modified to show the new expected behavior. To transform a test we
need to follow these steps:

1. Select the test transformation associated with the refactoring of the catalogue to be
applied.

2. Configure the test transformation with UID's, mockups, location of tests and
specific parameters of the transformation (e.g. a specific element’s location).

3. Apply the test transformation.

There are many strategies to transform tests; we next explain one of them, as it
comprises defining a model for tests, which can be useful for other further tasks, such
as linking tests’ components to design model elements, for example to improve
traceability. To achieve automatic tests transformation, we first need to abstract the
concepts involved in a Web test. A Web test is a sequence of interactions and
assertions that aim to validate the application’s behavior. An interaction allows the
user to interact with the application. For example: click a link, click a button, type a
text on an input field, check a checkbox, etc. Assertions allow ensuring that a
predicate is valid in the current context. There are many possible assertions over a
Web page such as assertTitle, assertTextPresent, etc. A Web test could be then
abstracted using the simplified model shown in Fig. 7.

148 E. Robles Luna, J. Grigera, and G. Rossi

Fig. 7. Web Test Model

Individual tests can be abstracted, from their source code to an instance of the
model, in a straightforward way by using a parser. When tests are mapped onto a set
of objects, they can be easily manipulated. For instance, adding a title assertion to a
test is as simple as creating a new instance of the AssertTitle class and adding it to the
WebTest instance. Web test transformations are then designed and coded with
objects, and thus the algorithm that performs the transformation can be coded and
encapsulated in a class. Once the test transformation has been applied, we translate
objects back into the test text using a pretty printing algorithm. We omit here the
explanation of the parsing and pretty printing phases, as they are outside the scope of
the paper. As an example we show the algorithm of the Turn Information Into link
[17] test transformation that can be summarized in the following steps:

1. Request the location of the test.
2. Request the location of the text.
3. Change the location of the AssertText instance of the text. If no assertion is pointed

by the user, create a new instance of the AssertText class.
4. Create a new WebTest instance. Create an OpenUrl instance (pointing to the

mockup) and clone the AssertText instance of 3. Add both instances to the
WebTest.

5. Create a Click and Wait instances pointing to the location of the new link and add
it to the WebTest instance.

6. Request the expected location and a text that identifies the new location.
7. Create an AssertText and AssertLocation instances with the corresponding

requested values.

The result of applying the algorithm looks similar to the result shown in
section 4.2, but instead of testBookDetailNavigationToAuthor, the new test is
called testNavigationTextToLink1. Using this approach we can automate the
process of Web test transformation based on the catalogue of refactorings we
want to apply.

 Bridging Test and Model-Driven Approaches in Web Engineering 149

6 Concluding Remarks and Further Work

We have presented a novel approach to integrate test-driven development into model-
driven web engineering methods. Our approach can be used with any of the existing
methods, though to illustrate its feasibility we have used WebML and WebRatio as a
proof of concept. We have briefly explained the main steps of our approach and
showed some advanced aspects, such as tests transformations during the Web
refactoring stage. We have also shown that most activities related to tests evolution
can (and indeed should) be automated. To our knowledge, our proposal is the first to
bridge the gap between model-driven approaches and test-driven development, and
particularly in the Web engineering field. We retain the agile style of TDD that
focuses on short cycles, each one aimed at implementing a single requirement, to
validate the generated prototype. However, we work at a higher level of abstraction
(i.e. with models) leaving code generation to the support tool.

While TDD is usually, due to its strong relationship with coding, a handcrafted and
therefore error-prone activity, integration with model-driven approaches opens an
interesting space for improvement. We are now working on several directions: first
we are making field experiences to measure the impact of the integration on
development costs and quality aspects. While both TDD and model-driven
development improve software construction, we believe that our approach tends to
synergize the benefits more than just summing them up. From a more technical point
of view we are working in the integration of tools for TDD in different MDWE tools.
These tools include: Selenium and XPather for developing test cases, and Selenium
RC to make a one click away the generation and running of the whole test suite
(currently done manually). We are also planning to use an object-oriented approach
(like UWE), together with its associated tool to research deeper in the relationships
between typical unit testing in TDD (focused on object behaviors) and our navigation
unit testing, which focuses more on navigation and user interactions. Automatic
generation of tests from UIDs by using transformations or strategies like the one
described in [10], and improving traceability between tests and models are also
important items in our research agenda.

References

1. Alles, M., Crosby, D., Erickson, C., Harleton, B., Marsiglia, M., Pattison, G., Stienstra, C.:
Presenter First: Organizing Complex GUI Applications for Test-Driven Development. In:
AGILE 2006, pp. 276–288 (2006)

2. Ambler, S.W.: The object primer: agile modeling-driven development with UML 2.0.
Cambridge University Press, Cambridge (2004)

3. Beck, K.: Test Driven Development: By Example. Addison-Wesley Signature Series (2002)
4. Binder, R.V.: Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-

Wesley Longman Publishing Co., Inc., Amsterdam (1999)
5. Cachero, C., Koch, N.: Navigation Analysis and Navigation Design in OO-H and UWE.

Tehcnical Report. Universidad de Alicante, Spain (April 2002),
 http://www.dlsi.ua.es/~ccachero/papers/ooh-uwe.pdf

6. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Modeling
Language for Designing Web Sites. Computer Networks and ISDN Systems 33(1-6), 137–
157 (2000)

150 E. Robles Luna, J. Grigera, and G. Rossi

7. Eleftherakis, G., Cowling, A.: An Agile Formal Development Methodology. In: SEEFM
2003 Proceedings 36 (1 de 12) (2003)

8. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the
Design of Existing Code. Addison-Wesley Professional, Reading (1999)

9. Gómez, J., Cachero, C.: OO-H Method: extending UML to model web interfaces. In: van
Bommel, P. (ed.) Information Modeling For internet Applications, pp. 144–173. IGI
Publishing, Hershey (2003)

10. Gutiérrez, J.J., Escalona, M.J., Mejías, M., Torres, J.: An approach to generate test cases from
use cases. In: Proceedings of the 6th international Conference on Web Engineering. ICWE
2006, Palo Alto, California, USA, July 11 - 14, vol. 263, pp. 113–114. ACM, New York (2006)

11. Jacobson, I.: Object-Oriented Software Engineering: A Use Case Driven Approach. ACM
Press/Addison-Wesley (1992)

12. Janzen, D., Saiedian, H.: Does Test-Driven Development Really Improve Software Design
Quality? IEEE Software 25(2), 77–84 (2008)

13. Jeffries, R.E., Anderson, A., Hendrickson, C.: Extreme Programming Installed. Addison-
Wesley Longman Publishing Co., Inc., Amsterdam (2000)

14. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-Based Web Engineering, An
Approach Based On Standards. In: Web Engineering, Modelling and Implementing Web
Applications, pp. 157–191. Springer, Heidelberg (2008)

15. Maximilien, E.M., Williams, L.: Assessing test-driven development at IBM. In:
Proceedings of the 25th international Conference on Software Engineering, Portland,
Oregon, May 03 - 10, pp. 564–569. IEEE Computer Society, Los Alamitos (2003)

16. McDonald, A., Welland, R.: Agile Web Engineering (AWE) Process: Multidisciplinary
Stakeholders and Team Communication. In: Web Engineering, pp. 253–312. Springer, US
(2002)

17. Olsina, L., Garrido, A., Rossi, G., Distante, D., Canfora, G.: Web Application evaluation and
refactoring: A Quality-Oriented improvement approach. Journal of Web Engineering 7(4),
258–280 (2008)

18. Pastor, O., Abrahão, S., Fons, J.: An Object-Oriented Approach to Automate Web
Applications Development. In: Bauknecht, K., Madria, S.K., Pernul, G. (eds.) EC-Web
2001. LNCS, vol. 2115, pp. 16–28. Springer, Heidelberg (2001)

19. Pastor, O.: From Extreme Programming to Extreme Non-programming: Is It the Right
Time for Model Transformation Technologies? In: Bressan, S., Küng, J., Wagner, R. (eds.)
DEXA 2006. LNCS, vol. 4080, pp. 64–72. Springer, Heidelberg (2006)

20. Pipka, J.U.: Test-Driven Web Application Development in Java. In: Objects, Components,
Architectures, Services, and Applications for a Networked World, vol. 1, pp. 378–393.
Springer, US (2003)

21. Rasmussen, J.: Introducing XP into Greenfield Projects: lessons learned. IEEE
Softw. 20(3), 21–28 (2003)

22. Rossi, G., Schwabe, D.: Modeling and Implementing Web Applications using OOHDM.
In: Web Engineering, Modelling and Implementing Web Applications, pp. 109–155.
Springer, Heidelberg (2008)

23. Selenium web application testing system, http://seleniumhq.org/
24. The WebRatio Tool Suite, http://www.Webratio.com
25. VanderVoord, M., Williams, G.: Feature-Driven Design Using TDD and Mocks. In:

Embedded Systems Conference Boston (October 2008)
26. XML Path Language (XPath), http://www.w3.org/TR/xpath
27. XPather - XPath Generator and Editor,

 https://addons.mozilla.org/en-US/firefox/addon/1192

Journal of Web Engineering, Vol.9, No.2 (2010) 132-156
© Rinton Press

INCORPORATING USABILITY REQUIREMENTS IN A TEST/MODEL-DRIVEN
WEB ENGINEERING APPROACH

ESTEBAN ROBLES LUNA 2,3, JOSÉ IGNACIO PANACH1, JULIÁN GRIGERA2,

GUSTAVO ROSSI 2,3, OSCAR PASTOR1
1Centro de Investigación en Métodos de Producción de Software

 Universidad Politécnica de Valencia

Camino de Vera s/n, 46022 Valencia, Spain

{jpanach, opastor}@pros.upv.es
2LIFIA, Facultad de Informática, UNLP, La Plata, Argentina

{esteban.robles, julian.grigera, gustavo}@lifia.info.unlp.edu.ar
3Also at Conicet

Received November 13, 2009

Revised May 26, 2010

The success of Web applications is constrained by two key features: fast evolution and usability.
Current Web engineering approaches follow a "unified" development style which tends to be
unsuitable for applications that need to evolve fast. Moreover, according to the quality standard ISO
9126-1, usability is a key factor to obtain quality systems. In this paper, we show how to address
usability requirements in a test-driven and model-based Web engineering approach. More
specifically, we focus on usability requirements with functional implications, which do not only
concern the visual appearance, but also the architecture design. Usability requirements are
contemplated from the very beginning of each cycle, by creating a set of meaningful tests that drive
the development of the application and ensure that no functionality related to usability is altered
unintentionally through development cycles. Dealing with those usability requirements in the very
early steps of the software development process avoids future hard changes in the system architecture
to support them. The approach is illustrated with an example in the context of the OOWS suite.

Key words: Test-Driven Development, Usability, Conceptual Models,
 Model-Driven Development
Communicated by: M. Gaedke & A. Ginige

1 Introduction

Developing quality Web applications quickly and error free is one of the most challenging problems in
the web engineering field. This kind of software always stresses development teams because
requirements tend to change fast (the “permanent beta” syndrome) [25]. At the same time, customers
require extremely usable applications more than in other kind of software. As a consequence, it is
reasonable to use a development process with short cycles and intense participation of stakeholders.

E. Robles Luna, J. I. Panach, J. Grigera, G. Rossi, and O. Pastor 133

Agile development methodologies, such as Test-Driven Development (TDD) [3, 16], are a perfect
match to this development style.

TDD uses short cycles to incrementally add behaviour to the application. Each cycle starts by
gathering requirements in the form of Use Cases [19] or User Stories [21] that describe the expected
behaviour of the application informally. Next, the developer abstracts concepts and behaviour, and
concretizes them in a set of meaningful test cases. Those tests are intended to fail on their first run,
showing that the application does not meet the requirements yet. In order to fix this problem, the
developer writes the necessary code to pass the tests and runs them again until the whole test suite
passes. The process is iterative and continues by adding new requirements. In these cycles, the
developer can refactor [14] the code when it is necessary. Studies have shown that TDD reduces the
number of problems in the implementation stage [33] and therefore its use is growing fast in industrial
settings [26].

However, one of the problems of TDD is its extremely informal nature in which most design
decisions remain undocumented. While TDD favours agility, it also hinders evolution in the middle
and long term.

One attractive alternative to standard “code-based” TDD is to use a model-driven software
development (MDSD) approach, which allows focusing on higher level design models and deriving
code automatically from them, at the same time minimizing errors and making the development
process faster [15]. However, MDSD Web engineering approaches [23, 6, 13, 17, 35] tend to use a
“unified” [20] rather than an agile approach. To make matters worse, both agile and MDSD
approaches lack a “natural” way to specify requirements dealing with usability, which as mentioned
before is a key aspect in the Web engineering field.

While agile and MDSD-based approaches appear to be confronted frequently, our view is that
their positive properties should be put to work together in order to provide more efficient and effective
software production methods. This is why in this paper we present a novel development approach
which aims to solve the problems discussed above: it is agile, can interplay seamlessly with model-
driven approaches and supports specification and testing of usability requirements. Our approach
combines the recent work of the authors in two different areas: test-driven development of Web
applications [34], and specification and modelling of usability requirements [30].

On the one hand, we propose injecting a test-driven development style into a model-driven
development methodology, developing the initial ideas presented in [34]. In this way, we maintain the
agility of test-driven development while working at a higher level of abstraction by using models. One
contribution of the presented work is to show that Agile and MDSD can be combined to make them
become stronger together than separately. The approach begins building interaction and navigation
tests derived from presentation mockups (i.e. stub HTML pages) and User Interaction Diagrams
(UIDs) [35]; these tests are later run against the application generated by the model-driven
development tool to check whether they pass or fail. On the other hand, we derive usability tests, i.e.
those that capture the properties needed to build a usable system. These tests are used in the same way
as “conventional” functional tests in the TDD cycle, thus serving as a way to check how development
proceeds by formalizing one of the typical customers concerns. Another value of the presented work is
to demonstrate that usability requirements can be properly dealt with in such an advanced software
production process. The whole approach is complemented with a set of tools to simplify the
stakeholders’ tasks.

To develop this idea, our work focuses on functional usability requirements, called in the
literature Functional Usability Features (FUF) [22]. Historically, usability has been considered as a
non-functional requirement [7]. However, many authors have discovered several usability properties
strongly related to functionality [2, 12]. FUFs are usability requirements related to functionality and
therefore related to system architecture. Each FUF is divided into different subtypes called usability
mechanisms. Several authors propose including these mechanisms from the very early steps of the
software development process in order to avoid changes in the architecture once they have been
designed [2, 12]. Following the proposal to deal with usability in the early steps, we have used a set of
guidelines defined by Juristo [22] to capture functional usability requirements for each usability
mechanism. These templates contain a set of questions that the analyst must use to capture usability

134 Incorporating Usability Requirements In a Test/Model-Driven Web Engineering Approach

requirements by means of interviews with the client. From these templates, we have extracted the
usability properties that must be taken into account when the analyst develops the system.
In a brief summary, the contributions of the paper are the following:

• We show how to introduce usability requirements in an agile model-driven Web engineering
approach.

• We illustrate the detection of some relevant properties to build usable systems. These properties
have been extracted from templates to capture usability requirements defined in the literature.

• We show how to translate those properties into a set of meaningful tests that drive the development
process.

The structure of the paper is the following: In Section 2 we discuss some related work in this

area, covering Web development approaches and specification of usability requirements. In Section 3
we present the background of our approach. In Section 4 we show the approach in a step by step way,
showing with small examples how we intermix test and model-driven development with a strong bias
to usability checking. In Section 5 we present a lab case. Finally, in Section 6 we conclude and present
some further work we are pursuing.

2 Related Work

Our proposal brings model-driven and agile approaches together, in an effort to improve Web
development. Classical model-driven Web engineering methods like WebML [6], UWE [23],
OOHDM [35], OOWS [13] or OOH [17] usually favour a cascade style development. We superimpose
a specific agile approach, Test-Driven Development, where tests are developed before the code (in this
case the model) in order to guide the system development. In this sense, some authors like Bryc [4]
have proposed generating these tests automatically, while in other works tests are constructed manually
[26]. Both techniques are valid for our proposal.

We state, like Bass [2] and Folmer [12], that usability must be included from the very early
steps in the software development process (TDD in our proposal). In other words, usability must be
considered from the requirements capture step. Several authors, like Juristo [22], have dealt with
usability as a requirement. Juristo has defined a set of Functional Usability Features that are related to
system architecture. The requirements of these features are captured by means of guidelines. These
guidelines include questions that the analyst must ask to end-users in order to adapt the features to
users’ requirements. Lauesen [24] also includes usability in the requirements capture, discussing six
different styles of usability specification and showing how to combine them in a complex real-life case
to meet the goals. The styles specify the usability properties more or less directly. The list of styles is:
performance style; defect style; process style; subjective style; design style; guideline style. The best
choice in practice is often a combination of the styles, so that some usability requirements use one style
and others use a different one. Finally, it is important to mention the work of Cysneiros [8], who has
defined a catalogue to guide the analyst through alternatives for achieving usability. The approach is
based on the use of the i* [42] framework, having usability modelled as a special type of goal.
Cysneiros states that a catalogue can be built to guide the requirements capture. This notation provides
a total view of requirements and the relationships among them, as well as the relationship between
usability and functional requirements inclusively. The main disadvantage of this proposal is the i*
notation which is ambiguous, is far from natural language, and it may present contradictions [11].The
difference between our proposal and the aforementioned works is the context of use. We deal with
usability requirements in a TDD process using a model-driven Web engineering approach, while the
mentioned authors deal with usability requirements in a traditional software development process.

The concept of pattern is one of the most widely used concepts to include usability in the first
steps of the software development process. Many authors have worked on the definition of usability
patterns, for instance Tidwell [38]. The patterns described by Tidwell represent not only usability, but
also interaction. The notation used to represent the patterns is graphical because Tidwell wants the user

E. Robles Luna, J. I. Panach, J. Grigera, G. Rossi, and O. Pastor 135

to participate in the design of the architecture. Following the same trend as Tidwell, Perzel describes a
set of patterns that are oriented to web environments [32]. Perzel distinguishes between patterns for
web applications (users must introduce data) and patterns for web sites (users only navigate and
visualize information).

One work that aims to bring usability patterns closer to the end user is carried out by Welie
[40]. The patterns of Tidwell and Perzel differ from the patterns of Welie in that Welie distinguishes
between the user perspective and the design perspective. The main reason for this sorting into groups is
that, from the user perspective, it is important to state how and why the usability is improved; while
from the design perspective, patterns only solve designer problems.
The patterns proposed by all these authors include a short description about the implications of
including the patterns in the architecture. However, this description is too short. The patterns should
have a guideline to explain in detail how to include the patterns in the system. In our proposal, that
inclusion is hidden for the analyst, because it is performed by automatic transformation of the MDSD
process.

Others authors like Nielsen [29], have been working recently on including usability in agile
software development methods. Nielsen states that fast and cheap usability methods are the best way to
increase user experience quality, because developers can use them frequently throughout the
development process. This work is very close to our proposal, but it is not focused on a TDD approach.
Again, the originality provided by our presented work is centered around its integration of TDD and
MDSD, together with the incorporation of usability requirements in this approach.

Regarding automated testing within model-driven software development processes, it is
important to mention the work of Dihn-Trong et al. [9] who apply validation techniques directly to
UML models [39]. The authors create Variable Assignment Graphs (VAGs) to automatically generate
test input, considering also the model's constraints. Nevertheless, generating VAGs requires the models
to be already created, so it is not possible to guide the development through generated tests. Also, we
state that users must participate in the test definition, but Dinh-Trong proposes testing the system by
means of design models, where users cannot take part for ignorance.

In a recent work [34] we have illustrated a first attempt to apply our TDD-based methodology
on a MDSD Web engineering approach, but usability was not considered. In the same way, Zhang [45]
has presented an approach in which he applies Extreme Programming practices into a process, in a
methodology called test-driven modelling (TMD). Tests are created in terms of message sends
(represented as Message Sequence Charts) to a black box system, and then models are created to pass
these tests. The overall approach is similar to the one here presented, but it does not consider
navigation or presentation (hence, neither usability) early in the process.

Back on the agile track, Agile Model Driven Development (AMDD) [1] proposes a MDSD-
like development process, but creating models that are “just barely good enough” to fulfil a small set of
requirements. Our approach takes the same philosophy in that matter, but AMDD differs from it since
it is not purely model-based, but it also has a latter coding stage in which TDD is applied. Other
authors, such as Wieczorek [44], have proposed testing the system in the code generated from a
Conceptual Model, as we propose. This author proposes black-box testing that uses structural and
behavioural models described in UML to automatically generate test cases. After automatically
generating part of the code from the Conceptual Model, developers are starting to create unit tests for
the functions that they are going to implement. Changes derived from testing are applied directly to the
code. This fact differs from our proposal, where changes are directly applied to the Conceptual Model
and the code is automatically generated, making the software development process more efficient.

3 Bridging Usability requirements with TDD

We want to emphasize that our approach [34] puts together the advantages of both agile and model-
driven approaches, and it is our strong belief that this is the path to be followed by modern software
production approaches. Incorporating usability requirements in that domain is a concrete way to
improve the quality of the associated method, as usability is a recognized quality software criteria. To
achieve this goal, we deal with presentation mockups and requirements models early in the

136 Incorporating Usability Requirements In a Test/Model-Driven Web Engineering Approach

requirements elicitation stage, integrating usability requirements in the incremental development
process with a TDD style. By using a model-driven development approach we raise the level of
abstraction; as a consequence, the quality of the generated software is significantly improved like in
most MDWE approaches [15]. Instead of following a cascade style of development, we use an iterative
and incremental style following short cycles constantly involving stakeholders. Usability requirements
are taken into account from the earliest stages, and considered “first class” requirements for test
generation; therefore they participate in the development cycle, just as regular requirements. We next
describe our approach in detail.

3.1 The approach in a nutshell

The development cycle is divided into cycles or sprints (Figure 1). At the beginning of the sprint, the
development team has only a set of short informal specifications (descriptions) of what they have to
do. These specifications have been defined by means of interviews with the user. Developers start
working by picking one of them at a time. A small cycle starts by capturing a more detailed analysis
using informal requirement artefacts (Step 1). A variety of artefacts can be used depending on the type
of requirement we are capturing:

• For requirements involving interactions, we use UIDs that serve as a partial specification of the
application’s navigation. Mockups are used for User Interface (UI) aspects, and Use Cases (UC) or
User Stories (US) for business or domain aspects.

• For usability requirements, we use a set of usability properties derived from usability requirements
guidelines defined in the literature [22]. These usability properties are represented by: UIDs for
navigational concerns and mockups for UI aspects. If functionality slightly changes, then UC/US
must be used too.

The artefacts we use to capture requirements are described in natural language, lacking a

clear/formal definition. Therefore, developers transform these requirements into tests, to get a more
“formal” specification (Step 2). As in a TDD, tests are heavily used both to drive the development
process and to check that existing functionality is not altered during the development process. This has
probed [28] to reduce development time because unintentional errors are captured during the
development cycle instead of leaving their discovery to the quality assurance (QA) or testing phase.

Figure 1 A Schema of our method

E. Robles Luna, J. I. Panach, J. Grigera, G. Rossi, and O. Pastor 137

Before a requirement is implemented, corresponding tests must be run to check whether or
not the application fulfils the requirement. The failing tests show which requirements are not yet
supported by the system under development. If, at this stage, the application passes all the tests, then
either they do not express the new requirement properly, or the new requirement is not new because
the application already supported it. In the first case, we should give more detail to tests going back to
step 2 and in the second one, we should dismiss the requirement and return to step 1.

Once the requirement has been specified in a test suite, the development phase can begin. By
using a MDSD approach, the developer creates or extends the existing models generating an enhanced
version of the application (Step 3). All the development effort is concentrated on building/extending
the model. The code generation is performed automatically by means of transformation that takes as
input the models.

In order to check that the requirement has been successfully implemented and no previous
functionality is corrupted, the developer runs the whole suite of tests to check both things (Step 4). If
one or more tests fail, he should go back to step 3, do some rework in the models, generate the code
again, and retry step 4 until all tests pass.

Finally, we get a new application with one requirement added (Step 5). The cycle continues
by picking a new requirement (Step 1) and following steps 2 to 5 until we run out of requirements for
the sprint.

3.2 An overview of involved artefacts

Throughout the requirements elicitation activity, we combine different artefacts to achieve fluency in
the communication between stakeholders, and accuracy in the specification for the development team.
As we just stated in 3.1, UIDs, HTML mockups, FUFs and interaction tests help in both aspects. The
first two are useful in terms of communication at early stages of requirements definition: UIDs provide
a precise and somewhat intuitive way to specify navigation and interaction, while mockups reveal the
presentation, making it concrete for customers. Usability needs are also detected at this early stage,
following standardized guidelines by applying Functional Usability Features. Whenever possible, these
requirements must be stated early in the process, since they might have an influence in the
application’s design (particularly in navigation and interface/interaction issues, but also in
functionality). Finally, interaction tests come to play right before development, when a thorough
specification that considers all possible ways of interaction stated in the UID diagrams is required.
Additionally, they are specified against the same mockups obtained in the requirements gathering
activity, to make sure the same interaction agrees with the stakeholders.
Along the following subsections, we explain each artefact with more detail, illustrating them with
examples in the context of a simple, conventional e-commerce application that is useful to introduce
the basic ideas. In section 5, we will introduce in more detail a concrete example related to a library
management system.

3.2.1 Mockups

HTML mockups are simple, static web pages that act as sketches of the application. They are intended
to be developed quickly to reflect the customer wishes in terms of presentation in a much more
substantial way than requirements expressed in written language alone. Mockups show no difference
from regular HTML pages, in fact their only characteristic feature is the way of building them and
their use. However, they can eventually become useful in the final stages of the development, where
the same mockups can become the definitive look and feel of the application.

In a simple E-commerce application, suppose that the customer explains that the checkout
process must ask for the credit card information, and let the user revisit the list of products involved in
the purchase. Figure 2 shows two mockups, Figure 2.a shows a product’s detail page, from which the
user can navigate to the checkout page shown in Figure 2.b.

138 Incorporating Usability Requirements In a Test/Model-Driven Web Engineering Approach

 Figure 2a Product Detail Mockup Figure 2b Checkout Mockup

3.2.2 User Interaction Diagrams

Similar to use cases, a UID describes the exchange of information between the user and the system and
particularly the set of interactions occurring to complete a functional requirement. UIDs enrich use
cases with a simple graphical notation to describe partial navigation paths. UIDs are simple state
machines where each interaction step (i.e. each point in which the user is presented with some
information and either indicates his choice or enters some value) is represented as an ellipse, and
transitions between interaction points as arcs. For each use case, we specify the corresponding UID
that serves as a partial, high-level navigation model, and provides abstract information about interface
features. Following the example from 3.2.1, Figure 3 shows a simple UID expressing the operation of
checkout, from the list of products through the confirmation.

Figure 3 Checkout’s UID

We have extended the UID notation to allow automatic generation of interaction tests as
described below.

3.2.3 Interaction tests

An interaction test is a test that opens a Browser and executes a set of actions directly on it, in the same
way a user would do it. Also it allows making assertions on HTML elements based on XPath [41] or
HTML IDs There are several tools that could be employed to write such a test: Selenium [36], Watir
[43], TestNG [37]. The main advantage of this kind of tests is that they execute directly in the browser
making them independent of the development method or tool used to generate the application.

Like in “conventional” TDD, we write the tests before the development begins. Using
Selenium, we can speed up the code writing by profiting from the Selenium recorder to record the set

E. Robles Luna, J. I. Panach, J. Grigera, G. Rossi, and O. Pastor 139

of actions we perform over the mockup. Later, we can translate the tests to Java and add the necessary
assertions to ensure the application’s expected behaviour.

These tests are also used after the requirement has been developed to check that the new
requirement has been correctly implemented and previous functionality has not been altered.

3.2.4 FUF
Usability is a very wide concept. Human-Computer Interaction literature provides three types of
recommendations to improve the usability of a software system [22].

1. Usability recommendations with impact on the user interface (UI). These recommendations refer to
presentation issues with slight modifications of the UI design (e.g. buttons, pull-down menus,
colours, fonts, layout).

2. Usability recommendations with impact on the development process. These can only be taken into
account by modifying the whole development process. For example, those that intend to reduce the
user cognitive load require involving the user in the software development.

3. Usability recommendations with impact on the architectural design. These involve building certain
functionalities into the software to improve user-system interaction. These set of usability
recommendations are referred to as Functional Usability Features (FUFs). FUFs are defined as
recommendations to improve the system usability that have an impact on the architectural design.
Examples of these FUFs are providing cancel, undo and feedback facilities.

We have focused our proposal on FUFs because a big amount of rework is needed to include

these features in a software system unless they are considered from the first stages of the software
development process [2, 12]. Therefore, the inclusion of FUFs must be done from the requirements
capture step.

Different HCI authors [40, 38, 18] identify different varieties of these usability features.
These subtypes are called usability mechanisms. In other words, each FUF has a main goal that can be
specialized into more detailed goals called usability mechanisms.

3.3 OOWS: A Model-Driven Web Engineering Method
As said before, we favor the use of a MDSD style. Though the overall approach is independent of the
specific MDSD methodology, we will illustrate the paper with OOWS. OOWS (Object-Oriented Web
Solutions) [13] is a model-driven web engineering method that provides methodological support for
web application development. OOWS is the extension of an object-oriented software production
method called OO-Method [31], as Figure 4 illustrates. OOWS introduces the diagrams that are needed
to capture web-based applications requirements, enriching the expressiveness of OO-Method. OO-
Method is an Object Oriented (OO) software production method that provides model-based code
generation capabilities and integrates formal specification techniques with conventional OO modelling
notations. OO-Method is MDA compliant [27], so following the analogy with MDA, OO-Method
provides a PIM (Platform-Independent Model) where the static and dynamic aspects of a system are
captured by means of three complementary views, which are defined by the following models:

• Structural Model that defines the system structure and relationships between classes by means of a
Class Diagram.

• Dynamic Model that describes the valid object-life sequences for each class of the system using
State Transition Diagrams.

• Functional Model that captures the semantics of state changes to define service effects using a
textual formal specification.

As Figure 4 shows, OOWS introduces two models in the development process:

140 Incorporating Usability Requirements In a Test/Model-Driven Web Engineering Approach

• Navigational Model: This model describes the navigation allowed for each type of user by means
of a Navigational Map. This map is depicted by means of a directed graph whose nodes represent
navigational contexts and their arcs represent navigational links that define the valid navigational
paths over the system. Navigational contexts are made up of a set of Abstract Information Units
(AIU), which represent the requirement of retrieving a chunk of related information. AIUs are made
up of navigational classes, which represent views over the classes defined in the Structural Model.
These views are represented graphically as UML classes that are stereotyped with the «view»
keyword and that contain the set of attributes and operations that will be available to the user.
Basically, an AIU represents -at a conceptual level- a web page of the corresponding Web
Application.

• Presentation Model: The purpose of this model is to specify the visual properties of the information
to be shown. To achieve this goal, a set of presentation patterns are proposed to be applied over
conceptual primitives. Some properties that can be defined with this kind of patterns are information
arrangement (register, tabular, master-detail, etc), order (ascendant/descendent) or pagination
cardinality.

PI
M

C
O

D
E

OO-Method

PI
M

-to
-P

SM
-to

-C
od

e

DYNAMIC MODEL

FUNCTIONAL MODEL

OLIVANOVA MODELLER

Class Relationship

Attributes

PSM +
Code

Generator

OLIVANOVA
TRANSFORMATION ENGINE

APPLICATION CODE

NAVIGATIONAL MODEL

PRESENTATIONAL MODEL

OOWS

Presentation Tier

Application Tier

Persistent Tier

3-
La

ye
r

A
rc

hi
te

ct
ur

e

Framework

Web-Based Interface

TRANSLATION PROCESS

M
od

el
 D

riv
en

 A
rc

hi
te

ct
ur

e

+
Code

Generator

PI
M

C
O

D
E

Au
to

m
at

ic
 T

ra
ns

fo
rm

at
io

n

OOWS Compiler

WEB APPLICATION CODE

Integration

STRUCTURAL MODEL

OOWS Visual Editor

Figure 4 OO-Method and OOWS MDA Development Process

Both models are complemented by OO-Method models that represents functional and

persistence layers. OOWS generates the code corresponding to the user interaction layer, and
OLIVANOVA [5], the industrial OO-Method implementation, generates the business logic and the
persistence layers.

4 The approach in action

To illustrate the approach we will show concrete examples of usability requirements following the
same basic notions commented in section 3.2. Functional requirements have already been dealt with in

E. Robles Luna, J. I. Panach, J. Grigera, G. Rossi, and O. Pastor 141

[34], so for the sake of conciseness, we will stress how to deal with usability requirements and show
only a couple of UIDs.
Assuming we have already developed the concepts of product, category and list of products in the E-
commerce application, we are about to start a new sprint that concentrates in the shopping cart. We
will show the approach in the context of improving the usability of the existing checkout process
which is performed in a single web page. Specifically, we want to include a wizard to carry out the
checkout process. To do so, we are going to use a FUF called Wizard. This FUF has a usability
mechanism called Step by Step which has the goal of helping the user in complex tasks. We will go
through the following steps to develop this requirement:

1. We extract the usability properties from the requirements guideline of the usability mechanism
called Step by Step (Table 1). Those properties specify the service that will be executed at the end
of the wizard; how we have to split the navigation concern; the description for each step; how the
information will be displayed in each step, and whether or not each step will inform about the
number of remaining steps. We need to refactor the current mockups to show what we expect from
a UI perspective.

Table 1. Usability properties for Step by Step

Step by Step
Property Value specified by the analyst in the checkout example

Service selection This mechanism will be applied to the checkout action
Steps division

Step description Each step must contain a short description
Visual aspect The user has specified the widgets to fill in each step
Remaining steps The system must inform about the number of remaining steps

2. We capture the navigation between the different steps of the checkout process in a UID that will

serve as a partial navigation model (see Figure 5.a), allowing the developer to implement the
navigation aspect of the requirement. Then, we rework on the mockup of the checkout process by
splitting it into several steps (Figure 5.b shows some resulting mockups for these steps). We add the
necessary widgets as described in the table 1 to show the remaining steps and their descriptions (on
each node).

Figure 5a UID for checkout steps.

142 Incorporating Usability Requirements In a Test/Model-Driven Web Engineering Approach

Figure 5b Sample mockups for checkout steps.

3. We refactor the existing checkout test so that it specifies the new process. We have to add the
necessary asserts to validate the description, remaining steps, etc. Then, we run the test to check
whether it is a new requirement and the application does not support it yet. We next show a test in
Selenium Java notation:

public class CheckoutTestCase extends SeleneseTestCase {

 public void testSuccessfulCheckout() throws Exception {

(01) sel.open("file:///dev/bookstore/Mockups/books-list.html");

(02) sel.clickAndWait(

 "/ul[@id='products']/li[1]/div[1]/div[@id='prod-info']/a“);

(03) sel.assertLocation("/cart*");

(04) assertEquals(

 "The Digital…",

 sel.getText("/ul[@id='selected-products']/li[1]/span[1]"));

(05) sel.clickAndWait("checkout");

(06) sel.assertLocation("/checkoutStepShippingAddress");

(07) assertEquals("3", sel.getText("//div[@id='remaining']"));

(08) assertEquals(

 "Shipping information",

 sel.getText("//div[@id='stepDescription']"));

(09) sel.type("shipping-address", "Calle 58");

(10) sel.select("country", "label=Argentina");

(11) sel.clickAndWait ("//input[@value='billing information>>']");

(12) sel.assertLocation("/checkoutStepBillingAddress");

(13) assertEquals("2", sel.getText("//div[@id='remaining']"));

(14) assertEquals(

 "Billing information",

 sel.getText("//div[@id='stepDescription']"));

(15) sel.type("billing-address", "Calle 48”);

(16) sel.select("country", "label=Argentina");

(17) sel.clickAndWait ("//input[@value='product confirmation>>']");

(18) sel.assertLocation("/checkoutStepProductConfirmation");

E. Robles Luna, J. I. Panach, J. Grigera, G. Rossi, and O. Pastor 143

(19) assertEquals("1", sel.getText("//div[@id='remaining']"));

(20) assertEquals(

 "Product confirmation",

 sel.getText("//div[@id='stepDescription']"));

(21) assertEquals(

 "The Digital…",

 sel.getText("/ul[@id='selected-products']/li[1]/span[1]"));

(22) sel.clickAndWait ("//input[@value='credit card data >>']");

(23) sel.assertLocation("/checkoutStepCreditCardData");

(24) assertEquals("0", sel.getText("//div[@id='remaining']"));

(25) assertEquals(

 "Credit card information",

 sel.getText("//div[@id='stepDescription']"));

(26) sel.type("first-na","Esteban"); sel.type("last-na", "Robles");

(27) sel.type("card-number", "4246234673479");

(28) sel.select("exp-year", "label=2011");

(29) sel.select("exp-month", "label=Apr");

(30) sel.clickAndWait ("//input[@value='confirmation >>']");

(31) sel.assertLocation("/checkoutSucceed");

(32) assertEquals(

 "Checkout succeded”,

 sel.getText("/div[@id='message"));

 }

}

The test opens the book list page (1) and adds an item to the shopping cart (2). Then we assert

that the book has been added and proceed to the checkout process (3-5). Shipping information (6-11)
and billing information (12-17) are filled and confirmed. Products are confirmed by asserting that
product’s name (18-22). Credit card data is filled (23-30) and then we confirm the process has
succeeded by looking at the text displayed in a div element (31-32).

4. Since we are modelling the application with OOWS [13] we have to extend the navigation, domain
and UI models to fulfil this new requirement. The Conceptual Model Compiler associated to OOWS
is the responsible of creating the web application corresponding to the extended models. The
strategy followed by it is out of the scope of this paper, but the reader will find the relevant details
in [13].

5. We check that the application obtained in step 4 satisfies the requirements by running the whole test
suite. If one test fails then we have to go back to step 4.

6. We get a new version of the application by integrating new changes with the current version of the
model.

4.1 Handling usability requirements

As we have previously seen, usability requirements with functional implications have already been
catalogued in the literature [22] as Functional Usability Features (FUF). These FUFs are derived from
usability heuristics, rules and principles. In other words, FUF are functional requirements that improve
particular usability attributes. Moreover, FUFs are divided into different specialised subtypes called

144 Incorporating Usability Requirements In a Test/Model-Driven Web Engineering Approach

usability mechanisms. The definition of these mechanisms includes a set of guidelines to lead the
analyst in the usability requirements capture. The guidelines are composed of questions that the analyst
must ask to the user in order to extract usability requirements. We have used those guidelines to
identify the usability properties that must be considered in the early stages of the software development
process. Properties are the different configuration possibilities that a usability mechanism has to adapt
itself to usability requirements. More details about our proposal to extract usability properties from
usability mechanisms guidelines can be found in [30].

In Figure 6 we show a sketch to explain how we have extracted usability properties from
FUFs. Each FUF is divided into several usability mechanisms. These mechanisms include a guideline
to capture usability requirements. From those guidelines, we have extracted a set of properties. Grey
boxes in Figure 6 represent existing elements in the literature, while white boxes represent a new
contribution of our work.

Figure 6 Division of FUF into properties

In this section, we show usability properties extracted from the definition of some usability
mechanisms. Specifically, we focus on mechanisms related to Web applications environments. For
each mechanism, we have specified its motivation according to existing works [22], the properties
derived from it, and finally an overview of how those properties must be mapped to a concrete test
suite. The test suite and the different scenarios are going to be explained in natural language because of
the nature of FUFs: they are general and not concrete for a specific application. Later in the lab case
presented in section 5 we are going to show how those scenarios are mapped in concrete software
artefacts.

4.1.1 Favourites
The motivation of this mechanism is to let the users make a record of their points of interest, so that
they can easily go back to them later. This mechanism allows the user to move freely through a way
that is not directly supported by the structure of the system. The context of use of this mechanism is
interfaces that the user visits frequently. Properties derived from the requirement guideline of
Favourites are the following:

• Favourites’ location: This property is used to specify where the list of favourites will be shown in
the interface. For example, the list of favourites can be included in the main menu, in the main
interface, in a specific window, etc.

• Num of items: This property specifies the maximum number of items listed in the favourites’ area.
Analyst must adapt this property according to the interface size and the user’s requirements.

E. Robles Luna, J. I. Panach, J. Grigera, G. Rossi, and O. Pastor 145

Test generation

The test suite for Favourites must include the following scenarios:

• Add favourite: Open the application. Navigate to a specific item that wants to be categorized as
favourite. Add to favourite list. Check that the item is added to the favourite list.

• Navigate to favourite: Open the application. Identify as a user that already has favourites. Click on a
favourite. Check that navigation has occurred to the specific item.

• Validate favourites’ location: Open the application. Check the location of the favourites’ area using
an XPath expression.

• Validate number of items: Open the application. Add n + 1 (n is maximum) items as favourites.
Check that favourite’s area only contains n items.

4.1.2 Progress Feedback

The motivation of this usability mechanism is providing users with information related to the evolution
of the requested services. The concept of service is defined as a processing unit that modifies the local
state of an object according to [31]. The context of use for this mechanism is when a process interrupts
the user interface for longer than two seconds. In that case, the system should show an animated
indicator of how much progress has been made. Properties derived from the requirement guideline of
Progress Feedback are the following:

• Service selection: This property is used to select which services will show the progress of their
execution. Analyst must select the services that usually will spend more than two seconds in the
execution.

• Visualization options: Analyst uses this property to decide how the progress will be shown to the
user. This progress can be shown by means of a progress bar or by a list of completed services.
Moreover, both types of visualization have several options. For example, the progress bar can be
shown from right to left, from left to right, including the remaining time, including the remaining
percentage, etc.

Test generation

The test suite for Progress Feedback must include the following scenarios:

• Check progress existence: Open the application. Execute a service that requires progress. Check the
presence of the progress bar. Wait for the result to be loaded. Check that the result is properly
loaded.

• Check services (optional in case those services must be shown): Open the application. Execute a
service that requires progress. Check the presence of the progress bar and the list of completed
services is shown. Check that the result is properly loaded.

4.1.3 Abort Operation

The motivation of this usability mechanism is to provide a way of cancelling the execution quickly.
The functionality of Abort Operation consists in interrupting the processing and going back to the
previous state. The context of use is when a process interrupts the user interface for longer than two
seconds. In that context, the system should provide a mechanism to cancel the execution. Properties
derived from requirements guideline of Abort Operation are the following:

146 Incorporating Usability Requirements In a Test/Model-Driven Web Engineering Approach

• Service selection: This property is used to select which services can interrupt their execution when
the user considers. The analyst must select those services whose execution will spend more than two
seconds or services that can block the system.

• Visualization options: This property is used to specify how the abort option will be shown to the
user. For example, this functionality can be accessed by means of a button in the main menu, a
button in an emergent window together with the progress bar, a short cut, etc.

Test generation

The test suite for Abort must include the following scenarios:

• Check abort cancelled: Open the application. Execute a service that requires cancel. Click the cancel
button. Wait for the page to be loaded. Check that a message saying that the operation has been
cancelled is shown.

• Check abort bypassed: Open the application. Execute a service that requires cancel. Wait for the
page to be loaded. Check that the service has been executed.

4.1.4 Warning

The motivation of this usability mechanism is to ask for user confirmation in case the service requested
has irreversible consequences. The context of use is when a service that has serious consequences has
been required by the user. The properties derived from the requirements guideline of Warning are:

• Service selection: The analyst must choose which services have irreversible consequences
depending on the business logic.

• Condition: This property is used to specify when the warning message must be shown. The analyst
must define this condition using stored information and data written in input fields.

• Visualization options: This property is used to specify how the warning message will be shown to
the user. For example, the text format, whether the message will appear in an emergent window or
not, etc.

Test generation

The test suite for Warning must include the following scenarios:

• Check warning bypassed: Open the application. Fill the necessary data to make the warning
happened. Execute the service. Check the presence of the warning. Accept the warning and check
that the service has been executed.

• Check warning cancelled: Open the application. Fill the necessary data to make the warning
happened. Execute the service. Check the presence of the warning. Cancel the warning and check
that the service has NOT been executed.

4.1.5 Structured Text Entry

The motivation of this usability mechanism is to guide the user when the system can only accept inputs
from the user in an exact format. The context of use is widgets that require a mask to guarantee the
correct format in the data entry. The properties derived from the requirements guideline of Structured
Text Entry are:

• Widget selection: This property is used to choose the services that need a mask. The analyst must
decide which input fields will have a mask according to the business logic.

E. Robles Luna, J. I. Panach, J. Grigera, G. Rossi, and O. Pastor 147

• Regular expression: This property is used to specify the format that the widget requires. The format
is specified by means of a logic expression.

Test generation

The test suite for Structured Text Entry must include the following scenarios:

• Check widget set invalid: Open the application. Navigate to the selected node. For each widget: Add
invalid input to it. Try to execute the service. Check the presence of the error message.

• Check widget set valid: Open the application. Navigate to the selected node. For each widget: Add
valid input to it. Try to execute the service. Check that the error is not present for the specific
widget.

5 A Lab Case

As a lab case example we have selected a Web application of a library. This system is used to perform
distantly the most frequent actions in a library by means of internet. More specifically, we focused our
work on three functionalities: Opening the main window (home); looking for a specific book;
renewing the loan. Figure 7 represents the OOWS model for the contexts of those three functionalities.
Following, we are going to explain the usability properties that the system must support and the tests
that we have defined to guarantee those properties. In order to simplify how the examples are shown,
we are not going to show each test scenario; only the most significant ones. We have divided the
explanation into usability mechanisms, and for each usability mechanism we show a simplified version
of the final user interface where the value of the usability properties can be seen applied in the system.

Figure 7a OOWS model for home and search a book

Figure 7b OOWS model for renew a book

148 Incorporating Usability Requirements In a Test/Model-Driven Web Engineering Approach

In some cases, applying the usability mechanisms lead to changes not only in UI but in all
three OOWS models, for example forcing us to change or grow the application’s navigation structure.
In such cases, the generated tests are again used as guide for the development through the changes in
the navigation and domain models.

5.1 Favourites

According to the user requirements, the Web application should include in the main window a list of
the most used interfaces. Therefore, the user can visit those interfaces directly from the main window,
doing the user’s work more efficient. The values for the usability properties of Favourites are shown in
Table 2

Table 2. Usability properties for Favourites

Favourites
Property Value specified by the analyst in the library case study

Favourites’ location In the main window, in the right bottom
Num of items Three items

Figure 8 shows a mockup of the main window where the list of favourites appears in the right

bottom (pages most visited).

Figure 8 Mockup of the main window with favourites list

Test generation

Add favourite

Open(“http://library.upv.es”) //Open the application

ClickAndWaitPageToLoad(“id=recomm1”) //Open the first recommendation

AssertElementPresent(“id=favourite0”) //Assert that the recommendation has been

added

Navigate to favourite

Open(“http://library.upv.es”) //Open the application

Type(“id=username”, “Pablo”) //Authenticate with an existing user

Type(“id=password”, “apasd”)

E. Robles Luna, J. I. Panach, J. Grigera, G. Rossi, and O. Pastor 149

ClickAndWaitPageToLoad (“id= login”)

ClickAndWaitPageToLoad (“id= favourite0”) //Navigate to a favourite

AssertLocation(“book.asp”) //Assert that navigation has occurred

Validate Num or items

Open(“http://library.upv.es”) //Open the application

For (I in 1..4) {

 ClickAndWaitPageToLoad(“id=recomm1”) //Open the first recommendation

 ClickAndWaitPageToLoad (“id=home”) //Go back to home

}

//Assert that 3 elements are shown

For (I in 1..3) {

 AssertElementPresent(“id=favourite” + I)

}

AssertElementNotPresent(“id=favourite4”) //Assert that the 4th element is not shown

5.2 Progress Feedback

The process of looking for a specific book can take several seconds. According to usability
requirements, the system should inform the user that the search service is in progress and how much
time the user must wait until the search finishes. The values for the usability properties of Progress
feedback are shown in Table 3.

Table 3. Usability properties for Progress Feedback

Progress Feedback
Property Value specified by the analyst in the library case study

Service selection The search service
Visualization options The system will show a progress bar in an emergent window where

the user can see the percentage of the task that has been done. The
progress will be drawn from left to right

Figure 9 Mockup of the window for searching a book

150 Incorporating Usability Requirements In a Test/Model-Driven Web Engineering Approach

Figure 10 Mockup of a progress bar

Figure 9 shows a mockup where the user can look for a book. In that example, the user wants to look
for books of software engineering. When the user presses the search button, a progress bar like Figure
10 will appear. This progress bar shows the percentage of finished task.

Test generation

Check progress existence

Open(“http://library.upv.es”) //Open the application

ClickAndWaitPageToLoad (“id=search”) //Go to search

Type(“id=searchField”, “Development approaches”);

ClickAndWaitPageToLoad (“id=doSearch”) //Search

AssertElementPresent(“id=pBar”) //Check that progress bar is shown

WaitPageToLoad(30000)

AssertLocation(“searchResults”) //Check that search has occurred

AssertTextPresent(“Development approaches”)

5.3 Abort Operation

Once the search has been triggered, the user should be able to cancel this search. Sometimes the search
may be too long or the user may have made a mistake triggering the search service. Therefore, the
Abort Operation is a requirement for the library Web application. The values for the usability
properties of Abort Operation are shown in Table 4.

Table 4. Usability properties for Abort Operation

Abort Operation
Property Value specified by the analyst in the library case study

Service selection The search service
Visualization
options

The cancel button will be shown in the emergent window together with
the progress bar

Figure 11 shows a mockup for the Abort Operation. This usability mechanism has been

implemented by means of a cancel button added to the progress bar showed in Figure 10. The user can
abort the search service pressing the cancel button.

E. Robles Luna, J. I. Panach, J. Grigera, G. Rossi, and O. Pastor 151

Searching

Cancel

Figure 11 Mockup of a progress bar with abort operation

Test generation

Check abort cancelled

Open(“http://library.upv.es”) //Open the application

ClickAndWaitPageToLoad (“id=search”) //Go to search

Type(“id=searchField”, “Development approaches”);

ClickAndWaitPageToLoad (“id=doSearch”) //Search

AssertElementPresent(“id=pBar”) //Check that progress bar is shown

ClickAndWaitPageToLoad (“id=cancel”) //Search

AssertLocation(“search”) //Check that search has been cancelled

5.4 Warning

The Web application allows users to renew the loan of a book if there is none in waiting list to get that
book. The renewal service let the user have the book one week more and this service can be executed
only three times by loan. The renewal service cannot be undone; therefore the execution of the service
has irreversible consequences. According to usability requirements, the system must warn the user
about the consequences of the renewal service before its execution. The values for the usability
properties of Warning are shown in Table 5.

Table 5. Usability properties for Warning

Warning
Property Value specified by the analyst in the library case study

Service selection The renewal service
Condition The warning message must be shown each time the user triggers the

renewal service. Therefore the condition is “true” for every case.
Visualization
options

The warning message will be shown in an emergent window, with arial
font, size 10 and black colour.

Figure 12 shows a mockup to show a warning message when the user triggers the renewal

service. Moreover informing the user about the consequences of the execution, the message asks for
confirmation.

152 Incorporating Usability Requirements In a Test/Model-Driven Web Engineering Approach

Figure 12 Mockup of a warning message

Test generation

Check warning bypassed

Open(“http://library.upv.es”) //Open the application

Type(“id=username”, “Pablo”) //Authenticate with an existing user

Type(“id=password”, “apasd”)

ClickAndWaitPageToLoad (“id= login”)

ClickAndWaitPageToLoad (“id= myBorrowedBooks”)

Click(“id= renew0”)

AssertElementPresent(“id=dialog”)

ClickAndWaitPageToLoad (“id=acceptWarning”)

AssertTextPresent(“Book renewal accepted”)

AssertText(“id=remainingDays0” , “8”)

Check warning cancelled

Open(“http://library.upv.es”) //Open the application

Type(“id=username”, “Pablo”) //Authenticate with an existing user

Type(“id=password”, “apasd”)

ClickAndWaitPageToLoad (“id= login”)

ClickAndWaitPageToLoad (“id= myBorrowedBooks”)

Click(“id= renew0”)

AssertElementPresent(“id=dialog”)

ClickAndWaitPageToLoad (“id=cancelWarning”)

AssertTextPresent(“Book renewal cancelled”)

AssertText(“id=remainingDays0” , “1”)

5.5 Structured Text Entry

In order to filter the search of a book, users can insert a rank of years in which the book was published.
According to requirements, the years must be inserted with four digits. To avoid mistakes of users, the
input widget for years must include a mask to guarantee that the user inserts four digits. The values for
the usability properties of Structured Text Entry are shown in Table 6.

Table 6. Usability properties for Structured Text Entry

Structured Text Entry
Property Value specified by the analyst in the library case study

Widget selection Two widgets where the rank of years must be inserted
Regular expression The regular expression is ####, in other words, four integers.

E. Robles Luna, J. I. Panach, J. Grigera, G. Rossi, and O. Pastor 153

Figure 9 shows a mockup of interface to look for a book. The widgets published between
include a mask to guarantee that both years have four digits.

Test generation

Check widget set invalid

Open(“http://library.upv.es”) //Open the application

ClickAndWaitPageToLoad (“id=search”) //Go to search

Type(“id=publishedFrom”, “20000”)

Type(“id=publishedTo”, “2009”)

ClickAndWaitPageToLoad (“id=doSearch”) //Search

AssertTextPresent(“Invalid from number. Must be 4 digits”)

In order to pass all these tests, it is required to change some aspects of the OOWS conceptual model
defined in Figure 7. The new OOWS models are shown in Figure 13. Usability Properties have been
included by means of stereotypes (Progress bar, Cancel, Warning, Mask) and a new class (Favourites).
This is where our approach provides the intended additional value by linking explicitly TDD with
MDSD: once tests are written (and the requirement still not implemented), the required changes are
incorporated in the model (instead of in the program code), making true the metaphor of working at the
conceptual modelling level for software production purposes, while fully exploiting the principles of
the TDD approaches.

Figure 13a Modified OOWS model for home and search a book

Figure 13b Modified OOWS model for renew a book

6 Concluding Remarks and Further Work

Recent studies have targeted the relationship between usability and functional requirements [2, 12].
We have presented a novel approach to include usability requirements strongly related to functionality

154 Incorporating Usability Requirements In a Test/Model-Driven Web Engineering Approach

in a test driven, model-based development approach (MDSD). Usability properties are captured using a
set of guidelines described in natural language. In order to fit this kind of requirements in the TDD
cycle, we add tests that drive the development and check that the generated application is valid
according to such requirements. The approach maintains the agile style while preserving an MDSD
perspective, dealing with usability requirements in an incremental way. In order to exemplify our
proposal, we have used a set of Functional Usability Features (FUF) for Web applications defined in
the literature and we have explained how to define tests to validate those features in a specific MDSD
method called OOWS.

Our proposal put together the advantages of agile methods and MDSD. On the one hand, all the
software development process focuses on passing a set of tests defined with the help of the end user.
That decreases possible misunderstanding between the end user and the analyst because the software
can be validated quickly. On the other hand, the analyst concentrates all his/her efforts on building
conceptual models, which are closer to the problem space than the implemented code. Additionally, a
widely accepted software quality characteristic (usability) is incorporated to the proposed software
production process from the requirements capture step. With all this work, it is our intention to
demonstrate that:

i) Agile and MDSD can be adequately combined to reinforce each other, focusing on their
respective good properties from a methodological perspective. We have shown that there
are no contradictions associated to their combined use.

ii) Usability requirements can be incorporated to a MDSD method. Moreover, we have
explained the advantages of dealing with usability from the early steps of the MDSD: less
changes in the architecture design once the user sees the implemented system, usability can
be included easily in the developing system by means of conceptual primitives.

We are currently working on several directions: First, we are working on an UID extension to

easily derivate tests. As a proof of concept, we are developing a MDD tool that will simplify the
process of UID construction and test generation. Second, we are doing some field experiences with
usability requirements on RIA applications [10]. For this matter, we are analyzing how to validate
those requirements in tests and where they should appear in the TDD cycle. Finally, in order to
integrate all these features, we will extend the UID notation and tool to allow the specification of RIA
properties.

Acknowledgements

This work has been developed with the support of MICINN under the project SESAMO (TIN2007-
62894) and has been co-financed by ERDF. It also has the support of the Generalitat Valenciana by
means of theORCA project(PROMETEO/2009/015).

References

1. Agile Model Driven Development (AMDD): The Key to Scaling Agile Software Development.
http://www.agilemodeling.com

2. Bass, L., Bonnie, J.: Linking usability to software architecture patterns through general scenarios. The
journal of systems and software 66 (2003) 187-197

3. Beck, K.: Test Driven Development: By Example (Addison-Wesley Signature Series), 2002

4. Bryc, R.: Automatic Generation of High Coverage Usability Tests. Conference on Human Factors in
Computing Systems (CHI), Doctoral Consortium. ACM, Portland, USA (2005) 1108-1109

5. CARE: www.care-t.com. Last visit: October 2009

E. Robles Luna, J. I. Panach, J. Grigera, G. Rossi, and O. Pastor 155

6. Ceri, S., Fraternali, P., Bongio, A. Web Modeling Language (WebML): A Modeling Language for
Designing Web Sites. Computer Networks and ISDN Systems, 33(1-6), 137-157 June (2000).

7. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software Engineering.
Kluwer Academic Publishing, London (2000).

8. Cysneiros, L.M., Kushniruk, A.: Bringing Usability to the Early Stages of Software Development.
International Requirements Engineering Conf. IEEE(2003) 359- 360

9. Dinh-Trong, T.T., Ghosh, S., France, R.B.: A Systematic Approach to Generate Inputs to Test UML
Design Models. 17th International Symposium on Software Reliability Engineering (2006) 95-104

10. Duhl, J. Rich Internet Applications. A white paper sponsored by Macromedia and Intel, IDC Report,
2003

11. Estrada H., Martínez A., Pastor O. and Mylopoulos J., An empirical evaluation of the i* framework in a
model-based software generation environment, CAISE 2006, Springer LNCS 4001, (2006) pp: 513-527.

12. Folmer, E., Bosch, J.: Architecting for usability: A Survey. Journal of Systems and Software, Vol. 70 (1)
(2004) 61-78

13. Fons J., P.V., Albert M., and Pastor O: Development of Web Applications from Web Enhanced
Conceptual Schemas. ER 2003, Vol. 2813. LNCS. Springer (2003) 232-245

14. Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D. 1999. Refactoring: Improving the Design of
Existing Code. Addison-Wesley Professional.

15. Hailpern, B., Tarr, P.: Model-Driven Development: the Good, the Bad, and the Ugly. IBM Syst. J. 45
(2006) 451-461

16. IEEE Software, vol. 24, no. 3, May/June 2007.

17. Gómez, J. and Cachero, C. 2003. OO-H Method: extending UML to model web interfaces. In
information Modeling For internet Applications, P. van Bommel, Ed. IGI Publishing, Hershey, PA, 144-
173.

18. Griffiths, R.: The Brighton Usability Pattern Collection.
http://www.cmis.brighton.ac.uk/research/patterns/home.html (2002)

19. Jacobson, I, Object-Oriented Software Engineering: A Use Case Driven Approach, ACM Press, Addison-
Wesley, 1992.

20. Jacobson, I., Booch, G. and Rumbaugh, J (1999). The Unified Software Development Process

21. Jeffries, R. E., Anderson, A., and Hendrickson, C. 2000 Extreme Programming Installed. Addison-
Wesley Longman Publishing Co., Inc.

22. Juristo, N., Moreno, A.M., Sánchez, M.I.: Guidelines for Eliciting Usability Functionalities. IEEE
Transactions on Software Engineering, Vol. 33 (2007) 744-758

23. Koch, N., Knapp, A.. Zhang G., Baumeister, H.: UML-Based Web Engineering, An Approach Based On
Standards. In Web Engineering, Modelling and Implementing Web Applications, 157-191. Springer
(2008).

24. Lauesen, S.: Usability Requirements in a Tender Process. Computer Human Interaction Conference,
1998, Australia (1998) 114-121

25. Lawrence, B., Wiegers, K. and Ebert, C., The top risk of requirements engineering, IEEE Software, Vol.
18 (2001), pp: 62-63.

156 Incorporating Usability Requirements In a Test/Model-Driven Web Engineering Approach

26. Maximilien, E. M. and Williams, L. 2003. Assessing test-driven development at IBM. In Proceedings of
the 25th international Conference on Software Engineering (Portland, Oregon, May 03 - 10, 2003).
International Conference on Software Engineering. IEEE Computer Society, Washington, DC, 564-569.

27. MDA: http://www.omg.org/mda Last visit: October 2009.

28. Müller, M., Padberg, P. About the Return on Investment of Test-Driven Development. International
Workshop on Economics-Driven (2003)

29. Nielsen, J.: Agile Usability: Best Practices for User Experience on Agile Development Projects. Nielsen
Norman Group Report (2008)

30. Panach, J.I., España, S., Moreno, A., Pastor, Ó. Dealing with Usability in Model Transformation
Technologies. ER 2008. Springer LNCS 5231, Barcelona (2008) 498-511

31. Pastor, O., Molina, J.: Model-Driven Architecture in Practice. Springer, Valencia (2007)

32. Perzel, K., Kane, D.: Usability Patterns for Applications on the World Wide Web. PloP'99 Conference
(1999)

33. Rasmussen, J.: Introducing XP into Greenfield Projects: lessons learned. IEEE Softw, 20, 3 (May-June
2003) 21- 28

34. Robles Luna, E.; Grigera, J.; Rossi, G.: Bridging Test and Model Driven Approaches in Web
Engineering. ICWE 2009.

35. Rossi, G., Schwabe, D.: Modeling and Implementing Web Applications using OOHDM. In Web
Engineering, Modelling and Implementing Web Applications, 109-155. Springer (2008).

36. Selenium web application testing system. http://seleniumhq.org/

37. TestNG: http://testng.org/ Last visit: November 2009

38. Tidwell, J.: Designing Interfaces. O'Reilly Media (2005)

39. UML: http://www.uml.org/ Last visit: November 2009

40. Welie, M.v., Traetteberg, H.: Interaction Patterns in User Interfaces. 7th. Pattern Languages of Programs
Conference, Illinois, USA (2000)

41. XML Path Language (XPath). http://www.w3.org/TR/xpath

42. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements Engineering. In: IEEE
(ed.): IEEE Int. Symp. on Requirements Engineering (1997) 226-235

43. Watir: http://watir.com/ Last visit: November 2009

44. Wieczorek, S., Stefanescu, A., Fritzsche, M., Schnitter, J.: Enhancing test driven development with
model based testing and performance analysis. Testing: Academic and Industrial Conf Practice and
Research Techniques, TAIC PART ’08 (2008)82-86.

45. Zhang, Y.: Test-driven modeling for model-driven development. IEEE Software 21 (2004) 80-86

4

Capture and Evolution of Web requirements using
WebSpec

The content of this chapter corresponds with the following
publication: Robles Luna E., Garrigos I., Grigera J., Winckler
M. Capture and Evolution of Web requirements using WebSpec.
Proceedings of 10th International Conference on Web Engineering
(ICWE 2010). Vienna, Austria. Acceptance rate: 20%. Core C.

In the previous chapter we have defined an approach for web application development that uses
tests to drive the development and relies on models for the construction of the web application.
In this chapter we present the requirement artefact used to specify requirements related with
user interaction. We show its definition and use in the different activities of the development
cycle. In the figure shown below, we details the activities presented in this chapter and how
they are related with the WebTDD approach:

Fig. 4.1. The activities where Webspec is used to specify user interactive requirements

The content of this chapter is a paper published in the International Conference of Web
Engineering Support Systems (ICWE). ICWE aims at promoting research and scientific excel-
lence on Web Engineering and at bringing together scientists and practitioners interested in
technologies, methodologies, tools, and techniques used to develop and maintain Web-based
applications.

Capture and Evolution of Web requirements

using WebSpec

Esteban Robles Luna
1,2

, Irene Garrigós
3
,

Julián Grigera
1
, Marco Winckler

4

1LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{esteban.robles, julian.grigera}@lifia.info.unlp.edu.ar

2Also at Conicet
3Lucentia Research Group, DLSI, University of Alicante, Spain

igarrigos@dlsi.ua.es
4IRIT, University Paul Sabatier, France

winckler@irit.fr

Abstract. Developing Web applications is a complex and time consuming

process that involves different kind of people, ranging from customers to devel-

opers. Requirement artefacts play an important role as they are used by these

people to perform their daily activities. However, state of the art in requirement

management for Web applications disregards valuable features that tend to im-

prove the development process, such as quick validation during elicitation,

automatic requirement validation on the final application and useful change

management support. To tackle these problems we introduce WebSpec, a re-

quirement artefact for specifying interaction and navigation features in Web ap-

plications. We show its use through the development of an example application

in the social networking area, and its implementation as an Eclipse plugin.

1 Introduction

It is usual to have multidisciplinary teams (including customers, analysts, developers,

QA staff, etc) involved in the development of real world Web applications, making it

a complex and time consuming process. Moreover, requirements are susceptible of

changing along the development cycle, so it is important to keep them updated and

record their changes to reduce risks and time efforts. Many times, the success of a

Web project relies on how Web requirements are captured and specified [16].

Several studies [16, 19] in industrial cases have shown the importance of require-

ments in Web application development. Requirements are generally described in in-

formal documents (e.g. use cases [13]) that are shared by the different stakeholders of

the project. However, Web applications tend to evolve in short periods of time [16]

and sometimes not having a comprehensive way of handling requirement changes in

coherent documents. Therefore, testing against the requirement specification is not

feasible [19]. Furthermore, it is sometimes necessary to get deeper in the development

or design phases so that customers start to understand their own needs [19].

In this context, capturing requirements should be efficient enough to accomplish

the time constraint, without disregarding the interactive nature of Web applications.

Therefore, requirement artefacts have to be easily understood and validated by stake-

holders prior to the development, in order to avoid future wastes of time. Moreover,

during the development process, the application has to be checked to validate that new

requirements have been correctly implemented without “breaking” previous ones.

Furthermore, requirement artefacts should help to maintain good quality standards

during the development process, which are hard to keep with short time constraints.

In the context of model driven Web engineering approaches [22, 20, 14, 2, 11] the

aforementioned concerns are not generally taken into account [7]. As a consequence,

Web applications developed with these methodologies share some commonalities with

the industrial cases, such as outdated requirements, unfeasibility to test against the

requirements and unsuitably to handle fast evolution. Web requirements artefacts (e.g.

user interaction diagrams [22], extended use cases [6], etc) capture important aspects

of Web applications like navigation; however they are either used to document [13] or

to derive the first version of the domain or navigation models [8, 10] and do not con-

sider either evolution or validation (except WebRe [8] which provide test derivation

from WebRe models) or even quick validation during the capture phase.

To tackle these problems we present WebSpec, a multi purpose requirement arte-

fact used to capture navigation, interaction and UI (User Interface) features in Web

applications. To improve the capturing phase, WebSpec can be used in conjunction

with mockups to provide realistic UI simulations, hence improving requirement elici-

tation. Also, to allow quick requirements’ validation in the final application, WebSpec

automatically derives a set of interaction tests. Finally, WebSpec enforces change

management support which could be used to improve the development cycle by auto-

mating structural changes in the application. Summarizing, we show how to:

• Simulate the application using WebSpec and mockups to improve communica-

tion between the different stakeholders and reduce elicitation times.

• Derive tests from WebSpec diagrams to reduce requirement validation times.

• Capture requirement changes and use them to semi/automatically upgrade the

application and maintain quality standards.

The rest of the paper is structured as follows: in Section 2 we present WebSpec, its

concepts and syntax. In Section 3 we show how it is used in different activities in the

development cycle by improving requirement’s elicitation, helping to automatically

validate the requirements and managing their changes. Section 4 briefly shows Web-

Spec Eclipse plugin and describes its use in a real application. Section 5 presents re-

lated work and finally in Section 6 we conclude and present further work.

2 WebSpec: a DSL to capture interactive Web requirements

WebSpec is a DSL (Domain Specific Language) that allows specifying navigation,

interaction and UI aspects in a more formal way than, for example, use cases. A Web-

Spec diagram has two key elements: interactions and navigations (Fig. 1).

An interaction (the counterpart of a Web page in the requirements stage) represents

a point where the user can interact with the application by using its interface objects

(widgets). Interactions have a name (unique per diagram) and may have widgets such

as: labels, list boxes, buttons, radio buttons, check boxes and panels. Labels define the

content (information) shown by an interaction. Interactions are graphically represented

with a rounded rectangle which contains the interaction’s name and widgets. A Web-

Spec diagram must have a starting interaction represented with dashed lines.

Figure 1. WebSpec’s basic concepts

A mockup is a sketch of the “possible” application which generally represents UI

elements. We can associate interactions with mockups and WebSpec widgets with

their concrete UI elements in the mockup to improve the stakeholder’s communication

during the elicitation phase. There are several tools that could be used to create mock-

ups, such as Balsamiq [1] or plain HTML. WebSpec allows using any of them as long

as they provide a unique way to locate the interface elements.

Figure 2. Tweet Webspec diagram

Invariants are Boolean predicates that must always hold. Every interaction has an

invariant that specifies which properties must be satisfied (in case that we do not de-

fine one, it is assumed that the invariant is true). Fig. 2 shows a simplified diagram of

a Twitter-like application that specifies the post a message (tweet) requirement and

has 3 interactions named: Login, Register and Home. The Home interaction defines an

invariant (marked with the I icon near the interaction’s name): Home.username =

${username} && Home.tweetsCount = ${tweets} && ${long} -> Home.messages =

“Invalid message” that states that the contents of the username label must be equal to

the username variable (denoted as ${variableName}) and the contents of the tweet-

sCount label must be equal to the tweets variable and if the long variable is true then

the contents of the messages label must be equal to “Invalid message”.

A navigation from one interaction to another can be activated if its precondition

holds by executing a sequence of actions such as: clicking a button, adding some text

in a text field, etc. As well as invariants, preconditions can reference variables previ-

ously declared in the diagram. For example, the delete navigation (Fig. 2) has the pre-

condition: ${tweets} > 0. Navigations are graphically represented in the WebSpec

diagrams with gray arrows while its name, precondition and actions are displayed as

labels over them. Actions are written in an intuitive DSL conforming to the syntax:

var := expr | actionName(arg1,… argn). Traditional hyperlink navigation is repre-

sented with no precondition (indeed, an always true precondition) and with only one

action click (follow) a link widget (see Login to Register navigation in Fig 2). An ex-

ample of a more complex sequence of actions is the invalidPost navigation (Fig. 2):

(1) added := false;
(2) long := true;
(3) type(Home.msgTF, $invalidMessages$);
(4) click(Home.tweet);

The first 2 sentences (1-2) assign constant values to variables. Then some text gen-

erated by the invalidMessages generator (denoted between $) is typed in the msgTF

text field (3) and finally the tweet button is clicked (4).

WebSpec allows specifying general properties like “an error must be shown if the

user tries to post a message with more that 150 characters” using generators. Follow-

ing the idea of QuickCheck [3], we extract the data used for specifying interaction

requirements into generators. If a property in a WebSpec diagram holds, then it must

hold for any element that could be generated by a generator. A generator is a function

that can be called from navigation actions (e.g. $invalidMessages$) and generates

data. For example, Fig. 2 has 6 generators: usernames, passwords, messages and in-

validMessages, firstNames, lastNames. The invalidMessages generator generates

strings with size > 150, so when that invalidPost navigation is activated, some invalid

text will be typed and because the long variable will be true an error message must be

display (recall the invariant of the Home interaction) in the messages label.

For those Web requirements that have strong hidden behaviour (not perceived from

an interaction point of view, e.g. send an email), Webspec could be combined with

simple notes over the diagram or by linking navigations with use cases or user stories.

For example, if an email has to be sent when a user posts a message, we can easily add

a note over the post navigation.

Figure 3. WebSpec simplified metamodel

Finally, WebSpec is formally defined in a metamodel (Fig. 3) that is used to im-

prove the development process as shown in the following section. A diagram has a

root object of the class Diagram which contains many Interaction and Navigation in-

stances. An Interaction instance knows its name, forward navigations and associated

mockup. A Navigation knows its source and target Interaction and the sequence of

Action instances that triggers them. Finally, the interaction knows its root widget Con-

tainer which can contain many AbstractWidget (Widget or Container) instances.

3 Using WebSpec along the development cycle

WebSpec allows specifying interaction requirements for Web applications at a con-

ceptual level without imposing any particular development process. Notwithstanding,

WebSpec diagrams can be used at different steps of the development cycle of Web

applications. To illustrate this fact, we show in Fig. 4 how WebSpec can be used in

the different activities of a test-driven approach like WebTDD [21] and in a method-

ology using a RUP [15] like process. Simulation (S in Fig. 4) can be used to share

design options between stakeholders and validate their requirements in the require-

ments phase of both kind of processes. Tests generated from the diagrams (TG in Fig.

4) can be used to validate requirements against the final implementation when using a

RUP style or to drive the development process in WebTDD. Changes during the de-

velopment cycles are recorded (CR in Fig. 4) in the requirements phase of both. Fi-

nally, semi/automatic upgrades (CA in Fig. 4) using the previously recorded changes

can be applied to the application in the development phase of WebTDD and RUP. In

the following subsections we show how these features are supported in WebSpec.

Figure 4. Using WebSpec in activities of different approaches

3.1 Simulating the application during requirements elicitation

With the aim of improving the requirement elicitation phase, WebSpec diagrams al-

low the simulation of the resulting application. Simulation is important to bridge the

gap between the understanding of customers and designers about requirements thus

getting real feedback from them.

Most requirement artefacts [13, 8, 1, 22] require some level of knowledge from

customers to be fully understood, causing communication or understanding problems

during elicitation. WebSpec is not the exception; understanding a diagram may take

some time and require some knowledge of WebSpec’s concepts, e.g. variables and

interactions. To ameliorate this scenario WebSpec provides some interesting features

such as mockup association and formal specification which allows to formally simu-

lating the application to improve the communication between stakeholders during

elicitation. We say formally, because different from the simulation provided by tools

such as Balsamiq [1], we not only show transitions between the pages but also execute

real actions and provide descriptions of what would be the real output of the applica-

tion directly over mockups. The descriptions provided are generated automatically

from the WebSpec diagram and they are easy to understand because they are written

in natural language. In this way, from every WebSpec diagram a set of simulations is

automatically generated which could be used at any time by customers to understand

the meaning of the diagram and suggest changes or improvements to the analyst.

The set of simulations is obtained following the different paths from the starting in-

teraction of each WebSpec diagram. If the diagram has cycles (a path that contains

more than one occurrence of an interaction) then we have to prune those paths to ob-

tain finite paths. For example, in the Tweet Diagram (Fig. 2) we can obtain the follow-

ing paths pruning them (as it is a cycled diagram) to a length of 5 interactions:

Login -> Register -> Home -> (post nav) Home -> (post nav) Home

Login -> Register -> Home -> (invalidPost nav) Home -> (post nav) Home

Login -> Register -> Home -> (post nav) Home -> (invalidPost nav) Home

Login -> Register -> Home -> (invalidPost nav) Home -> (invalidPost nav) Home

Login -> Register -> Home -> (post nav) Home -> (delete nav) Home

Each simulation is created following the sequence of interactions and navigations

of the path and data is generated when a generator is referenced inside expressions.

The path is transformed into a simulation model (not shown for space reasons) that

specifies the simulation steps. A simplified version of the transformation algorithm is

shown next:

(01) simulation := new Simulation();
(02) for (PathItem item : path.getItems()) {
(03) if (item.isInteraction()) {
(04) Interaction interaction = (Interaction) item;
(05) simulation.openMockup(interaction.getMockup());
(06) simulation.showPredicate(interaction.getInvariant());
(07) } else {
(08) Navigation navigation = (Navigation) item;
(09) simulation.showPredicate(navigation.getPrecondition());
(10) for (Action action : navigation.getActions()) {
(11) simulation.simulateAction(action);
(12) }
(13) }
(14) }

Line 1 creates the simulation model. For every item (interaction or navigation) in

the path (2): if it is an interaction (3) we show the mockup associated with it (5) and

show the predicate of its invariant to describe which properties must hold (e.g. “The

label should have the value ‘John’) (6); if the item is a navigation, we show the pre-

condition (9) and for every action we simulate it (10-12).

As an example of a simulation we next show a sequence of the simulation steps of

the path: Login -> Register -> Home -> (post nav) Home -> (post nav) Home generated by

the algorithm. For space reasons, we can not show all the steps so we will describe the

first 11 steps and show steps 8 through 11 (except step 10 which is equal to step 11

without the label) in Fig. 5.

(01) open("loginMockup.html");
(02) click("register", "the user clicks the register button");
(03) open("registerMockup.html");
(04) type("firstName", "John", "the user types ‘John’");
(05) type("lastName", "Doe", "the user types ‘Doe’");
(06) type("username", "john.doe", "the user types ‘john.doe’");
(07) type("password", "aaa", "the user types ‘aaa’");
(08) type("confirmPassword", "aaa", "the user types ‘aaa’");
(09) click("register", "the user clicks the register button");
(10) open("homeMockup.html");
(11) showDescriptionNearTo("it should contain the text ‘John’",

"username");

Line 1 opens the first mockup. Line 2 clicks the register button and line 3 we simu-

late navigation by opening the mockup associated with the Register interaction. Lines

4-9 execute the actions to move from Register to Home interaction. Specifically, line

8 (Step 8 of Fig. 5) types ‘aaa’ to the confirm password field and line 9 (Step 9 of Fig.

5) clicks the register button. Line 10 simulates the navigation by opening the mockup

associated with the Home interaction and finally line 11 (Step 11 of Fig. 5) shows the

label with the condition that must be satisfied according to the filled information. No-

tice that the algorithm has to use generators in lines 4, 5, 6, 7, 8 to generate data ac-

cording to the specification of Fig 2 (Register to Home navigation).

Figure 5. Simulation steps of the Tweet diagram

Once the requirements elicitation phase is completed we can automatically generate

a set of tests that the application must pass as shown in the following subsection.

3.2 Automatic validation of requirements

New requirements must be validated to guarantee their correct implementation while

previous ones still work as intended. However, it is hard to perform this task in short

periods of time thus making it more important to keep requirements updated for the

quality assurance team.

A well known way of validating requirements consists in running automated tests

(that express the requirements) over the application. If one of these tests fails, then a

requirement is not satisfied by the application. In particular, interaction tests play an

important role in industrial settings as they execute a set of actions in the same way a

user would do on a real Web browser, thus their use is continuously growing [17].

However, in the Web engineering research area their use is recently appearing in ap-

proaches like WebTDD [21].

In a similar way we have created the simulations, we build a test suite (a set of test

cases) from a WebSpec diagram by following the different paths from the starting

interaction. To capture the basic concepts of tests, we have created a metamodel (Fig.

6) which is independent of the technology used. The metamodel contains the Test and

TestSuite classes that conceptualize a test and a set of tests. A Test has a sequence of

actions: assertions on interface objects or actions performed by the user over the ap-

plication. Both cases are covered by the TestItem hierarchy.

Figure 6. Test metamodel

To build the test suite, we transform each path into a SimpleTest (see Fig. 6) by

executing the following simplified version of algorithm over each path. Similar to

simulations, we will use generators to generate data according to the specification

when an expression references it. The TestSuite is obtained by simple composition

(see the composition relationship in the metamodel of Fig. 6) of the previous Sim-

pleTest instances. More complex scenarios could be manually created by composing

different Test suites into a bigger one. Once the TestSuite model is generated, we can

translate it to a specific implementation framework such as Selenium [24].

(01) test := new SimpleTest();
(02) test.addItem(new OpenURL(applicationURL));
(03) for (PathItem item : path.getItems()) {
(04) if (item.isInteraction()) {
(05) Interaction interaction = (Interaction) item;
(06) test.addItem(new Assert(interaction.getInvariant()));
(07) } else {
(08) Navigation navigation = (Navigation) item;
(09) for (Action action : navigation.getActions()) {
(10) test.addItem(new Execute(action));
(11) }
(12) }
(13) }

Line 1 creates the test model and line 2 generates the action to open the application.

For each element in the path: if it is an interaction (4), we assert its invariant (6); if it

is a navigation (8) we execute the actions that allow us to navigate from one interac-

tion to another one (9-11).

To better illustrate these ideas, let us consider a specific path of the Tweet diagram:

Login -> Register -> Home -> (post nav) Home -> (delete nav) Home. Applying the previ-

ous algorithm to the path and deriving a Selenium version of the test gives the next

result:

(01) selenium.open("http://localhost:8080/index.html");
(02) selenium.click("id=register");
(03) selenium.waitForPageToLoad("30000");
(04) selenium.type("id=firstName", "John");
(05) selenium.type("id=lastName", "Doe");
(06) selenium.type("id=username", "john.doe");
(07) selenium.type("id=password", "wqe4yt24");
(08) selenium.type("id=confirmPassword", "wqe4yt24");
(09) selenium.click("id=register");
(10) selenium.waitForPageToLoad("30000");
(11) assertTrue((selenium.getText("id=username").equals("John"))
(12) && (selenium.getText("id=tweetsCount").equals("0")));
(13) selenium.type("id=tweetMessage" "@Office");
(14) selenium.click("id=tweet");
(15) selenium.waitForPageToLoad("30000");
(16) assertTrue((selenium.getText("id=username").equals("John"))
(17) && (selenium.getText("id=tweetsCount").equals("1"))
(18) selenium.click("id=tweetDelete0");
(19) selenium.waitForPageToLoad("30000");
(20) assertTrue((selenium.getText("id=username").equals("John"))
(21) && (selenium.getText("id=tweetsCount").equals("0")));

Line 1 opens the application in the Web browser. Lines 2-3 click on the register

link. Lines 4-10 fill the register information (first name, last name, username, pass-

word and confirm password) and clicks the register button. Lines 11-12 assert that the

labels of the Home page have the values previously filled. Lines 13-15 post a new

message to the wall. Lines 16-17 assert the new value that the labels must have after

the post are valid. Lines 18-19 click on the delete button of the first message to delete

the post. Finally, lines 20-21 assert the values of the labels after the delete operation.

As aforementioned, Web applications tend to change very fast, thus recording re-

quirements changes is important to improve the development process. In the next sub-

section we show how requirement changes are captured in WebSpec.

3.3 Capturing requirement changes

Capturing requirements changes is an important feature to predict their impact in the

application. Though some mature requirement artefacts [13] provide extensions to

support change management, in the Web engineering field there are not many studies

about how requirement changes can be captured and used to improve some part of the

development process (see Sect. 5 for details).

Figure 7. Change metamodel

In WebSpec, changes are recorded into change objects that group a set of changes.

WebSpec can suffer different coarse grained changes, such as the addition or deletion

of an interaction or navigation element. These elements can be modified too, by the

addition or deletion of widgets to an interaction, changes in invariants, etc. As for

navigations, we can add or delete preconditions, change their source, target, or the

actions that triggers them. All these types of possible changes have been represented

in the metamodel of Fig. 7. When the user modifies the diagram, a change object is

created and the sequence of changes is recorded as instances of these classes.

As an example, let us suppose we want to add a link between the Login interaction

(Fig. 2) and a new TermsOfService interaction. The change in the diagram generates a

new change object (Fig. 8) which has the following elements: a new interaction

(TermsOfService), a new navigation (Login -> TermsOfService), a new link (tosLink)

and a new label (the description of the terms of service). To take advantage of captur-

ing changes, we show in the following subsection how to use WebSpec change objects

to semi/automatically upgrade the application.

Figure 8. Change object representing the new Terms of Service functionality

3.4 Using requirement changes to evolve the application

Though handling requirement changes serves for multiple useful purposes, we will

focus on how to semi automatically upgrade the application using them. Since change

objects represent changes at the WebSpec level, we decouple the process of upgrading

the application by providing different effect handlers. An effect handler is a compo-

nent responsible of mapping the changes in the diagrams to a concrete technology and

storing the trace links between the WebSpec elements and the technology ones. For

example, a WebSpec diagram generates a change that can be applied with different

effect handlers depending on the underlying technology: Seaside [23], GWT [12],

WebRatio [25], etc. Seaside and GWT effect handlers will create/update methods and

classes but WebRatio effect handler will produce model transformations in order to

update the models.

As an example of the use of effect handlers, we next show how to use the change

object of the previous subsection to upgrade the application. We assume that the ap-

plication is developed with Seaside, so we use the Seaside effect handler.

The effect handler “reads” the change object and suggests actions to the developer.

The first change (add the TermsOfService interaction) suggests to create a new class

(WATermsOfService) that extends the base class of the Seaside framework (WALay-

outPane) (see row 1 of Fig. 9). The developer accepts the proposal and continues with

the next change that represents the navigation from Login to TermsOfService interac-

tion. This change refers to behavioral aspects that the effect handler does not handle

yet, so it does not propose an action. The two remaining changes involve adding wid-

gets to the interactions. The first one adds a link in the Login interaction; because the

effect handler stores the trace link between the interaction and the implementation

class, it suggests adding a new method that creates the link to the WALogin class

(Row 2). Finally, the effect handler suggests adding a new method to the WATerm-

sOfService to create the new label (Row 3).

Figure 9. Semi/automatic upgrades using the Seaside effect handler

4 Implementation

WebSpec has been implemented as an Eclipse plugin using EMF and GMF technolo-

gies. The plugin allows the creation of diagrams and the association of interactions

with HTML mockups inside the environment. Simulations are implemented using a

small extension to the Selenium framework, and JUnit selenium tests are automatically

generated from diagrams. Finally, changes are recorded and stored into XML files that

could be read by different effect handlers. We have implemented effect handlers for

Seaside and GWT. Fig. 10 shows a screenshot of the WebSpec Eclipse plugin.

Figure 10. Webspec Eclipse plugin

Using the plugin and following the WebTDD approach, we have successfully im-

plemented a complete application for the Post-graduate area of the College of Medi-

cine in the University of La Plata. We have used GWT, Spring and Hibernate as base

technologies for the development process and actively used the generated tests to

check that the application satisfies the requirements in an incremental way. Simulation

was used for improving the elicitation of requirements and change objects allowed

automating the creation of the structural UI classes of the application.

5 Related work

In the context of Web Engineering, the specification of interaction requirements is a

complex task due to some unique characteristics of Web applications such as the need

to represent the navigation in information spaces, the need of describing technical

constraints related to the information flow (e.g. session management), the rapid evolu-

tion of requirements, sensitive communication among developers and the participation

of customers in the development process (e.g. marketing experts, editorial board, etc)

[26]. In the last years, a large variety of model-based artefacts have been employed to

capture Web requirements like UML use cases and sequence diagrams [4], User Inter-

action Diagrams [22], task models [27], and navigation models [11]. It is also worthy

noting a widespread use of paper-based mockups to capture requirements related to

the user interface of Web applications [9] which has lead to the development of ad-

vanced tools for sketching and storyboarding the user interface of Web applications

such as Denim [18] and Balsamiq [1].

Artefacts used for representing requirements Concept

Use cases (UC) Task Models WebRE WebSpec Mockups

Navigation Dependencies

between UC

Dependencies

between tasks

Navigation Navigation arrows Arrows

Process Use cases Tasks, WebProcess WebSpec diagram -

User interac-

tion

Functional

requirements

Interactive

tasks

User transaction Action -

Constraints OCL Lotus opera-

tors

OCL Precondition Annotated

text

B
e
h

a
v
io

u
r

Information

flow

- Data transfer

between tasks

Data transfer in

user transaction

Data transfer

between interactions

-

Node / page - - Node Interactions /

navigations

Prototype

Content - - Content Widgets Widgets

UI composition - - - Containers Prototype

S
tr

u
c
tu

r
e

User roles Actor Actor WebUser - -

Table 1. Expressiveness power of requirement artefacts for Web applications

In Table 1 we compare the expressiveness power of some artefacts with respect to

the concepts for representing Web requirements. As shown in the table, each artefact

includes only part of the concepts required to express requirements of Web applica-

tions. For example, whilst use cases can be used to represent functional requirements,

mockups (either paper-based or supported by tools) are more likely to capture and

represent requirements related to the composition of the user interface. Task models

allow expressing fine-grained functional requirements including navigation, user

transactions and business processes. As can be seen, Web engineering methods have

often included more than one artefact for capturing requirements; for example use

cases are present in OOHDM [22] in combination with UIDS. Besides, use cases and

activity diagrams, WebML [2] uses semi-structured textual descriptions to capture

additional information that can hardly be expressed using the former models. Simi-

larly, UWE [14] proposes extended use cases, scenarios and glossaries for specifying

requirements and WSDM [6] employs task models using concurrent task trees.

Currently, there is no consensus on which notation(s) should be used to capture and

specify Web requirements. In order to provide a more uniform view on the coverage

of requirements by each artefact, Escalona and Koch [8] have proposed a metamodel

based on WebRE profiles [8]. Its main advantage is the automatic generation of con-

ceptual models (content and navigation models) which automatically satisfy the re-

quirements. Notwithstanding, some requirements such as detailed composition of the

user interface and behaviour constraints cannot be fully described with this notation.

In another study, Escalona and Koch [7] have investigated how different Web en-

gineering methods support the capture of requirements. They demonstrated that Web

engineering methods do not pay equal attention to requirements. Some methods em-

ploy classical notations to deal with Web requirements or ignore this phase of the de-

velopment process. It is interesting to notice that requirement artefacts might play

several roles during the development process: they can act as communication tools

(for elicitation requirements with clients), as elements for early specifications (that

should be taken into account during implementation phases) and as checklists for as-

sessing if the final implementation complies the initial requirements. Requirement

checklists can indeed be employed in regression testing [28] for assessing in a longer

term, the evolution of requirements expressed for a single application.

 In [5] the authors have investigated the communication role of artefacts and they

proposed MoLIC which acts as a kind of blueprint of the application and thus allow-

ing professionals from multidisciplinary backgrounds to share the same understanding

of the essence of the application. Other authors however, have investigated how to

automate the generation of the system specification from the requirements specifica-

tion; for example OOWS [20] which extends activity diagrams with the concept of

interaction point to describe the interaction of the user with the system. It provides

automatic generation of (only) navigation models from the tasks description by means

of graph transformation rules. A-OOH [10] considers the i* framework in order to

specify the requirements model which is goal-oriented. From this specification, the

conceptual models (e.g. domain and navigation models) are generated by means of

QVT transformations. Both OOWS and A-OOH approaches are examples of methods

that specify requirements and provide code derivation; however the level of detail they

provide make them unsuitable as communication tools with clients.

WebSpec supports features that tend to improve the development process when

changes appear often and should be implemented fast, in comparison with the afore-

mentioned requirement artefacts. It provides a means to describe several of the unique

aspects of Web applications (such as navigation and information flow); when used in

combination with mockups, it provides animated storyboards to improve the commu-

nication between stakeholders. Moreover, they contain enough information to support

test generation independently of the development method. Finally, change support and

effect handlers allow managing the fast evolution of the application.

6 Concluding Remarks and Further Work

In this paper we have presented WebSpec: a requirement artefact used to capture

navigation, interaction and UI features in Web applications independently of the de-

velopment process. WebSpec presents several advantages that help to improve the

development cycle in short periods of time. We have shown its use in conjunction

with mockups to provide a formal simulation of the final Web application, getting real

feedback during the requirement elicitation phase. Furthermore, requirements ex-

pressed in WebSpec diagrams are easily validated due to the automatic derivation of

interaction tests. Finally, it has been shown how keeping diagrams updated contributes

to semi/automatically upgrade the application thus improving development times.

This work focuses on interactive requirements of Web applications. In the future

we aim at exploring how WebSpec can be used in conjunction with other techniques

for expressing non-interactive requirements such as accessibility and usability of Web

applications. We are currently working on adding RIA expressiveness to WebSpec, so

that RIA features (e.g. autocomplete, hover detail, etc) can be easily specified in the

diagrams. Also, we aim to associate WebSpec diagrams to tasks, so we can monitor

the progress of a development process. Finally, we are analyzing different alternatives

to support the specification of requirements at the domain level which can be seamless

integrated in WebSpec.

References

1. Balsamiq. Available at: http://www.balsamiq.com/products/mockups

2. Ceri, S., Fraternali, P., Bongio, A. Web Modeling Language (WebML): A Modeling

Language for Designing Web Sites. Computer Networks and ISDN Systems, 33(1-6),

137-157 June (2000).

3. Claessen K., Hughes J., “QuickCheck: a lightweight tool for random testing of Haskell

programs”, Proceedings of the fifth ACM SIGPLAN international conference on

Functional programming, vol. 35, pp. 268-279, September 2000.

4. Conallen, J., Building Web Applications with UML, Addison-Wesley, 2000, 300 p.

5. de Paula, M. G., da Silva, B. S., Barbosa, S. D. 2005. Using an interaction model as a

resource for communication in design. In CHI '05 Extended Abstracts on Human Fac-

tors in Computing Systems (Portland, USA, April 02-07, 2005), pp 1713-1716.

6. De Troyer, O., Casteleyn, S. Modeling Complex Processes for Web Applications us-

ing WSDM. In: 3rd Int. Workshop on Web-Oriented Software Technologies. Oviedo,

Spain (2003). At: http://www.dsic.upv.es/~west/iwwost03/articles.htm

7. Escalona, M.J., Koch, N.: Requirements engineering for web applications – a com-

parative study. J. Web Eng. 2(3) (2004) 193–212.

8. Escalona, M.J., Koch, N. Metamodeling Requirements of Web Systems. In Proc. In-

ternational Conference on Web Information System and Technologies (WEBIST

2006), INSTICC, 310--317, Setúbal, Portugal. 2006.

9. Flannagan, S. The Paper Version of the Web. In Deeplinking, available at:

http://deeplinking.net/paper-web/

10. Garrigós, I., Mazón, J.N., Trujillo, J.: A Requirement Analysis Approach for Using i*

in Web Engineering. In: ICWE. (2009), LNCS, 5648, 151-165.

11. Gómez, J., Cachero, C.: OO-H Method: extending UML to model web interfaces. In:

van Bommel, P. (ed.) Information Modeling For internet Applications, pp. 144–173.

IGI Publishing, Hershey (2003).

12. GWT. Available at: http://code.google.com/webtoolkit/

13. Jacobson, I., Object-Oriented Software Engineering: A Use Case Driven Approach,

ACM Press/Addison-Wesley, 1992.

14. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-Based Web Engineering, An

Approach Based On Standards. In: Web Engineering, Modelling and Implementing

Web Applications, pp. 157–191. Springer, Heidelberg (2008).

15. Kruchten, P. 2003 The Rational Unified Process: an Introduction. 3. Addison-Wesley

Longman Publishing Co., Inc.

16. McDonald A. and Welland R., Web Engineering in Practice, Proceedings of the

Fourth WWW10 Workshop on Web Engineering, Page(s): 21-30, 1 May 2001.

17. Maximilien, E. M. and Williams, L. 2003. Assessing test-driven development at IBM.

In Proceedings of the 25th international Conference on Software Engineering (Port-

land, Oregon, May 03 - 10, 2003). International Conference on Software Engineering.

IEEE Computer Society, Washington, DC, 564-569

18. Lin, J., Newman, M. W., Hong, J. I., and Landay, J. A. 2000. DENIM: finding a

tighter fit between tools and practice for Web site design. In Proceedings of the SIG-

CHI Conference on Human Factors in Computing Systems (The Hague, The Nether-

lands, April 01 - 06, 2000). CHI '2000. ACM, New York, NY, 510-517.

19. Lowe D, Web system requirements: an overview. Journal of Requirements Engineer-

ing pp 102–113. Springer-Verlag (2003).

20. Pastor, O., Abrahão, S., Fons, J.: An Object-Oriented Approach to Automate Web

Applications Development. In: Bauknecht, K., Madria, S.K., Pernul, G. (eds.) EC-

Web 2001. LNCS, vol. 2115, pp. 16–28. Springer, Heidelberg (2001).

21. Robles Luna, E., Grigera, J., and Rossi, G. 2009. Bridging Test and Model-Driven

Approaches in Web Engineering. In Proceedings of the 9th international Conference

on Web Engineering. Lecture Notes In Computer Science, vol. 5648. Springer-Verlag,

Berlin, Heidelberg, 136-150.

22. Rossi, G., Schwabe, D.: Modeling and Implementing Web Applications using

OOHDM. In: Web Engineering, Modelling and Implementing Web Applications, pp.

109–155. Springer, Heidelberg (2008).

23. Seaside. Available at: http://www.seaside.st/

24. Selenium web application testing system. Available at: http://seleniumhq.org/

25. The WebRatio Tool Suite. Available at: http://www.webratio.com.

26. Uden, L., Valderas, P., Pastor, O. An Activity-theory-based to analyse Web applica-

tions requirements. Information Research Vol. 13, N. 2. June 2008.

27. Winckler, M.; Vanderdonct, J. Towards a User-Centered Design of Web Applications

based on a Task Model. In Proceedings of IWWOST'2005. Porto, Portugal, June 12-

13th 2005.

28. Zheng, J. 2005. In regression testing selection when source code is not available. In

Proceedings of the 20th IEEE/ACM international Conference on Automated Software

Engineering (Long Beach, CA, USA, November 07 - 11, 2005). ASE '05. ACM, New

York, NY, 752-755. DOI= http://doi.acm.org/10.1145/1101908.1101997

5

Integrating an early phase of requirements to WebSpec

The content of this chapter corresponds with the following paper:
Robles Luna E., Garrigos I, Mazon J-N., Trujillo J., Rossi G.
An i*-based Approach for Modeling and Tesing Web Requirements.
Journal of Web Engineering (JWE). 2010. Impact factor: 0.531.
JCR.

In the previous chapters we have presented the WebTDD approach and the WebSpec language
and we have shown how can be used in conjunction to develop web applications. However, we
have claimed that WebSpec could be used with other methodologies.

In this chapter we show how WebSpec could be integrated with a methodology that uses
an early phase of requirements in which objectives and tasks of the system/organization are
defined before capturing detailed requirements (like the ones captured by WebSpec).

Several times a formal language like i* is used to describe these relationships. In this chapter
we show how to use WebSpec with i* to models to specify Web requirements. When we used
both artefacts we can semi automatically validate that the objectives described in the i* model
are correctly implemented in the application by using the automatic derivation of tests that
WebSpec provides. In the figure below, we show the activities of our modified A-OOH approach
where i* models and WebSpec are used in conjunction.

Fig. 5.1. Overview of our i*-based approach for Web application development which uses WebSpec
diagrams to validate i* models

The content of this chapter is a paper published in the Journal of Web Engineering (JWE).
JWE aims to provide a forum for advancing the scientific state of knowledge in all areas of Web
Engineering. JWE articles address significant issues and problems, and potential solutions.

Journal of Web Engineering, Vol. 9, No. 4 (2010) 302–326
c Rinton Press

AN I*-BASED APPROACH FOR MODELING AND TESTING WEB REQUIREMENTS

ESTEBAN ROBLES LUNA

LIFIA, UNLP, Argentina

erobles@lifia.info.unlp.edu.ar

IRENE GARRIGÓS, JOSE-NORBERTO MAZÓN, JUAN TRUJILLO

Lucentia Research group, University of Alicante, Spain

{igarrigos, jnmazon, jtrujillo}@dlsi.ua.es

GUSTAVO ROSSI

LIFIA, UNLP, Argentina

gustavo@lifia.info.unlp.edu.ar

Received June 1, 2010

Revised November 11, 2010

Web designers usually ignore how to model real user expectations and goals, mainly due

to the large and heterogeneous audience of the Web. This fact leads to websites which are

difficult to comprehend by visitors and complex to maintain by designers; these problems

could be ameliorated if users are able to evaluate the application under development

providing their feedback. To this aim, in this paper we present an approach for using the

i* framework for modeling users’ goals with mockups and WebSpec diagrams for detailing

the specification of Web requirements, in such a way that the process of evaluating i*

models for Web applications can be automated thus improving users’ feedback during

the development process. Also, as part of our development approach, we derive the

domain and navigational models by defining a set of automatic transformations to a

specific Web modeling method. Finally, we illustrate our approach with a case study to

show its applicability and describe a prototype tool that supports the process.

Keywords: Requirement engineering, Web requirements, i*, goal evaluation

Communicated by: M. Gaedke, M. Grossniklaus, and O. Diaz

1 Introduction

In the last decade, the number and complexity of websites and the amount of information

they offer is rapidly growing. In this context, introduction of Web design methods and

methodologies [1, 2, 3, 4, 5] have provided mechanisms to develop complex Web applications

in a systematic way. To better accommodate the individual user, personalization of websites

has been also introduced and studied [6, 7, 8, 9].

However, traditionally, methodologies for Web engineering have not taken into serious

consideration the requirement analysis phase. Actually, one of the main characteristics of

Web applications is that they typically serve a large and heterogeneous audience in which i)

everybody can access to the website and ii) each user has different needs, goals and preferences.

Importantly, this scenario hinders Web designers from considering users and current efforts

for requirement analysis in Web engineering are rather focused on the system. Therefore, the

302

E. R. Luna, I. Garrigós, J.-N. Mazón, J. Trujillo, and G. Rossi 303

needs of the users are figured out by the designer and their user browsing experience may

not be successful. Consequently, there may appear development and maintenance problems

for designers, since costly, time-consuming and rather non-realistic mechanisms (e.g. surveys

among visitors) should be developed to improve the already implemented website a posteriori,

thus increasing the initial project budget.

To solve these drawbacks, in this paper, our aim is to model which are the expectations,

intentions and goals of the users when they are browsing the site, and determining how

they can affect the definition of a suitable Web design. Moreover, as Web applications have

a strong emphasis in interaction, UI (User Interface) and navigation aspects, requirements

related to these aspects should be also captured. The main benefit of our point of view is

that the designer will be able to make decisions from the very beginning of the development

phase. These decisions could affect the structure of the envisioned website in order to satisfy

needs, goals, interests and preferences of each user or user type. Our work is inspired by agile

software development [10] that states that the continuous evaluation of the application under

development helps to gather feedback from users during development thus ameliorating some

maintenance time-consuming tasks.

To this aim, we propose to use the i* modeling framework [11, 12] for modeling require-

ments from the expectations and goals that users have (Fig. 1). The i* framework is one of

the most valuable approaches for analyzing stakeholders’ goals and how the intended system

would meet them. This framework is also very useful for reasoning about how stakeholders’

goals contribute to the selection of different design alternatives. However, although i* pro-

vides mechanisms to model stakeholders and relationships between them, it should be adapted

for Web engineering, since the Web domain has special requirements that are not taken into

account in traditional requirement analysis approaches. These requirements are related to

the three main features of Web applications [13]: navigational structure, user interface and

personalization capability.

Furthermore, because of the agile nature of Web applications there is a strong link be-

tween Web requirements and testing [14]. Specifically, defining test cases is needed to avoid

erroneous implementations and deploying efficient Web applications meeting time constraints.

Therefore, i* is complemented in this paper with mockupsa and WebSpec diagrams [15]. We

have chosen these artifacts because they help to agree on UI aspects, allow the specification

of interactive Web requirements and provide automatic derivation of interactive tests to asses

that the requirements are correctly implemented.

Once the requirements are specified, the next step is to obtain the conceptual models

of the Web application (Fig. 1). To this aim, in this paper we also propose a set of QVT

(Query/View/Transformation) rules [16] within a model-driven approach. In this way, de-

signers will not have to create these models from scratch but they have a first tentative model

satisfying the requirements specification and then they only have to refine these models, sav-

ing time and development effort. Though we use the A-OOH (Adaptive Object Oriented

Hypermedia) [8] to illustrate our approach, any other Web engineering methodology could be

used by only changing the QVT transformation rules. In the cases that the conceptual models

of the Web methodology considered are based on UML, then the effort in updating the QVT

aA mockup is a sketch of the “possible” application which generally represents UI elements and helps to agree
on broad aspects of the Look and Feel of the application under development

304 An i*-based Approach for Modeling and Testing Web Requirements

transformations would be minimal, since A-OOH is UML-based. In the case of using another

modeling language (different from UML), the modifications would be achievable, since all

Web methodologies share similar basic concepts.

During the aforementioned process of model refinement (see Fig. 1), it is interesting to

evaluate if the requirements and the goals specified in the i* models are being satisfied. We

propose that this model refinement is performed iteratively so that developers can tackle one

requirement at a time, thus simplifying the process and in such a way that users can perceive

the project’s progress. From a user perspective it helps to ensure that time constraints are

met and allow him to check (right after a task has been completed) if his expectations are

actually satisfied in the developed application. In this way, the user will give its feedback

during development like in agile development styles. In our approach i* models are auto-

matically evaluated by means of the interactive tests obtained from WebSpec diagrams. As a

consequence, users could look at a tagged i* model which states which goals are being satisfied

by the application under development while developers refine the models.

Fig. 1. Overview of our i*-based approach for Web application development

In [17] we have already presented our requirement analysis approach for using i* in Web

engineering. In this paper we add a detailed analysis phase to specify interactive requirements

in more depth. Also, from the elements used for requirement analysis, we add an automatic

derivation of tests to evaluate the satisfiability of the requirements during the development

process. Using our automatic evaluation method (Sect. 4) over the test results will serve to

analyze if the application under development satisfies the goals described in the i* model.

The remainder of this paper is structured as follows: our approach for requirement analysis

in Web engineering is presented in Sect. 2. In Sect. 3 we show how to trace these requirements

to a Web design model. Sect. 4 shows how the stakeholder’s goals are iteratively validated

E. R. Luna, I. Garrigós, J.-N. Mazón, J. Trujillo, and G. Rossi 305

during the development cycle thus improving stakeholders’ feedback. Sect. 5 describes an

example of applying our approach. Sect. 6 describes related work. Finally, in Sect. 7, we

present our conclusions and sketch some future work.

2 Modeling Requirements in Web Engineering

In this section, we present an approach for modeling requirements in Web engineering. Our

approach begins capturing the needs and goals of the stakeholders (Sect. 2.1) in i* models.

Afterwards, a more detailed analysis is performed in order to capture interactive and UI

aspects using a combination between mockups and WebSpec diagrams (Sect. 2.2). While we

create the specifications in the diagrams, it is important to make explicit the relationships

between the elements of the i* model and the WebSpec diagrams in order to automatically

evaluate the satisfiability of the goals during development (this issue will be addressed in

Sect. 4 after presenting how to derive Web models in Sect. 3).

2.1 Modeling stakeholders’ needs and goals

The development of Web applications involves different kind of stakeholders with different

needs and goals. Interestingly, these stakeholders depend on each other to achieve their goals,

perform several tasks or obtain some resource, e.g. the Web administrator relies on new

clients for obtaining data in order to create new accounts. In the requirements engineering

community, goal-oriented techniques, such as the i* framework [11, 12], are useful for explicitly

analyzing and modeling these relationships among multiple stakeholders (actors in the i*

notation). The i* modeling framework provides mechanisms for representing (i) intentions of

the stakeholders, i.e. their motivations and goals, (ii) dependencies between stakeholders to

achieve their goals, and (iii) the (positive or negative) effects of these goals on each other in

order to be able to select alternative designs for the system, thus maximizing goals fulfilment.

Next, we briefly describe an excerpt of the i* framework which is relevant for the present

work. For a further explanation, we refer the reader to [11, 12]. The i* framework consists

of two models: the strategic dependency (SD) model describes the dependency relationships

(represented as) among various actors in an organizational context, and the strategic

rationale (SR) model is used to describe actor’s interests and concerns and how they might

be addressed. The SR model (represented as) provides a detailed way of modeling inter-

nal intentional elements and relationships of each actor (). Intentional elements are goals

(), tasks (), resources () and softgoals (). Intentional relationships are means-end

links () representing alternative ways for fulfilling goals; task-decomposition links ()

representing the necessary elements for a task to be performed; or contribution links (
help

hurt)

in order to model how an intentional element contributes to the satisfaction or fulfillment of

a softgoal.

Although i* provides good mechanisms to model actors and relationships between them, it

needs to be adapted to the Web engineering domain to reflect special Web requirements that

are not taken into account in traditional requirement analysis approaches, thus being able

to assure the traceability to Web design. Web functional requirements are related to three

main features of Web applications [13] (besides of the non-functional requirements): naviga-

tional structure, user interface and personalization capability. Furthermore, the required data

structures of the website should be specified as well as the required (internal) functionality

306 An i*-based Approach for Modeling and Testing Web Requirements

provided by the system. Therefore, in this paper, we use the taxonomy of Web requirements

presented in [13]:

Content Requirements With this type of requirements the content that the website presents

to its users is defined. Some examples might be: “book information” or “product cat-

egories”. Other kind of requirements may need to be related with one or more content

requirements.

Service Requirements This type of requirement refers to the internal functionality the

system should provide to its users. For instance: “register a new client”, “add product”,

etc.

Navigational Requirements A Web system must also define the navigational paths avail-

able for the existing users. Some examples are: “consult products by category”, “consult

shopping cart”, etc.

Layout Requirements Requirements can also define the visual interface for the users. For

instance: “present a different style for teenagers”, etc.

Personalization Requirements We also consider personalization requirements in this ap-

proach. The designer can specify the desired personalization actions to be performed

in the final website (e.g. “show recommendations based on interest”, “adapt font for

visual impaired users”, etc.)

Non-Functional Requirements In our approach the designer can also model non-functional

requirements. These kind of requirements are related to quality criteria that the in-

tended Web system should achieve and that can be affected by other requirements.

Some examples can be “good user experience”, “attract more users”, “efficiency”, etc.

Once this classification has been adopted, the i* framework needs to be adapted to the

Web domain. As aforementioned, our proposal is presented in the context of A-OOH(Adaptive

Object Oriented Hypermedia method) Web engineering method [8], an extension of the OO-H

modeling method [2], which includes the definition of adaptation strategies.

As this approach (A-OOH) is UML-compliant, we have used the extension mechanisms

of UML to (i) define a profile for using i* within UML; and (ii) extend this profile in order

to adapt i* to specific Web domain terminology. Therefore, new stereotypes have been

added according to the different kind of Web requirements (see Fig. 2): Navigational, Service,

Personalization and Layout stereotypes extend the Task stereotype and Content stereotype

extends the Resource stereotype. It is worth noting that non-functional requirements can be

modeled by directly using the softgoal stereotype.

Finally, several guidelines should be provided in order to support the designer in defining

i* models for the Web domain.

1. Determine the kind of users for the intended Web and model them as actors. The website

is also considered as an actor. Dependencies among these actors must be modeled in an

SD model.

E. R. Luna, I. Garrigós, J.-N. Mazón, J. Trujillo, and G. Rossi 307

<<stereotype>>

Task
<<stereotype>>

Personalization

<<stereotype>>

Layout

<<stereotype>>

Navigational

<<stereotype>>

Service

<<metaclass>>

Class

<<metaclass>>

AssociationClass

<<stereotype>>

IActor

<<stereotype>>

Belief
<<stereotype>>

IElement

<<stereotype>>

Argumentable

<<stereotype>>

Goal
<<stereotype>>

Resource
<<stereotype>>

Task
<<stereotype>>

Softgoal

<<stereotype>>

IRelationship

<<stereotype>>

Contribution
<<stereotype>>

Correlation
<<stereotype>>

Decomposition
<<stereotype>>

MeansEnds
<<stereotype>>

IDependency

<<metaclass>>

Association

<<stereotype>>

i* profile
<<stereotype>>

i* profile for web

<<stereotype>>

Resource

<<metaclass>>

Package

<<stereotype>>

SD

<<stereotype>>

SR

<<stereotype>>

Content

Fig. 2. Overview of the UML profiles for i* modeling in the Web domain.

2. Define actors’ intentions by using i* techniques in an SR model [34]: modeling goals,

softgoals, tasks and resources, and the relationships between them.

3. Define the i* elements for the website actor and annotate tasks as navigational, service,

personalization or layout requirements. Also, annotate resources as content require-

ments. It is worth noting that goals and softgoals should not be annotated.

To show the applicability of our approach, a case study is introduced. It is based on a

company that sells books on-line. In this case study, a company would like to manage book

sales via an online bookstore, thus attracting as many clients as possible.

A couple of actors are detected that depend on each other, namely “Client”, and “Online

Bookstore”. A client depends on the online bookstore in order to “choose a book to buy”.

These dependencies are modeled by an SD model (see Fig. 3). Once the actors have been

modeled in an SD model, their intentions are specified in SR models.

The SR model of the online bookstore is shown in Fig. 3. The main goal of this actor

is to “manage book sales”. To fulfill this goal the SR model specifies that a task should be

performed: “books should be sold online”. We can see in the SR model that the first of

the tasks affects positively the softgoal “attract more users”. Moreover, to complete this task

three subtasks should be obtained: “provide book info” (which is a navigational requirement),

“provide recommended books” (which is a personalization requirement), and “search engine

for books”. We can observe that some of these tasks affect positively or negatively to the non-

functional requirement “easy to maintain”: “Provide book information” is easy to maintain,

unlike “provide recommended books” and ”use a search engine for books“. The navigational

requirement “provide book information” can be decomposed into several navigational require-

ments according to the criteria used to sort the data. These data is specified by means of

content requirements: “book”, “author” and “category”. The personalization requirement

“provide recommended books” is related to the content requirement “book” because it needs

the book information to be fulfilled. The task “search engine for books” is decomposed into

308 An i*-based Approach for Modeling and Testing Web Requirements

ONLINE
BOOKSTORE

SELL
BOOKS
ONLINE

ATTRACT
MORE USERS

BOOK

CATEGORY

AUTHOR

EASY TO
MAINTAIN

PROVIDE
BOOK INFO

PROVIDE
BOOKS BY
AUTHOR

PROVIDE
BOOKS BY
CATEGORY

PROVIDE
RECOMMENDED

BOOKS

PROVIDE
BOOKS BY

TITLE

SEARCH
BOOK BY

ISBN

SEARCH
BOOK BY

TITLE

SEARCH
ENGINE FOR

BOOKS

BOOK
SALES BE
MANAGED

help

help

hurt

hurt

<<navigational>>

<<navigational>>
<<navigational>>

<<personalization>>

<<service>>
<<service>>

<<content>>
<<content>>

<<content>>

<<navigational>>

CLIENT

CONSULT
BOOKS

CONSULT
BOOKS BY
AUTHOR

CONSULT
BOOKS BY

TITLE

CONSULT
RECOMMENDED

BOOKS

GOOD
BROWSING

EXPERIENCE
CONSULT

BOOKS BY
CATEGORY

SEARCH
SPECIFIC

BOOK

BUY
BOOKS

CHOOSE
BOOK

TO BUY

REDUCE
SELECTION

TIME

OBTAIN MORE
COMPLETE INFO

help

help help

help

hurt

hurt

hurt

SEARCH
SPECIFIC

BOOK

CONSULT
RECOMMENDED

BOOKS

CONSULT
BOOKS BY
CATEGORY

CONSULT
BOOKS BY

TITLE

CONSULT
BOOKS BY
AUTHOR

Fig. 3. Modeling the intentional elements with i*

a couple of service requirements: “search book by title” and “search book by ISBN”, which

are also related to the content requirement “book”.

In the context of our case study the main goal of the client is to “buy books”. In order

to fulfill it, the client should be able to perform the “choose a book to buy” task. The task

“choose a book to buy” should be decomposed in several subtasks: “consult books”, “search

specific book”, “consult recommended books”. These tasks can have positive or negative

effects on some important softgoals. For example, “consult books” hurts the softgoal “reduce

selection time”.

Note that tasks of the online bookstore actor have been stereotyped according with our

profile. In this figure we can see that tasks “provide books by title”, “provide books by

author”, “provide recommended books” have been stereotyped with Navigational and that

the “search books by ISBN” task has been stereotyped with Service.

2.2 Modeling detailed interactive requirements

Because of the idiosyncrasy of Web applications, there are certain parameters that need to be

considered when they are developed (e.g. time constraints, fast evolution, etc). To efficiently

meet these parameters, it is crucial that interactive requirements are specified in more detail

and also validated in the early stages of the development process. In order to perform this

validation, requirements need to be analyzed in deeper detail, including navigation, UI and

interactive aspects which are of paramount importance in the context of Web applications.

To this aim, we propose to use mockups and WebSpec diagrams because mockups are widely

used to agree on UI aspects and WebSpec provides automatic validation of requirements

independently of the development approach used [15].

A WebSpec diagram specifies a set of scenarios that must be satisfied by the application.

In order to specify scenarios, a WebSpec diagram is composed of elements of two different

types that capture the concepts involved in interactive Web applications: interactions and

navigations (Fig. 4).

E. R. Luna, I. Garrigós, J.-N. Mazón, J. Trujillo, and G. Rossi 309

Fig. 4. WebSpec’s basic concepts

An interaction (the counterpart of a Web page in the requirements stage) represents a

point where the user can interact with the application by using its interface objects (widgets).

Interactions have a name and may have widgets of different types such as: textfields, buttons,

radiobuttons, panels, lists, etc. They are graphically represented with rounded rectangles

containing the interaction’s name and its widgets. The set of scenarios that the diagram

specifies is obtained by following the different paths from a special interaction called “starting”

denoted with dashed lines (Fig. 4).

To improve the communication between the different stakeholders, we can associate in-

teractions with mockups and WebSpec widgets with their concrete UI elements to simulate

the application [15]. There are several tools that could be used to create mockups, such as

Balsamiqb or plain HTML. WebSpec allows using any of them as long as they provide a

unique way to locate the interface elements. As an example, Fig. 5 presents two mockups

created with Balsamiq that show how the user will search books by title and see the results

of that search. Notice that a Mockup has several labels with constant values which provide

an example of the application the we are trying to develop.

Fig. 5. “Consult books by title” mockup created with Balsamiq

To actually specify which properties must hold, we use invariants on each WebSpec in-

teraction and in case that we do not define one, it is assumed that the invariant is true (it

always hold independently of the interaction’s state). Fig. 6 shows a simplified diagram of

the “Consult books by title” of the Book store application. The diagram has 2 interactions

bhttp://www.balsamiq.com/products/mockups

310 An i*-based Approach for Modeling and Testing Web Requirements

named: Home and SearchResults. The Home interaction represents the starting point of the

scenario and, for the interest of this requirement, we assume that it must have 2 widgets: a

search field and a search button. The SearchResults defines an invariant (marked with the I

icon near the interaction’s name): that states: SearchResults.title = “Search results for:” +

${productName}. It means that the contents of the title label must be equal to the concate-

nation between “Search results for:” and the value of the productName variable (denoted as

${variableName}).

Fig. 6. “Consult books by title” Webspec diagram

A navigation from one interaction to another can be activated if its precondition holds

by executing a sequence of actions such as: clicking a button, adding some text in a text

field, etc. As well as invariants, preconditions can reference variables previously declared in

the diagram. Navigations are graphically represented in the WebSpec diagrams with gray

arrows while its name, precondition and actions are displayed as labels over them. Actions

are written in an intuitive DSL conforming to the syntax: var := expr | actionName(arg1,...

argn). For example the navigation from the Home interaction to the SearchResults performs

three actions: first, it “generates” a productName (see [15] for further details of the use of

generators), then this text is typed in the search field and finally the search button is clicked.

We encourage the reader to look at [15] for further details about WebSpec.

After a diagram is created, a set of interaction tests can be derived from them [15]. These

tests execute the actions and assert properties that are obtained from the navigations and

invariants of the diagram which finally must be satisfied by the application. As the actions are

performed directly over a Web browser, they are independent of the development approach

used making the approach more appealing to be used within any Web engineering approach.

In order to evaluate the satisfiability of the i* model according to the application under

development, each of the tasks in the i* model is specified in WebSpec diagrams that will

specify the expected behavior of the application for fulfilling that task. It is worth noting that

several WebSpec diagrams can be specified for each task as they represent different scenarios

that must be satisfied. Consequently, tests derived from the diagrams are related with i*

tasks thus helping to analyze which tasks and goals are satisfied automatically.

3 Deriving Web Models

Once the requirements have been defined they can be used to derive the conceptual models

for the website. Typically, Web design methods comprise three main models to define a

Web application: a Domain model, in which the structure of the domain data is defined,

a Navigation model, in which the structure and behavior of the navigation view over the

domain data is defined, and finally a Presentation model, in which the layout of the generated

hypermedia presentation is defined. In this work, for the sake of a better understanding, the

focus is on the Domain and Navigation models.

E. R. Luna, I. Garrigós, J.-N. Mazón, J. Trujillo, and G. Rossi 311

As aforementioned, in this paper, we consider the conceptual models of the A-OOH

methodology. Once these models are derived from the specified requirements the designer

has only to refine them, avoiding the task of having to create them from scratch.

Since the i* framework does not support generation to other design artifacts by its own,

domain-oriented mechanisms should be considered to perform this task [18]. In our approach,

the new stereotypes presented in the previous subsection allow us to prepare models for this

generation phase. We have detected several i* patterns [19] in order to define a set of QVT

transformation rules to map elements from the SR metamodel to their counterparts in the

A-OOH metamodel. They are applied with a certain order as shown in Fig. 7, where the

transformation workflow is summarized.

Requirement
analysis

Content
requirement

Content2DomainClass

Navigational
pattern

detected

Service
pattern

detected

DM
skeleton
created

Navigational
pattern

detected

Service
pattern

detected

NM
skeleton
created

yes

no

yes

no

yes

no yes

yes

yes yes

no

yes

no
no

no

Navigation2Relationship Service2Operation

Nav&Pers2NavClass

Navigation2TLink

Service2Service&SLink

Navigational
or

personalization
requirement

Fig. 7. Transformation workflow: from requirements to Web design

After analyzing and modeling the requirements of the website according to the guidelines

presented in the previous subsection, the Domain model (DM) and Navigational model (NM)

are generated from the specified requirements. Before explaining each of the derivations, we

briefly introduce the QVT language, as well as the A-OOH DM and NM so the reader can

easily follow the derivation of them.

Query/View/Transformation language Transformation between models can be defined

in a formal way by using some transformation language [20]. These formal transformations

must allow to automatically derive models assuring semantic correctness [21, 22]. Further-

more, they must be easily readable, understandable, adaptable, and maintainable [23]. To

312 An i*-based Approach for Modeling and Testing Web Requirements

this aim, OMG proposes the MOF 2.0 Query/View/Transformation (QVT) language [16], a

standard approach for defining formal relations between MOF-compliant models.

QVT consists of two parts: declarative and imperative. The declarative part provides

mechanisms to define relations that must hold between the model elements of a set of candidate

models (source and target models). A set of these relations (or transformation rules) defines

a transformation between models. The declarative part of QVT can be split into two layers

according to the level of abstraction: the relational layer that provides graphical and textual

notation for a declarative specification of relations, and the core layer that provides a simpler,

but verbose, way of defining relations. The imperative part defines operational mappings that

extend the declarative part with imperative implementations when it is difficult to provide a

purely declarative specification of a relation.

In this paper, we focus on the relational layer of QVT. This layer supports the specification

of relationships that must hold between MOF models by means of a relations language. A

QVT relation (see Fig. 8) is defined by the following elements:

• Two or more domains: Each domain is a distinguished set of elements of a candidate

model (source or target model). This set of elements (denoted by a <<domain>> label,

see Fig. 8) must be matched in that model by means of patterns. A domain pattern

can be considered as a template for elements, their properties and their associations

that must be located, modified, or created in a candidate model in order to satisfy the

relation. A relation between domains can be marked as check-only (labeled as C) or

as enforced (labeled as E). When a relation is executed in the direction of a check-only

domain, it is only checked if there exists a valid match in the model that satisfies the

relationship (without modifying any model if the domains do not match); whereas for a

domain that is enforced, when the domains do not match, model elements are created,

deleted, or modified in the target model in order to satisfy the relationship. Moreover,

for each domain the name of its underlying metamodel is specified (labels M1 and M2

in Fig. 8).

• When clause: This clause specifies the condition under which the relation needs to

hold (i.e., it forms a precondition). This clause may contain arbitrary OCL (Object

Constraint Language) [24] expressions in addition to the relation invocation expressions.

• Where clause: This clause specifies the condition that must be satisfied by all model

elements participating in the relation (i.e., it forms a postcondition). This clause may

also contain OCL expressions or relation invocation expressions.

Defining relations by using the QVT language has the following advantages:

1. QVT is a standard language.

2. Relations are formally specified, and transformation engines (e.g., Borland Together

Architectc, SmartQVTd, mediniQVTe, or ATLf) can execute them automatically.

chttp://www.borland.com/together
dhttp://smartqvt.elibel.tm.fr
ehttp://projects.ikv.de/qvt
fhttp://www.eclipse.org/m2m/atl

E. R. Luna, I. Garrigós, J.-N. Mazón, J. Trujillo, and G. Rossi 313

C E

M1 M2

<<domain>>

QVTRelationExample

: SourceClass1

<<domain>>

where

when

: SourceClass2

: TargetClass1 : TargetClass2

: TargetClass3

OCL or relation invocation ;expressions

OCL or relation invocation expressions;

Fig. 8. Example of a QVT relation.

3. Relations can be easily integrated within any Web methodology (provided that meta-

models are used).

Deriving the Domain model. The A-OOH DM is expressed as a UML-compliant class

diagram. It encapsulates the structure and functionality required of the relevant concepts of

the application and reflects the static part of the system. The main modeling elements of a

class diagram are the classes (with their attributes and operations) and their relationships.

Table 1 summarizes how DM elements are mapped from the SR model. To derive a

preliminary version of the DM we take into account two types of requirements defined in

Sect. 2 content and service requirements. We have detected several patterns in the i* models

and we have used these patterns to define several transformation rules in QVT. Specifically,

three transformation rules are defined in order to derive the DM from the SR model:

• Content2DomainClass By using this transformation rule, each content requirement is

detected and derived into one class of the DM.

• Navigation2Relationship Preliminar relations into classes are derived from the relations

among goals/tasks with attached resources by applying this rule. To generate the as-

sociations in the DM we have to detect a navigational pattern in the SR model of the

website stakeholder. In Fig. 9(a) we can see that the navigational pattern consists of a

navigational root requirement (i.e. task) which can contain one or more navigational

requirements attached. Each of the navigational requirement can have attached a re-

source (i.e. content requirement). The classes mapped from the resources we find in

such pattern will have an association relation between them. The QVT rule which

describes this transformation is shown in Fig. 10.

• Service2Operation This transformation rule detects a service pattern, i.e. a service

requirement with an attached content requirement in the SR model (see Fig. 9(b)). In

this case each service requirement is transformed into one operation of the corresponding

class (represented by the content requirement). In this QVT rule (shown in Fig. 11),

a service pattern is detected and transformed into the corresponding elements in the

target model.

Once the DM skeleton has been obtained it is left to the designer to refine it, who will

also have to specify the most relevant attributes of the classes, identify the cardinalities and

314 An i*-based Approach for Modeling and Testing Web Requirements

<<content>>

<<navigational>>

<<navigational>>

<<content>>
[0..1]

[0..*]

(a) Navigational pattern

<<content>>

<<service>>

(b) Service pattern

Fig. 9. Patterns.

define (if existing) the hierarchical relationships.

Content2DomainClass(c1,dc1); Content2DomainClass(c2,dc2);
SameNavigationOrigin(c1,c2);

when

Navigation2Relationship

<<domain>>

: Class
name=n_c1

c1: Content

<<domain>>

: Class
name=n_c2

c2: Content

AOOHi*

C E

<<domain>>

:Association

: Property

dc1: Class

name=n_c1

dc2: Class

name=n_c2

: Property
ownedEnd ownedEnd

class class

Fig. 10. QVT transformation rule for the navigation pattern

After the preliminary DM is created, a skeleton of the NM is also derived from the specified

requirements. This diagram enriches the DM with navigation and interaction features. It is

introduced next.

Deriving the Navigational model. The A-OOH Navigational model is composed of Nav-

igational Nodes, and their relationships indicating the navigation paths the user can follow

in the final website (Navigational Links).

There are three types of Nodes: (a) Navigational Classes (which are view of the domain

classes), (b) Navigational Targets (which group the model elements which collaborate in

the fulfillment of every navigation requirement of the user) and (c) Collections (which are

(possible) hierarchical structures defined in Navigational Classes or Navigational Targets.

The most common collection type is the C-collection (Classifier collection) that acts as an

abstraction mechanism for the concept of menu grouping Navigational Links). Navigational

E. R. Luna, I. Garrigós, J.-N. Mazón, J. Trujillo, and G. Rossi 315

AOOHi*

C E

Content2DomainClass(c,dc);

when

Service2Operation

: Class
name=n_s

: Class

: Property

opposite

: Operation
name=n_s

dc : Class

<<domain>>

ownedOperation

: Property

<<domain>>

s : Service

c: Content

extension_Service

extension_Class

extension_Class

extension_Content

Fig. 11. QVT transformation rule for the service pattern in the DM

Table 1. Derivation of the Domain model

i* element A-OOH element
Content Requirement Class
Service Pattern Operation
Navigational Pattern Association between classes

Links (NL) define the navigational paths that the user can follow through the system. A-OOH

defines two main types of links: Transversal links (which are defined between two navigational

nodes) and Service Links(in this case navigation is performed to activate an operation which

modifies the business logic and moreover implies the navigation to a node showing information

when the execution of the service is finished).

To derive the NM we take into account the content requirements, service requirements

and the navigation and personalization requirements. We also take into consideration the

detected patterns (see Fig. 9) in order to develop several QVT transformation rules. In Tab. 2

we can see a summary showing how the different requirements are derived into elements of

the NM. In the right part of Fig. 7 we can see the different transformation rules that are to

be performed in order to derive a preliminary Navigation model. In this case we also define

three transformation rules:

• Nav&Pers2NavClass By using this rule, a “home” navigational class is added to the

model, which is a C-collection representing a Menu grouping navigational links. From

each navigational and personalization requirement with an associated content require-

ment a navigational class (NC) is derived. From the “home” NC a transversal link is

added to each of the generated NCs.

• Navigation2TLink This rule checks the navigational pattern, if it is detected, then a

transversal link is added from the NC that represents the root navigational requirement

to each of the NCs representing the associated navigational requirements.

• Service2Service&SLink Finally, the service pattern is checked by applying this transfor-

316 An i*-based Approach for Modeling and Testing Web Requirements

Table 2. Derivation of the Navigation model

i* element A-OOH element
Navigation and Personalization Requirements Navigational Class
Navigation Pattern Transversal Links
Service pattern Operation + Service Link

with a target Navigational
Class

mation rule. If a service pattern is found, then an operation to the class representing the

resource is added and service link is created from each of the operations, with a target

navigational class which shows the termination of the service execution. The QVT rule

which describes this transformation is shown in Fig. 12.

AOOHi*

C E

Navigation2NavClass(c,nc); Personalization2NavClass(c,nc);

when

Service2Service&SLink

: Class
name=n_s

: Class

: Property

opposite

: Property

<<domain>>

s : Service

c: Content

extension_Service

extension_Class

extension_Class

extension_Content

: Operation
name=n_s

<<domain>>

ownedOperation

: Class nc: NavigationalClass

extension_NavigationalNode

:Association

: Property

: Class

: Property

ownedEnd

class

<<domain>>

:ServiceLink
extension_NavigationalLink

extension_Association

: NavigationalClass

extension_NavigationalNode

extension_Class

name=n_s+’_CLASS’

Fig. 12. QVT transformation rule for the service pattern in the NM

Finally, the derived NM could be refined by the designer in order to specify complementary

elements for the desired navigation paths.

4 Automatic Goal Evaluation

In order to automatically evaluate whether the goals defined in the i* model for Web appli-

cations are satisfied by the application, our approach extends the approach presented in [25]

where manual or semi automatic evaluation of general i* models is described. In that work,

every task in the i* models is tagged with one of these possible labels:

• Satisfied (4): the element is satisfied.

• Partially Satisfied (·4): represents the presence of evidence which is sufficient to satisfy

an element.

E. R. Luna, I. Garrigós, J.-N. Mazón, J. Trujillo, and G. Rossi 317

• Partially denied (7·): represents the presence of negative evidence to satisfy an element.

• Denied (7): has evidence that the element is not satisfied.

• Conflict (): indicates the presence of both positive and negative evidence of roughly

the same strength.

• Unknown (
·

?): represents the situation where there is evidence, but its effect is unknown.

• None: lack of any label.

Once an initial configuration of labels are set, an algorithm is executed to evaluate which

goals are satisfied. This algorithm consists of propagating the labels that are given to the

initial elements to the other elements. The algorithm is iterative and may require the inter-

vention of the user if we can not decide the resulting label value.

Our evaluation of i* models is done by using WebSpec diagrams to generate a set of test

cases. In this way, an initial configuration of labels is obtained from test cases in order to

verify and validate Web requirements. Our approach has a clear advantage: when users are

involved in the development process of Web applications they want to know which goals are

being satisfied while the application is under development (periodically, e.g. every hour). Our

approach provides this automation without imposing any overhead to the development team.

In our i* models for Web requirements, the actor that represents the Web application

may have several tasks (of course, every task can be further decomposed in other tasks). For

some of these tasks, WebSpec diagrams and mockups have been developed (by following the

process shown in Sect. 2.2) so that we specify in more detail the behavior of the application

and agree on broad aspects of the UI before the development begins. By using WebSpec

features we automatically derive a set of interaction tests from the diagrams. These tests will

assess if the application correctly implements the requirements that they express. Thus, there

is a transitive relationship between Goals ↔ Tasks ↔ WebSpec diagrams ↔ Interaction tests.

Indeed, if every test that is transitively related with a specific task is satisfied, then we can

say that the task is satisfied too.

Our process for automatically giving initial labels to elements of our i* models for Web

requirements (assuming that we have a specific version of the application, an i* model, and

WebSpec diagrams and their associations) is as follows:

1. Each test (ti) associated with a WebSpec diagram (WS) is run. If it passes then the

edge (wi) that links the diagram and the test as a weight of 1, otherwise 0.

2. A WebSpec diagram is Y% satisfied where Y =

Pz

i=1
wi

z and z is the size of tests that

WS has.

3. A task (T) is X% done where X =
Px

j=1 hj ∗Y%, x is the number of diagrams associated

with T , hj is a weight defined (only once per diagram) such that
Px

j=1 hj = 1.

Once the initial labels are set, we can reuse the i* evaluation framework presented in [25]

to automatically evaluate if the goals are satisfied based on the generated tags. However,

tasks can now represent a percentile (instead of completely satisfied, partially satisfied, etc.)

318 An i*-based Approach for Modeling and Testing Web Requirements

thus we need to provide a mapping between our percentiles and the labels used to applied

the algorithm. For example, we can define the following policy (note that the values for X,

Y, and Z depend on the application under development and the actual characteristics of the

project.):

• None: initial tag.

• None: if all the tests of a task have been failing since the beginning of the process.

• Satisfied: if the percentile of tests passed is > X%.

• Partially Satisfied: if the percentile of the tests passed is between X% and Y%.

• Partially Denied: if the percentile of the tests passed is between Y% and Z%.

• Denied: if the percentile of tests passed is < Z%.

One of the main advantages of our approach is that i* models are evaluated for Web

engineering in an objective and straightforward manner, thus avoiding the problem of deciding

if a task has been performed or not. Also, it is lightweight and does not impose any overheads

during development. In the following section we show our approach in action in our case of

study.

5 Sample Application of our Approach

In the next subsections we explain our process described in Fig. 1 by means of an example

based on the i* model defined in Sect. 2.1 (see Fig. 3). We show how we specify in detail a

specific requirement (Sect. 5.1), then a set of models is obtained (Sect. 5.2) which need to

be refined. During the refinement process we can evaluate if our models satisfy the tasks by

running the tests and evaluating their results (Sect. 5.3).

5.1 Detailed requirement specification

For the sake of understandability, we will show the mockups and diagrams corresponding to

the “provide books by category” task. As shown in Fig. 13 the mockup for this task adds a

combo-box in the home page that the user can change to filter the books according to the

selected category. Also, the mockup shows its corresponding title and how many books have

been found.

Fig. 13. “Provide books by category” mockup

E. R. Luna, I. Garrigós, J.-N. Mazón, J. Trujillo, and G. Rossi 319

In Fig. 14 we show a WebSpec diagram that specifies this scenario. Basically, the user

starts being located in the Home page and can choose a category from a list of categories.

After the user selects the category it should navigate to a different page that contains the

title and a list of items. The invariant of this interaction is as follows: CategoryResult.title =

“Books of ” + ${category} && CategoryResult.bookSize > 0. The invariant states that the

title should be valid according to the selection we have done on the previous combo-box and

that there should be at least 1 product in the list.

Fig. 14. “Provide books by category” WebSpec diagram

5.2 Generation of Domain and Navigational Models

In Fig. 15 we can see the Domain model which has been derived from the specified require-

ments. As explained in Sect. 3, to derive the Domain model we take into account the content

and service requirements as well as the existence of service or navigational patterns. In this

case we can see that five domain classes are created by applying the Content2DomainClass

transformation rule: one class is generated for each content requirement specified in the SR

model. Moreover, we detect three service patterns (see Fig. 9(b)), so operations are added

to the classes client, cart and book by executing the Service2Operation rule. Finally we de-

tect that the Provide Book Info requirement follows the navigational pattern as we can see

in Fig. 9(a). In this case the rule Navigation2Relationship adds associations among all the

resources found in this pattern. The generated Domain model is shown in Fig. 15.

Fig. 15. Generating a Domain model

In the case of the Navigational model, the rule Nav&Pers2NavClass is performed adding a

home page with a collection of links (i.e. menu). Afterwards, one NC is created for each nav-

320 An i*-based Approach for Modeling and Testing Web Requirements

igational and personalization requirement with an attached resource, in this case we have five

NC created from navigational and personalization requirements. From the menu, a transversal

link to each of the created NCs is added (L1 to L4).

The next step consists in checking the navigational and service patterns. In this example,

we find a navigational pattern (see Fig.9(a)) where we apply the Navigation2TLink trans-

formation creating a transversal link from the NCs created by the associated navigational

requirements, to the NC that is represented by the root navigational requirement. In this

case two links are added: L5 and L6.

Finally, as we are referring to the website stakeholder, we find three service patterns from

which the operations of the NCs books and cart are added and the service links L7, L8 and

L9 are created with an associated target NC by applying the Service2Service&SLink.

Fig. 16. Generating a Navigation model

5.3 Goal Evaluation

After we obtain and refine the models for our example, our evaluation algorithm should be

applied. For our example, we have set X = 80%, Y = 60% and Z = 40%.

In our sample scenario up to 9 tests of 10 of a WebSpec diagram associated with the

“provide books by title”, “provide books by category”, and “provide books by author” tasks

are satisfied and only 1 test of 4 of a WebSpec diagram associated with the “provide recom-

mended books” task is satisfied. Following the previously defined policy, the “provide books

by title” task is satisfied and the “provide recommended books” is not satisfied (25% of the

test passed). A sample of the i* model already evaluated with a starting configuration of

labels from our test cases are shown in Fig. 17 (starting labels are given to the tasks in grey).

To sum up, if we implement the Web application by taking into account these test cases, then

we will obtain an application that achieves the softgoal“easy to maintain” but neglects the

E. R. Luna, I. Garrigós, J.-N. Mazón, J. Trujillo, and G. Rossi 321

main goal “Book sales be managed” (deduced by applying the algorithm in [25]).

ONLINE
BOOKSTORE

SELL
BOOKS
ONLINE

ATTRACT
MORE USERS

BOOK

CATEGORY

AUTHOR

EASY TO
MAINTAIN

PROVIDE
BOOK INFO

PROVIDE
BOOKS BY
AUTHOR

PROVIDE
BOOKS BY
CATEGORY

PROVIDE
RECOMMENDED

BOOKS

PROVIDE
BOOKS BY

TITLE

SEARCH
BOOK BY

ISBN

SEARCH
BOOK BY

TITLE

SEARCH
ENGINE FOR

BOOKS

BOOK
SALES BE
MANAGED

help

help

hurt

hurt

<<navigational>>

<<navigational>>
<<navigational>>

<<personalization>>

<<service>>
<<service>>

<<content>>
<<content>>

<<content>>

<<navigational>>

4

7

·4
7
·

·

?

·

?

·

?

4

4 4

7
· 7

·

Fig. 17. The result of evaluating the i* model after running the tests

5.4 Implementation Framework

The presented approach has been implemented by using the Eclipse development platformg.

Eclipse is a framework which can be extended by means of plugins in order to add more

features and new functionalities. A plugin that supports both defined UML profiles for i* has

been developed. This new plugin implements several graphical and textual editors. Fig. 18

shows an overview of the tool: the palette for drawing the different elements of i* can be seen

on the right-hand side of the figure, while a sample SR model is shown in the center of the

figure. Generation rules are also being defined and tested in our prototype.

Implementation of our Web requirements i* model. Our implementation of the i*

framework for Web requirements consists of a UML profile which incorporates a number of

taxonomic features that enable Web requirements specification. With the implementation of

this UML profile has been possible to implement the i* framework in Web to model the needs

and expectations of the stakeholders of the Web application. The special features incorporated

into the i* framework have allowed that elements of the model can be stereotyped using the

requirements taxonomy presented in Sect. 2.

Implementation of A-OOH domain model. The domain model in A-OOH is repre-

sented by an UML class diagram, for this reason we have implemented the UML 2.0 meta-

model using the Eclipse facilities to represent only the elements necessary to establish a UML

class diagram.

Implementation of A-OOH navigational model. The A-OOH navigational metamodel

represents the key to the derivation of the navigational model. The implementation was

developed using UML profiles.

ghttp://www.eclipse.org

322 An i*-based Approach for Modeling and Testing Web Requirements

Fig. 18. Screenshot of our prototype

Implementation of the QVT transformation rules. Throughout the paper, QVT has

been used as a language for formalizing transformations between models, thus ameliorating

the understandability of the transformation process. However, once the transformations have

been modeled, they have to be implemented. To this aim, the QVT transformation rules

presented above has been implemented using the mediniQVT transformation engine.

Integration with WebSpec. The i* plugin can be easily used together with the WebSpec’s

Eclipse plugin, thus allowing us to seamless integrate the i* model and the WebSpec diagrams.

In Fig. 19 a screenshot of this plugin is shown.

Fig. 19. WebSpec’s Eclipse plugin

E. R. Luna, I. Garrigós, J.-N. Mazón, J. Trujillo, and G. Rossi 323

6 Related Work

Few approaches have focused on defining an explicit requirement analysis stage to model user

needs. We can stress the following:

NDT [13] considers a complete taxonomy for the specification of Web requirements. It

allows to specify requirements by means of use cases diagrams and templates. It uses a

different template for each requirement type they consider, so requirements and objectives

are described in a structured way. UWE [7] also describes a taxonomy for requirements

related to the Web. It proposes extended use cases, scenarios and glossaries for specifying

requirements. WebML [5] also proposes the use of use case diagrams combined with activity

diagrams and semi-structured textual description. WSDM [3] is an audience driven approach

in which they do a classification of the requirements and the audience. These classes are

represented with a diagram in which they are related. Then they are modeled into detail

in a Task model using concurrent task trees. OOHDM [26] captures the requirements in

use case diagrams. They propose the use of UIDs (user interaction diagrams) for defining

the requirements related to navigation which are derived from the Use cases. OOWS [27]

focuses on the specification of tasks. They extend the activity diagrams with the concept of

interaction point to describe the interaction of the user with the system.

Furthermore, generation of conceptual models from the requirements is an important issue

to bridge the gap between users’ needs and Web design. To the best of our knowledge, there

are two approaches that support this in some way: OOWS provides automatic generation of

(only) navigation models from the tasks description by means of graph transformation rules,

while NDT [28] defines a requirement metamodel and allows to transform the requirements

model into a content and a navigational model by means of QVT rules. Our approach for

deriving conceptual models resembles NDT since we have also adopted QVT in order to obtain

design artifacts from Web requirements, but we have kept the benefits of the i* framework

by means of the defined profiles and patterns.

However, some of these approaches present the following drawbacks: (i) they do not take

into consideration a complete taxonomy of requirements which is suitable in Web applications,

or (ii) they consider non-functional requirements in an isolated manner, or (iii) they mainly

focus on design aspects of the intended Web system without paying enough attention to

Web requirements. Furthermore, none of them perform the analysis of the users’ needs.

Requirements are figured out by the designer, it may be needed to re-design the website after

doing usability and satisfaction tests to the users. Modeling users allow us ensuring that

the Web application satisfies real user needs and goals and the user is not overwhelmed with

functionalities that he does not need or expect and he does not miss functionalities that were

not implemented.

To the best of our knowledge, the only approaches that use goal oriented techniques have

been presented in [29, 30]. They propose a complete taxonomy of requirements for the Web

and use the i* notation to represent them. Unfortunately, they do not benefit from every

i* feature, since they only use a metamodel that has some of its concepts, e.g. means-end,

decomposition or contribution links from i* are not specified in the approach presented in [29].

Our approach not only benefits from i* features but also used with mockups and WebSpec

diagrams can provide automatic evaluation of its models. This feature is extremely important

to get feedback during the development process of a Web application.

324 An i*-based Approach for Modeling and Testing Web Requirements

On the other hand, in a goal-oriented requirement engineering approach, goal evaluation

is important to check whether the goals and needs of the stakeholders are satisfied. Specially

in the Web engineering field, where the continuos participation of the stakeholders during the

process is vital to obtain feedback. There are some approaches that have goal evaluation such

as the NFR Framework [31]. In this framework qualitative labels are propagated throughout

a Softgoal Interdependency Graph (SIG), and similar to the goal evaluation procedure of [25],

the user must resolve the conflicts [31]. In [32] there are some guidelines on how to extend this

procedure to be used with i*. Despite this procedure could be applied to i* models, it should

be adapted to be used to provide feedback to stakeholders. The resolution of conflicts and

the integration with late requirement analysis artifacts like WebSpec are the main drawbacks

we have found. Our approach integrates seemless with a detail requirement analysis and

provides an automatic way of evaluating if the goals are been satisfied by the application

under development.

GRL [33], a variant of i*, has a fully automated evaluation method but does not allow

to make decisions in the presence of conflicting, partial or unknown information. The hard-

coded rules used to resolve softgoals often result in the proliferation of conflicts or partial

values. Moreover, this approach should be adapted to Web engineering to provide automatic

generation of the models and automatic requirements validation as shown in this paper.

7 Conclusions and Future Work

Websites require special techniques for requirement analysis in order to reflect, from early

stages of the development, specific needs, goals, interests and preferences of each user or

user type. However, Web engineering field does not pay the attention needed to this issue.

We have presented a goal oriented approach on the basis of the i* framework to specify

Web requirements. It allows the designer to make decisions from the very beginning of the

development phase that would affect the structure of the envision website in order to satisfy

users.

We have improved the requirements phase by complementing i* models with mockups and

WebSpec diagrams to provide a more detailed analysis of interactive requirements. Also, a

first version of the domain and navigational models are obtained from the i* model allowing

developers to have a starting point for model refinement. During the refinement process, users

can observe and provide feedback of the progress by looking at the automatic evaluation of the

i* model. This evaluation is performed by executing the automatic derived tests, generated

from WebSpec, against the application under development.

Our short-term future work consists of completing the transformation rules in order to

obtain the rest of the A-OOH models (i.e. presentation and personalization models). Finally,

as long-term future work we plan to carry out a set of experiments to measure the effectiveness

of our proposal.

Acknowledgements

This work has been partially supported by the MESOLAP project (TIN 2010-14860) from

the Spanish Ministry of Education and Science, by the QUASIMODO project (PAC08-0157-

0668) from the Castilla-La Mancha Ministry of Education and Science (Spain), and by the

MANTRA project (GRE09-17) from the University of Alicante (Spain).

E. R. Luna, I. Garrigós, J.-N. Mazón, J. Trujillo, and G. Rossi 325

References

1. S. Casteleyn, W. V. Woensel, and G.-J. Houben. A semantics-based aspect-oriented approach to
adaptation in Web engineering. In Hypertext, pages 189–198, 2007.

2. C. Cachero and J. Gómez. Advanced conceptual modeling of Web applications: Embedding oper-
ation interfaces in navigation design. In JISBD, pages 235–248, 2002.

3. S. Casteleyn, I. Garrigós, and O. D. Troyer. Automatic runtime validation and correction of the
navigational design of Web sites. In APWeb, pages 453–463, 2005.

4. N. Koch. Software engineering for adaptive hypermedia systems: Reference model, modeling
techniques and development process. Softwaretechnik- Trends, 21(1), 2001.

5. S. Ceri and I. Manolescu. Constructing and integrating data-centric web applications: Methods,
tools, and techniques. In VLDB, page 1151, 2003.

6. G. Rossi, D. Schwabe, and R. Guimarães. Designing personalized Web applications. In WWW,
pages 275–284, 2001.

7. N. Koch. Reference model, modeling techniques and development process software engineering
for adaptive hypermedia systems. KI, 16(3):40–41, 2002.

8. I. Garrigós. A-OOH: Extending Web Application Design with Dynamic Personalization. PhD
thesis, University of Alicante, Spain, 2008.

9. F. Daniel, M. Matera, A. Morandi, M. Mortari, and G. Pozzi. Active rules for runtime adaptivity
management. In AEWSE, 2007.

10. 10R. C. Martin. Agile Software Development: Principles, Patterns, and Practices. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2003.

11. E. Yu. Modelling Strategic Relationships for Process Reenginering. PhD thesis, University of
Toronto, Canada, 1995.

12. E. Yu. Towards modeling and reasoning support for early-phase requirements engineering. In RE,
pages 226–235, 1997.

13. M. J. Escalona and N. Koch. Requirements engineering for Web applications - a comparative
study. J. Web Eng., 2(3):193–212, 2004.

14. D. C. Nguyen, A. Perini, and P. Tonella. A goal-oriented software testing methodology. In AOSE,
pages 58–72, 2007.

15. E. Robles, I. Garrigós, J. Grigera, and M. Winckler. Capture and evolution of Web requirements
using WebSpec. In B. Benatallah, F. Casati, G. Kappel, and G. Rossi, editors, ICWE, volume
6189 of Lecture Notes in Computer Science, pages 173–188. Springer, 2010.

16. QVT Language. http://www.omg.org/cgi-bin/doc?ptc/2005-11-01.
17. I. Garrigós, J.-N. Mazón, and J. Trujillo. A requirement analysis approach for using i* in Web

engineering. In ICWE, pages 151–165, 2009.
18. H. Estrada, A. M. Rebollar, O. Pastor, and J. Mylopoulos. An empirical evaluation of the i*

framework in a model-based software generation environment. In CAiSE, pages 513–527, 2006.
19. M. Strohmaier, J. Horkoff, E. S. K. Yu, J. Aranda, and S. M. Easterbrook. Can patterns improve

i* modeling? two exploratory studies. In REFSQ, pages 153–167, 2008.
20. A. Kleppe, J. Warmer, and W. Bast. MDA Explained. The Practice and Promise of The Model

Driven Architecture. Addison Wesley, 2003.
21. K. Czarnecki and S. Helsen. Classification of model transformation approaches. In Proceedings

of the 2nd OOPSLA Workshop on Generative Technique in the Context of the Model Driven
Architecture, Anaheim, October 2003.

22. A. Gerber, M. Lawley, K. Raymond, J. Steel, and A. Wood. Transformation: The missing link of
MDA. In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, ICGT, volume 2505
of Lecture Notes in Computer Science, pages 90–105. Springer, 2002.

23. S. Sendall and W. Kozaczynski. Model transformation: The heart and soul of model-driven soft-
ware development. IEEE Software, 20(5):42–45, 2003.

24. OCL. http://www.omg.org/cgi-bin/doc?ptc/03-10-14.
25. J. Horkoff and E. Yu. Evaluating goal achievement in enterprise modeling an interactive procedure

326 An i*-based Approach for Modeling and Testing Web Requirements

and experiences. In W. Aalst, J. Mylopoulos, N. M. Sadeh, M. J. Shaw, C. Szyperski, A. Persson,
and J. Stirna, editors, The Practice of Enterprise Modeling, volume 39 of Lecture Notes in Business
Information Processing, pages 145–160. Springer Berlin Heidelberg, 2009. 10.1007/978-3-642-
05352-812.

26. D. Schwabe and G. Rossi. An object oriented approach to Web-based applications design. TAPOS,
4(4):207–225, 1998.

27. P. Valderas, V. Pelechano, and O. Pastor. A transformational approach to produceWeb application
prototypes from a web requirements model. Int. J. Web Eng. Technol., 3(1):4–42, 2007.

28. N. Koch, G. Zhang, and M. J. Escalona. Model transformations from requirements to Web system
design. In ICWE, pages 281–288, 2006.

29. D. Bolchini and P. Paolini. Goal-driven requirements analysis for hypermedia-intensive Web
applications. Requir. Eng., 9(2):85–103, 2004.

30. F. M. Molina, J. Pardillo, and J. A. Toval. Modelling Web-based systems requirements using
WRM. In WISE Workshops, pages 122–131, 2008.

31. L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements in Software Engi-
neering (THE KLUWER INTERNATIONAL SERIES IN SOFTWARE ENGINEERING Volume
5). Springer, 1st edition, October 1999.

32. L. Liu and E. Yu. Designing information systems in social context: a goal and scenario modelling
approach. Inf. Syst., 29(2):187–203, 2004.

33. D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton, and E. Yu. Evaluating goal models
within the goal-oriented requirement language. Int. J. Intell. Syst, 25(8).

34. i* wiki. http://istar.rwth-aachen.de.

6

Specifying personalizable and accessible web applications
with WebSpec

The content of this chapter corresponds with the following papers:

Medina, N. M., Burella, J., Rossi G., Grigera J., Robles
Luna E.. An Incremental Approach for Building Accessible and
Usable Web Applications. Proceedings of the 11th International
Conference on Web Information System Engineering (WISE
2010). Hong Kong, China. Acceptance rate: 18.8%. Core A.

Robles Luna E., Garrigos I., Rossi G. Capturing and
Validating Personalization Requirements in Web Applications.
Proceedings of the 1st Workshop on The Web and Requirements
Engineering (WeRE 2010). Sydney, Australia.

In the previous papers we have shown how to use WebSpec not only in the context of WebTDD
but also in conjunction with early requirements in i*. However, we have only concentrated in
functional requirements (those who affect the functionality of the web application).

In this chapter we show how to use WebSpec for the specification of non functional re-
quirements like accessibility and personalization of Web applications. In each case we provide
small extensions to the core language with the intent of allowing the specification of these
requirements in the context of WebTDD.

Fig. 6.1. Specifying personalizable and accessible applications with WebSpec in WebTDD

The content of this chapter are two papers published in the International Conference on
Web Information System Engineering (WISE) and in the International Workshop on the Web
and Requirements Engineering (WeRE). The aim of WISE is to provide an international fo-
rum for researchers, professionals, and industrial practitioners to share their knowledge in the
rapidly growing area of Web technologies, methodologies and applications. On the other hand,
the aim of WeRE is to be an international forum for exchanging ideas on both using Web tech-
nologies as a platform for requirements engineering, and applying requirements engineering in
the development and use of web-based applications.

An Incremental Approach for Building Accessible and

Usable Web Applications

Nuria Medina Medina
1
, Juan Burella

2,4
, Gustavo Rossi

3,4
, Julián Grigera

3
,

Esteban Robles Luna
3

1Departamento de Lenguajes y Sistemas Informáticos, Universidad de Granada, España
nmedina@ugr.es

2Departamento de Computación, Universidad de Buenos Aires, Argentina
jburella@dc.uba.ar

3LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{gustavo, julian.grigera, esteban.robles}@lifia.info.unlp.edu.ar

4Also at CONICET

Abstract. Building accessible Web applications is difficult, moreover
considering the fact that they are constantly evolving. To make matters more
critical, an application which conforms to the well-known W3C accessibility
standards is not necessarily usable for handicapped persons. In fact, the user
experience, when accessing a complex Web application, using for example
screen readers, tends to be far from friendly. In this paper we present an
approach to safely transform Web applications into usable and accessible ones.
The approach is based on an adaptation of the well-known software refactoring
technique. We show how to apply accessibility refactorings to improve
usability in accessible applications, and how to make the process of obtaining
this “new” application cost-effective, by adapting an agile development
process.

Keywords: Accessibility, Visually Impaired, Web engineering, TDD, Web
requirements.

1 Introduction

Building usable Web applications is difficult, particularly if they are meant for users

with physical, visual, auditory, or cognitive disabilities. For these disadvantaged

users, usability often seems an overly ambitious quality attribute, and efforts in the

scientific community have been generally limited to ensure accessibility. We think

accessibility is a good first step, but not the end of the road. Usability and

accessibility should go hand in hand, so disabled users can access information in a

usable way, since it is not fair to pursue usability for regular users and settle with

accessibility for disabled users. Thus we consider that the term Web accessibility falls

short and should be replaced by the term “usable web accessibility” or “universal

usability”, whose definition can be obtained from the combination of the two quality

attributes. As an example, let us suppose a blind person accessing a (simplified) Web

application like the one shown in Figure 1, using a screen reader [1]. To enforce our

statement, we assume that this application fulfils the maximum level of accessibility,

AAA, according to the Web Content Accessibility Guidelines (WCAG) [2]. This

means that the HTML source of the application satisfies all the verification points,

which check that all the information is accessible despite any user’s disabilities.

However, using the screen reader, it will be difficult for the blind user to go directly

to the central area of the page where the books’ information is placed. On the

contrary, he will be forced to listen (or jump) one by one all the links before that

information can be listened (even when he does not want to use them).

Fig. 1. Accessible but not usable page

The main problem, that we will elaborate later, is that this page has been designed

to be usable by sighted users and “only” accessible by blind users. In this paper we

present an approach to systematically and safely transform an accessible web

application into a usable and accessible (UA) one. The approach consists in applying

a set of atomic transformations, which we call accessibility refactorings, to the

navigational and interface structure of the accessible application. With these

transformations we obtain a new application that can be accessed in a more friendly

way when using, for example, a screen reader. We show, in the context of an agile

approach, how this strategy can be made cost feasible, particularly when the

application evolves, e.g. when there are new requirements. Our ideas are presented in

the context of the WebTDD development approach [3], but they can be applied either

in model-driven or coding-based approaches without much changes. Also, while the

accessibility refactorings we describe are focused on people with sight problems, the

approach can be used to improve usability for any kind of disability.

The main contributions of the paper are the following: a) we introduce the concept

of usable accessibility b) we show a way to obtain a UA web application by applying

small, behaviour-preserving, transformations to its navigation and interface structures;

c) we demonstrate the feasibility of the approach by showing not only how to

generate the UA application but also how to reduce efforts when the application

evolves. The rest of the paper is structured as follows: Section 2 discusses some

related work in building accessible applications; section 3 presents the concept of

accessibility refactoring and briefly outlines some refactorings from our catalogue. In

section 4 we present the core of the approach using the example of Figure 1, and

finally section 5 concludes the paper and discusses some further work we are

pursuing.

2 Related Work

Web usability for visually impaired users is a problem that is far from being solved.

The starting point of the proposed solutions leans on two basic supports: the WCAG

Guidelines [2] and the screen readers [1] used together with traditional or “talking”

browsers [4]. Then, the methods and proposed tools to achieve accessibility and

usability in the Web diverge in two directions [5]: assessment or transformation. In

the first group, the automated evaluation tools, such as Bobby (Watchfire) [6],

analyze the HTML code to ensure that it conforms to accessibility or usability

guidelines. In the second group, automated transformation tools help end users, rather

than Web application developers. These tools dynamically modify web pages to better

meet accessibility guidelines or the specific needs of the users.

Automated transformation tools are usually supported by some middleware, and

they act as an intermediary between the Web page stored in the server, and the Web

page shown in the client. Thus, in the middleware, diverse transcodings are

performed. An example is the middleware presented in [7], which is able to adapt the

Web content on-the-fly, applying a transcoding to expand the context of a link (the

context is inferred from the text surrounding the link), and other transcoding to

expand the preview of the link (processing the destination of the link). Other example

is the proposal in [8], in which semantic information is automatically determined from

the HTML structure. Using these semantics, the tool is able to identify blocks and

reorganize the page (grouping similar blocks, i.e. all the menus, all the content areas,

etc). This will create sections within the page that allow users to know the structure of

the page and move easily between sections (ignoring non essential information for

him). However, none of these automatic transcodings are enough to properly reduce

the overhead of textual and graphic elements, as well as links, which clutter most

pages (making their reading through a screen reader very noisy). This is because

discerning meaningful from accessory content is a task that must be manually

performed. A basic example of “manual” transcoding is the accessible method

proposed in [9], which uses stylesheets to hide text (marked with a special label) from

the page prepared for sighted users. Another interesting example is Dante [10], a

semi-automated tool capable of analyzing Web pages to extract objects which are

meaningful for the handicapped person during navigation, discover their roles,

annotate them and transform pages based on the annotations. In [11] meanwhile,

Dante annotations are automatically generated in the design process. In this case, the

intervention of the designer is performed in the phase of modeling, but still needed.

We believe that the problem of usability for impaired people must be attacked from

the early stages of applications design. Furthermore, all stakeholders (customers,

designers and users) must be involved in the process. Hence, instead of proposing an

automatic transcoding tool, we provide a catalogue of refactorings that the designer

can apply during the development process, and later during the evolution of the Web

application. The catalogue is independent of the underlying methodology and

development environment, so refactorings can be integrated into traditional life cycle

models or agile methodologies. However, to emphasize our point we show how a

wise combination of agile and model-driven approaches can improve the process and

allow the generation of two different applications, one for “normal” users and

another, which provides usable accessibility for impaired users.

3 Making Accessible Web Applications More Usable

Achieving universal usability is a gradual and interdisciplinary process in which we

should involve all application’s stakeholders. In addition, we think that it is a user-

centred process that must be considered in early phases of the design of Web

applications. For the sake of conciseness, however, we will stress out the techniques

we use, more than the process issues, which will be briefly commented in Section 4.

The key concept in our approach is refactoring for accessibility. Refactoring [12]

was originally conceived as a technique to improve the design of object-oriented

programs and models by applying small, behaviour-preserving, transformations to the

code base, to obtain a more modular program. In [3] we extended the idea for Web

applications with some slight differences with respect to the original approach: the

transformations are applied to the navigational or presentation structures, and with the

aim of improving usability rather than modularity. In this context we defined an initial

catalogue of refactorings, which must be applied when a bad usability smell [13] is

detected. More recently, in [14] we extended the catalogue incorporating a new intent:

usable accessibility. As said before, we will concentrate on those refactorings targeted

to sight disabled persons. Subsequently, section 3.1 briefly describes the specific

catalogue of refactorings to achieve UA for sight impaired users.

3.1 The Refactoring Catalogue

Each refactoring in our catalogue to improve UA, specifies a concrete and practical

solution to improve the usability of a Web application, that will be accessed by a

visually impaired user. Each UA refactoring is uniformly specified with a standard

template, so it can be an effective means of communication between designer and

developers. The basic points included in the template are three: purpose, bad smells

and mechanics. The purpose, defined in terms of objectives and goals, establishes the

property of usability to be achieved with the application of the refactoring. The bad

smells are sample scenarios in which it is appropriate to apply the refactoring, that is,

elements or features of the Web site which generate a usability problem. Finally, each

mechanics explains, step by step, the transformation process needed to apply the

refactoring and thus solve the existing usability problem.

The refactorings included in the catalogue are divided in two groups: Navigation

Refactorings and Presentation Refactorings. Navigation refactorings try to solve

usability problems related to the navigational structure of the Web application.

Therefore, the changes proposed by this first type of refactorings modify the nodes

and links of the application. Presentation refactorings meanwhile propose solutions to

usability problems whose origin are the pages’ interfaces. Therefore this second type

of refactorings implies changes in the appearance of the Web pages.

Concretely, the navigation refactorings included in the UA catalogue allow: to split

a complex node, to join two small nodes whose contents are deeply related, to make

easier the access between nodes creating new links between them, to remove an

unnecessary link, information or functionality with the aim to simplify the node

without losing significant content or, conversely, to repeat a link, functionality or

information contained on a node in another node where it is also necessary and its

inclusion does not overload the resulting node, etc.

Presentation refactorings included in the UA catalogue determine when and how:

divide a complex and heterogeneous page in a structure of simpler pages, combine

two atomic pages in a cohesive page, add needed anchors, remove superfluous

anchors, add contextual information such as size indicators in dynamic list and tables,

distribute or duplicate the options of a general menu for each one of the items valid

for the menu, replace pictures and graphics for an equivalent specific text or remove

the figure if it is purely aesthetic, reorder the information and functionality on the

page in a coherent order to read and use, reorganize panels and sections to be read

from top to bottom and from left to right, fix the floating elements, transform nested

menus into linear tables more easier to read, etc.

Step 3.2:
reorganize
and
complete
the new
page (if it is
necessary)

Step 1: identify an auto-
contained section

C2

C3

C7 C8

C9

Step 2.1: extract
section

C2

C3

C7 C8

C9

Step 2.2: reorganize
and complete the
original page

Step 3.1: create
a new page for
the extracted
section

C1

C5 C6

Step 4: link both pages

C2

C3

C7 C8

C9

C1

C5 C6

C1 C2

C3

C5 C6 C7 C8

C9

 Fig. 2a. “Split Page” Fig. 2b. “Distribute General Menu”

Figure 2a shows the steps needed to put into operation the “Split Page”

presentation refactoring. As shown in the figure, the application of this refactoring

involves simplifying an existing page, identifying and extracting self-contained

blocks of information and functionality (steps 1 and 2.1), and then, creating one o

more pages with the information / functionality extracted from the original page (step

3.1). Both, the original page (step 2.2) as the news pages (step 3.2) must be structured

(that is, to organize the information for their appropriate reading and viewing), and

can be supplemented or not with other additional information. Finally, the original

page and the new pages must be linked together (step 4). Most refactorings allow

several alternatives for certain steps in their mechanics. For the sake of conciseness

Figure 2a shows the “normal” course of the “Split Page” refactoring. In Section 4 we

illustrate the use of this refactoring in a concrete example.

Figure 2b shows the mechanism of the refactoring “Distribute General Menu”,

which proposes to remove the general menu affecting a list of elements by adding the

menu actions to each element. The selectors of elements (e.g. checkboxes) are also

removed in the container as the operations are now locally applied to each element.

In most cases, when solving a usability problem we need to update both navigation

and presentation levels. Thus, many navigation refactorings have associated an

automatic mechanism for changes propagation, which implies the execution of one or

more presentation refactorings. More details can be read at [14]. We next show how

we use the ideas behind accessibility refactorings in an agile development process.

4 Our Approach in a Nutshell

Along this section, we will show how we use the catalogue of accessibility

refactorings to make the development of UA Web Applications easier. In a coarse

grained description of our approach, we can say that it has roughly the same steps that

any refactoring-based development process has (e.g. see [12]), namely: (a) capture

application requirements, (b) develop the application according to the WACG

accessibility guidelines, (c) detect bad smells (in this case UA bad smells), and (d)

refactor the application to obtain an application that does not smell that way, i.e.

which is more usable, besides being accessible.

Notice that step b (application development) may be performed in a model-based

way, i.e. creating models and deriving the application, or in a code-based fashion,

therefore developing the application by “just” programming. Step c (detecting bad

smells) may be done “manually”, either by inspecting the application, by performing

usability tests with users, or by using automated tools. Finally, step d, when

refactorings are applied, may be manually performed following the corresponding

mechanics (See Figure 2), or automatically performed by means of transformations

upon the models or the programming modules. A relevant difference with regard to

the general process proposed in [12] is that in our approach step d is only applied

when the application is in a stable step (e.g. a new release is going to be published)

and not each time we add a new requirement. Anyway, for each accessibility

refactoring we perform a short cycle, to improve the application incrementally.

One important concern that might arise regarding this process is that it might be

costly, particularly during evolution. Therefore, we have developed an agile and

flexible development process, and a set of associated tools which guarantee that we

can handle evolution in a cost-effective way [15]. For the sake of conciseness, we will

focus only on the features related to accessibility rather than evolution issues which

are outside the scope of the paper. We discuss them as part of our further work.

Concretely, we use WebTDD [3], an agile method that puts much emphasis in the

continuous involvement of customers, and comprises short development cycles in

which stakeholders agree on the current application state. WebTDD uses specific

artefacts to represent navigation and interaction requirements, which we consider to

be essential for accessible applications. Similarly to Test-Driven Development (TDD)

[16], WebTDD uses tests created before the application is developed to “drive” the

development process. These tests are used later to verify that requirements have been

corrected fulfilled. Different from “conventional” TDD, we complement unit tests

with interaction and navigation tests using tools like Selenium

(http://seleniumhq.org/). Figure 3 shows a simplified sketch of the development

process. In the first step (1) we “pick” a requirement (e.g. represented with use cases

or user stories) and in (2) we agree on the look and feel of the application using

mockups. We capture navigation and interaction requirements, and represent them

using WebSpec [17], a domain-specific language (DSL) which allows automatic test

generation and tracking of requirement changes. At this point we can exercise

mockups and simulate the application, either using a browser or a screen reader;

therefore we can check accessibility guidelines and have early information on the

need to refactor to improve usable accessibility in the step 7. Next (3), we derive the

interaction tests from the WebSpec diagrams, and run them (4); it’s likely that these

tests will fail, indicating the starting point to begin the development to make tests

pass. As said before, step 5 might imply dealing with models (generating code

automatically), coding or a combination of both. In step 6, we run the tests again and

iterate the process until all tests pass. Once we have the current version of the

application ready we repeat the cycle with a new requirement (steps 1 to 6).

Fig. 3. WebTDD process for UA applications.

After we reach a stable state of the application and we want to publish its current

version, we look for bad accessibility smells and identify the need for UA refactorings

(7.a). Next, we perform short cycles by applying each refactoring to the WebSpec

diagrams containing the detected bad smells (7.b). The altered WebSpecs will

generate new tests that check the new accessibility/usability features, and propagate

the changes to the code (or model) to obtain the new UA application (steps 2 to 6).

In the next subsections we explain some of these aspects in a more detailed way

focusing on UA development. To illustrate our approach, we will use the

development of a simplified online book store (as the one shown in Figure 1), and

when possible, we ignore the activities related with tests since they are outside the

scope of the paper.

4.1. Gathering Navigation and Interface Requirements

Navigation and interface requirements are captured early in the development cycle

through mockups and WebSpecs (step 2 in Figure 3). User interface Mockups help to

establish the look and feel of the applications, along with other broad interaction

aspects. They can be elaborated using plain HTML or commercial tools such as

Balsamiq (http://www.balsamiq.com). Mockups can be easily adjusted to comply

with accessibility guidelines. Figure 1 showed a mockup for our example’s

homepage.

WebSpecs are simple state machines that represent interactions as states and

navigations as transitions, adding the formal power of preconditions and invariants to

assert properties in states. An “interaction” represents a point where the user

consumes information (expressed with interface widgets), and interacts with the

application by using some of its widgets. Some actions (clicking a button, adding

some text in a text field, etc) might produce “navigation” from one “interaction” to

another and, as a consequence, the user moves through the application’s navigation

space.

Figure 4 shows a simplified WebSpec diagram that specifies the navigations paths

from the BookList interaction and is related with the mockup of Figure 1. In the

BookList “interaction” the user can authenticate, add books to the cart or to the wish

list and search books. This diagram is the starting point for developing our simplified

book store application, as it has key information to specify (at least partial)

navigational models (as shown in [3]). Additionally, WebSpecs allow the automatic

generation of navigation tests for the piece of functionality it represents, and with the

aid of a tool suite, it records requirements changes, to trace and simplify

implementation changes. In this sense, every changes made in a WebSpec (even the

“initial” WebSpec as a whole) are recorded as “first class” change objects (as shown

in Figure 4); these objects are later related with the corresponding model (or

implementation) artefacts to improve traceability and automatic change management,

using effect managers as explained in [15]. Specifically, each feature of the WebSpec

in Figure 4 is traced to the corresponding modelling elements; in this way, when some

of these features change, there is a way to automatically (or with minor designer

intervention) change the corresponding models or programs. Therefore, step 5 in

Figure 3 is viewed as the incremental application of these changes to the current

implementation.

Fig. 4. BookList interaction in the Books Store WebSpec

4.2 Deriving an Accessible Application

In our approach we do not prescribe any particular development style, though we

have experienced with model-driven (specifically, WebML [18]) and code-based

(with Seaside- www.seaside.st/) approaches. Once we run the tests for a requirement

and noticed that they fail, we build the corresponding models to satisfy such tests and

derive the application (steps 3 to 6, in Figure 3). The construction of these models is

an incremental task, managing the effects of each recorded change (step 5 in Figure

3). In addition to the changes log, we record the relationship between the WebSpec

elements and its counterpart in the model, necessary for the automation of future

changes on these elements. This recording is done at this stage, when change effects

are managed and the model is built. For example, when the ‘add to cart’ addition link

is managed, a counterpart element is added to the model and the relationship between

both elements is recorded. Then, if we need to manage a change to configure any

property of this element (e.g. its value), this can be automated since the change

management tool knows its representation in the model.

In this stage, accessibility can be addressed using any of the approaches cited in

Section 2, for example by incorporating Dante annotations in the corresponding

model-driven approach (See [10, 11]). Alternatively, we can “manually” work on the

resulting application by improving the HTML pages to make them fully accessible. In

both cases, given the nature of the WebTDD approach, the improvement is

incremental; in each cycle we produce an accessible version of the application.

In traditional Web application development, accessibility is tackled as a monolithic

requirement that must be satisfied by the application which is checked by running

accessibility tests such as TAW (http://www.tawdis.net/). What is different in our

approach is that we do not try to make the application accessible in one step; instead,

we can decide which tests must be run on each development iteration and specific

page. Therefore, in the first iteration we may want to make the “BookList” page

accessible and satisfying the accessibility test “Page Titled” (Web pages must have

titles that describe topic or purpose) and in the second iteration we may want to do the

same with page “Best sellers”. Our approach follows the very nature of agile

development trying to incrementally improve the accessibility of an existing

application. Stakeholders’ involvement obviously helps in this process. To achieve

this goal, we can specify which tests must be run on a specific interaction for each

WebSpec diagram. For instance, in the diagram of Figure 4, we can initially run the

“Page Titled” test during the first iteration, and the “Headings and Labels” (headings

and labels describe topic or purpose) test during the second iteration. This approach

helps to improve times during development and allows focusing on a specific

accessibility requirement, though we can still execute all accessibility tests for every

“interaction” like in traditional Web application development if necessary. From an

implementation point of view, this “selective” testing is performed using a Javascript

version of the WGAC accessibility tests and executing them depending on the tests

selected on the WebSpec diagrams.

4.3 Detecting Bad Accessibility Smells

By following the WebTDD cycle (steps 1 to 6 in Figure 3), we will obtain an

accessible application, but not necessarily a UA application. For example, if we

analyze the page shown in Figure 1 (accessible according the WCAG), we can see

that it presents several bad smells contemplated in the UA catalogue that have been

outlined in Section 3.1.

First, the page mixes concepts and functions that are not closely related, such as:

shopping cart, wish list, information on books, access to other products and user

registration. A sighted user quickly disregards the information in which he is not

interested (e.g. the registration if he just wants to take a look) and goes quickly to the

area that contains what he wants (e.g. the central area where the available books are

listed). However, a blind user does not have the ability to look through; when

accessing the page using a screen reader which sequentially reads the page content, he

will be forced to listen to a lot of information and functionality in what he may be not

interested before reaching the desired content. In order to eliminate this bad smell, the

refactoring “Split Page” can be applied. Besides, the actions provided to operate with

the products listed in the central area of the page (books in this moment) refer to the

selected books in the list; this implies that before applying an action in this menu (for

example, add a book to the cart), the book or books must be selected by using

checkboxes. This task is trivial for a sighted user, but it is considerably more

complicated for a user who is accessing through a screen reader, as the reader reads

the actions first and then the book list. Even though it is possible to scroll through the

links on the page with the use of navigation buttons (provided by most readers),

moving back (e.g. to look for the option once you have marked the products), can

cause confusion and be tedious if the list is long. In order to eliminate this bad smell,

the refactoring “Distribute General Menu” can be applied.

 Therefore, we conclude that we need to apply some refactorings to obtain a

better application. This could be done manually on the final application but it might

be difficult to check that we didn’t break any application behaviour. Next, we show

how to make this process safer and compatible with the underlying WebTDD process

and at the same time settle the basis to simplify evolution.

4.4 Applying Refactorings to the WebSpec Diagrams

As a solution to safely produce UA Web applications from existing ones, we propose

to apply accessibility refactorings to the navigation and interaction requirements

specifications (step 7 in Figure 3). Since WebSpec is a DSL formally defined in a

metamodel [17], these refactorings are essentially model transformations of

WebSpec's concepts. Each transformation comprises a sequence of changes on a

WebSpec diagram, which are aimed to eliminate a specific bad smell. Moreover, as

shown in [15,17] and explained before, these changes are also recorded in change

objects that can be used to semi automatically upgrade the application as we will

show in Section 4.5.

Fig. 5. Refactoring's metamodel.

Usability refactorings are also conceptualized in a metamodel, part of which is

shown in Figure 5. Refactorings classes provide an extension to the WebSpec meta-

model; this allows grouping a set of changes with a coherent meaning. An interesting

point to remark is the fact that these refactorings transform WebSpec diagrams

instead of models (or code). This has several advantages; for example, with these

diagrams and the corresponding new mockups, we can simulate the application. The

new mockups could be automatically generated if they are also “imported” from a

metamodel like we do in [19]. Also we automatically generate the new navigation

tests to assess if the implementation changes were implemented correctly.

As an example, let us consider the application of the “Distribute General Menu”

refactoring to the WebSpec of Figure 4. This refactoring takes as input an item

container, elements and menu options to be distributed into this container, and

elements to be eliminated for each item. In our example, we configure this refactoring

with the “book” element as container, the elements “title” and “description”, the menu

options “Add to cart” and “Add to Wish List” and the checkbox to be removed. In

Figure 6 we show the result of applying the refactoring, where the “Add to cart” and

“Add to Wish List” options are added in each book item (in order to simplify the

diagram we only shows the BookList interaction).

Fig. 6. “Distribute Menu” refactoring example.

4.5 Deriving the UA Web Application

Once we applied a refactoring to the needed WebSpec specification, we proceed with

the cycle (Figure 3). From now on, we work as we did with “normal” requirements

(steps 2 to 6). Once we agreed the new look and feel of the refactored application with

the customer (step 2), we generate and run the navigation tests to drive the

implementation of these changes (steps 3 and 4). We run these tests; they obviously

fail and the process continues with the refactoring effect management (step 5). As we

previously explained, refactorings introduce changes in the corresponding WebSpecs,

and their explicit representation as first-class objects helps us manage the changes to

be applied to the application. As a refactoring is a group of WebSpec changes, we

“visit” each of these changes to manage its effects. We start delegating these changes

to a Change Management tool, which can automatically (or with some programmer

intervention) alter either the models that will in turn generate the new application, or

the code in a code-based approach.

In our tool suite we deal with these refactorings in the same way that we manage

the changes generated by any new requirement. For example as shown in Figure 7,

the “Distribute General Menu” refactoring involves “Move operations” changes;

when we manage these changes the “Add to cart” and “Add to Wish List” links are

moved into each book item on the application.

We use these changes in the WebSpec specification to improve the development

stage, with the aim of reducing the cost of their effects on the application, automating

these effects in many cases. Additionally, we are able to determine which tests are

affected by each change, to trim the set of required tests that must be performed (see

the details of this change management process in [15,17]). Finally, a UA requirement

is completed when all tests pass (step 6).

Fig. 7. Handle “Move operations” effects.

In our example, one of the bad smells detected in 4.2 is the way the interaction

with the items on the book list is performed: a checklist with general operations to

apply on the selected books. In this situation, the refactoring “Distribute General

Menu” can be applied in order to improve the usability.

 Fig. 8a. General Menu with checklists. Fig. 8b. Distributed Menu.

Figure 8a shows a WebML diagram for the page that lists all books and lets the

user add books to a Shopping Cart or a Whish list. Since the book list is presented as a

checkbox set (using a specific WebML unit called “Multi Choice Index Unit”), the

user has the ability to check different books and select an action to perform on the

selected group, as seen in the units “Cart” and “Whishlist”. The application of this

refactoring generates automatically the diagram in Figure 8b, where the book list

becomes a simple list (replacing the “Multi Choice Index Unit” unit with a plain

“Index Unit”); the actions “Cart” and “Whishlist” are now directly linked from the

list, and therefore every item on the Index Unit called “Books” gets individual links to

each action. From this new navigational model and the corresponding interface

template (derived from the mockup), we are able to derive a UA version of the home

page shown in Figure 1. Figure 9a shows the result of the process.

 Fig. 9a. Distributed Menu in book list Fig. 9b. A new, usable and accessible home

Another bad smell detected is the mixed up contents on the bookstore’s homepage.

To overcome this problem, the “Split Page” refactoring is applied. For the sake of

conciseness we only show the final result of applying the refactoring in the final

application. Figure 9b shows the result of the new iteration, where the initial page has

been cleaned, extracting in three new pages the information and functionality needed

to: list products (BookList page), manage the wish list (WishList page) and manage

the shopping cart (ShoppingCart page). After finishing this process we end with two

Web applications: the “normal” one and the UA application. From now on, evolution

can be tackled in two different ways: by treating the two applications separately or by

working on the WebSpecs of the original one, following the WebTDD cycle and then

re-applying the “old” refactorings to the modified specifications when needed.

5 Concluding Remarks and Further Work

In this paper we faced the problem of improving the usability of accessible Web

applications. We consider that an application that has been developed to be usable for

regular users is generally not usable (even if accessible) for handicapped users, and

vice versa. In order to provide a solution for such important problem, we have

presented an approach supported by there pillars: a) a catalogue of refactoring

specialized in UA problems for blind and visually impaired users; b) a test-driven

development process, which uses mockups and Webspecs to simulate the application

and to generate the set of tests to assure that all the requirements are satisfied

(included the accessibility requirements) and c) a metamodel capable of internally

representing the elements of the application and the changes upon these elements

(included changes resulting from refactoring) in the same way; this makes easier the

evolution of both, the normal application and the UA application. As further work,

we are considering how to define catalogues of refactorings for other types of

disabilities, for example: hearing impairments, physical disabilities, speech

disabilities and cognitive and neurological disabilities. In turn, we are working in

order to specialize each catalogue according to the particular type of disability. In

addition, the catalogues may be also specialized according to the type of web

application: communication applications (facebook, twitter, etc.), electronic

commerce (amazon, e-bay, etc.), e-learning, etc. On the other hand, we are

considering how to gather and represent usable and accessibility requirements. In this

way, the UA refactorings could be applied at any iteration of the development cycle.

For this to be feasible (and not too costly), we need to improve the change effect

management, to automate the propagation of most changes from the original

application to the UA one. Finally, we are improving out tool support to simplify

evolution when new requirements affect those pages which were refactored during the

usability improvement process. In this sense we need to have a smart composition

strategy to be able to compose the “new” change objects with those which appeared in

the refactoring stage.

Acknowledgements. This research is supported by the Spanish MCYT R+D project

TIN2008-06596-C02-02 and by the Andalusian Government R+D project P08-TIC-

03717. It has been also funded by Argentinian Mincyt Project PICT 2187.

References

1. Barnicle, K.: Usability Testing with Screen Reading Technology in a Windows
Environment. In: Conf. on Universal Usability, pp. 102--109. ACM Press, New York
(2000)

2. W3C.: Web Content Accessibility Guidelines 2.0. December (2008),
http://www.w3.org/TR/WCAG20/

3. Robles Luna, E., Grigera, J., Rossi, G.: Bridging Test and Model-Driven Approaches
in Web Engineering. In: Gaedke, M., Grossniklaus, M. (eds.) Web Engineering.
LNCS, vol. 5648, pp. 136--150. Springer Verlag (2009)

4. Zajicek, M., Venetsanopoulos, I., Morrissey, W.: Web Access for Visually Impaired
People using Active Accessibility. In: Int. Ergonomics Association 2000/HFES, pp.
445--448. San Diego (2000)

5. Ivory, M., Mankoff, J., Le, A.: Using Automated Tools to Improve Web Site Usage
by Users with Diverse Abilities. Journal IT & Society. 1, 195--236 (2003)

6. IBM: Watchfire's Bobby, http://www.watchfire.com
7. Harper, S., Goble, C., Steven, R., Yesilada, Y.: Middleware to Expand Context and

Preview in Hypertext. In: ASSETS’04, pp. 63--70. ACM Press, New York (2004)
8. Fernandes, A., Carvalho, A., Almeida, J., Simoes, A.: Transcoding for Web

Accessibility for the Blind: Semantics from Structure. In: ELPUB2006 Conference
on electronic Publishing, pp.123--133. Bansko (2006)

9. Bohman, P. R., Anderson, S.: An Accessible Method of Hiding Html Content. In: the
International Cross-Disciplinary Workshop on Web Accessibility (W4A), pp. 39--43.
ACM Press, New York (2004)

10. Yesilada, Y., Stevens, R., Harper, S., Goble, C.: Evaluating DANTE: Semantic
Transcoding for Visually Disabled Users. ACM Transactions on Computer-Human
Interaction (TOCHI), vol. 14, pp.14--es. ACM, New York (2007)

11. Plessers, P., Casteleyn, S, Yesilada, Y., De Troyer, O., Stevens, R., Harper, S., Goble,
C.: Accessibility: A Web Engineering Approach. In: 14th International World Wide
Web Conference (WWW2005), pp. 353--362. ACM, New York (2005)

12. Fowler, M., Beck, K.: Refactoring: Improving the Design of Existing Code. Addison-
Wesley Professional (1999)

13. Garrido, A., Rossi, G., Distante, D.: Model Refactoring in Web Applications. In: 9th
IEEE int. Workshop on Web Site Evolution, pp. 89--96. IEEE CS Press, Washington
(2007)

14. Medina-Medina, N., Rossi, G., Garrido, A., Grigera, J.: Refactoring for Accessibility
in Web Applications. Proceedings of the XI Congreso Internacional de Interacción
Persona-Ordenador (INTERACCIÓN’2010), pp. 427--430. Valencia (2010), Spain.

15. Burella, J., Rossi, G., Robles Luna, E., Grigera, J.: Dealing with Navigation and
Interaction Requirement Changes in a TDD-Based Web Engineering Approach. In:
Agile Processes in Software Engineering and Extreme Programming. LNCS, vol. 48,
pp. 220--225. Springer, Heidelberg (2010)

16. Beck, K.: Test-driven development: by example. Addison-Wesley, Boston (2003)
17. Robles Luna, E., Garrigós, I., Grigera, J., Winckler, M.: Capture and Evolution of

Web requirements using WebSpec. In: Web Engineering. LNCS, vol. 6189, pp. 173--
188. Springer, Heidelberg (2010)

18. Acerbis, R., Bongio, A., Brambilla, M., Butti, S., Ceri, S., Fraternali, P.: Web
Applications Design and Development with WebML and WebRatio 5.0. In: Objects,
Components, Models and Patterns. LNCS, vol. 11, pp. 392--411, Springer,
Heidelberg (2008)

19. Rivero, J., Rossi, G. Grigera, J., Burella, J., Robles Luna, E., Gordillo, S.: From
Mockups to User Interface Models: An extensible Model Driven Approach. To be
published in Proceedings of the 6th Workshop on MDWE, Springer LNCS (2010)

Capturing and Validating Personalization Requirements in Web Applications

Esteban Robles Luna

LIFIA, UNLP, Argentina
La Plata, Argentina

erobles@lifia.info.unlp.edu.ar

Irene Garrigós

Lucentia Research Group, DLSI,
University of Alicante, Spain

igarrigos@dlsi.ua.es

Gustavo Rossi

LIFIA, UNLP, Argentina
Also at CONICET
La Plata, Argentina

gustavo@lifia.info.unlp.edu.ar

Abstract — Personalization is a key feature to improve user

experience in Web applications and therefore many Web

engineering approaches allow the specification of some type of

personalization when modelling a website. However, these

approaches usually neglect the process of capturing and

representing personalization requirements, thus not

considering them when the application evolves; maintenance of

these requirements is then a very complex task. In this paper,

we present WebSpec, a requirement artefact used to capture

navigation, interaction and interface aspects of Web

applications. Concretely, we focus on how to specify

personalization requirements, and on how to automatically

generate the personalization model from their specification.

Furthermore, from the requirements specification we derive a

set of interaction tests to assess the personalization

functionality. We illustrate our ideas with an E-commerce

application example and describe a prototype tool which

implements the described functionality.

Keywords: Personalization, Web requirements, Requirements

Validation

I. INTRODUCTION

The World Wide Web has changed the way we
communicate and exchange information. Web applications
have become more complex and the information they
provide is continuously growing. Web engineering
approaches [2], [4], [7], [9], [12], [20] appeared to provide a
systematic way to develop complex Web applications. In this
area, personalization [11] has been proposed as a solution to
improve the user experience by analyzing his context,
characteristics and browsing history and changing different
aspects of the application according to his needs.

Due to the different needs and goals of the large and
heterogeneous audience that a Web application serves, user
expectations need to be considered from the beginning of
software projects. However as indicated in [5], most Web
engineering approaches do not seriously consider the
requirements analysis phase, and as a consequence these
requirements are barely taken into account when the
application evolves. Therefore, the resulting Web
applications usually have outdated requirements which
makes impossible to test the actual customer’s requirements,
and there are difficulties to handle fast evolution, which is
usually essential in the Web field.

Personalization is also a missing aspect in the
requirement elicitation phase; there are few approaches that

allow modelling personalization requirements (see Sect. VI
for details). Moreover, usually (personalization)
requirements are described informally, thus becoming a
problem when we dive into the implementation and
validation phases, particularly to assess if (personalization)
requirements have been correctly implemented.

To tackle these problems we use an agile approach called
WebTDD [18] which has a TDD (Test Driven Development)
style of development; however and differently from
“conventional” TDD [1], instead of relying on an extreme
coding approach, we use models to generate the application.
Using models we raise the level of abstraction as the
application is automatically derived from them [18]. Our
approach incrementally adds requirements to the existing
application, following a short development cycle. WebTDD
uses a DSL (Domain Specific Language) called WebSpec
[17] to specify these requirements.

In this paper, we focus on how to specify personalization
requirements and how to use this specification to improve
the development process by automating some time-
consuming and error-prone tasks. Summarizing, as the
contributions of this paper, we show how to:

• Specify personalization requirements using a model-
driven style.

• Automatically generate the conceptual models for
the personalization functionality of the Web
application, thus avoiding manual errors and the
mismatch between the requirements and the
implementation.

• Automatically generate tests from the requirements
specification to validate the personalization
functionality in the WebTDD cycle.

The rest of the paper is structured as follows: in Section
II we briefly present the WebTDD approach. In Section III
we show how personalization is specified in WebSpec and
how we automatically derive interaction tests from the
requirements specification. Section IV shows how the
personalization model is automatically derived from the
personalization requirements. Section V describes the
implementation of our ideas. Section VI presents some
related work and finally Section VII concludes and presents
some further work we are pursuing.

II. WEBTDD IN A NUTSHELL

WebTDD is an agile approach which follows a TDD
style of development, using models to generate the Web

application. Like most agile approaches, it is based on short
development cycles; in each cycle new requirements are
added and the application is upgraded incrementally.

The cycle starts by capturing requirements with mockups
(stub HTML pages) to agree on the look and feel of the
application, and WebSpec diagrams (Step 1 of Fig. 1) to
represent navigation and interaction behaviours. WebSpec is
a DSL which allows specifying navigation, interaction and
user interface aspects in a more formal way (e.g. in
comparison with use cases [10]).

Next we automatically derive (Step 2) a set of
meaningful tests that the application must pass to satisfy the
captured requirements. As in “conventional” TDD, we run
them prior to the implementation (Step 3) in order to check
that the application does not satisfy the requirements yet.
Afterwards, the modelling activities begin (Step 4): we
create or enhance a set of models and derive a running
application (Step 5). We check whether each requirement has
been successfully implemented by running the previous tests
(Step 6). If one test fails, we have to go back, tweak the
models and derive the application again until all tests pass.
The approach continues with the next requirement until the
sprint is over. We must notice that WebTDD is independent
of the model driven Web engineering approach used for the
modeling activities as the core of the process does not
depend on the specific modelling artefacts or mechanics
[18].

Figure 1. Approach overview

A WebSpec diagram has two key elements: interactions
and navigations. An interaction (the counterpart of a Web
page in the requirements stage) represents a point where the
user can interact with the application by using its interface
objects. Interactions may have widgets such us: labels, list
boxes, buttons, radio buttons, check boxes and panels.
Labels define the content (information) shown by an
interaction. A diagram has a starting interaction which is
represented with dashed lines. Some actions (clicking a
button, adding some text in a text field, etc) might activate a
navigation from one interaction to another. These actions are

written in WebSpec’s DSL which conforms to the syntax:
var := expr | actionName(arg1,… argn).

Figure 2. A WebSpec diagram

Fig. 2 shows a WebSpec diagram where navigation in a
simplified E-commerce application is specified. The diagram
shows how the user can move from one interaction to
another thus allowing him to explore books, go back to the
home page, buy a book and so on. To express what
properties the diagram (and thus the application) must hold,
we add invariants to the interactions (invariants are not
shown in Fig. 2 for the sake of readability). For instance, the
BookDetail interaction must satisfy the invariant
BookDetail.bookName = ${bookN} which states that the
value shown in the bookName label should be equal to the
bookN variable (see in Fig. 2 the navigation from BookList
to BookDetail where the variable is updated).

After we have specified the scenario in a diagram we can
automatically derive a set of tests that the application must
satisfy. This is an important feature of WebSpec, because, as
in TDD, we use tests as software artefacts that decide
whether the requirement is satisfied by the final application.
However, instead of the typical unit tests of code-based
TDD, we rely on interaction tests which fit better with Web
applications. For this scenario, our support tool, the
WebSpec Eclipse plug-in (Sect. V), generates a set of tests
for the different paths that we can follow from the starting
interaction. We next explain how to specify and validate
personalization requirements in our approach.

III. SPECIFYING AND VALIDATING PERSONALIZATION
REQUIREMENTS

In this section we show how to specify personalization
requirements using WebSpec diagrams. Moreover, these
requirements can be validated by deriving a set of interaction
tests, allowing to check if they are satisfied by the generated
application, as explained in Sect. III. B.

A. Specification of Personalization Requirements

A personalization requirement describes some
functionality that a Web application has to fulfil to
(dynamically) adapt itself, depending on the user or
environment profile [11]. In our approach we specify
personalization requirements using WebSpec allowing their
automatic validation. A WebSpec diagram specifies a
personalization scenario that must be satisfied by the final
application.

The conditions on which personalization requirements
are defined usually refer to user-related information, which is
traditionally specified in a so-called user model (UM). This
user-related information can be classified in different types:

• User-specific characteristics (independent of the
application domain) like age or country.

• Information related to the domain, for instance, from
the user browsing behaviour we can derive the
preferences or interests on different elements of the
domain.

• Information related to the user context (e.g. device,
network, actual location, etc).

In WebSpec we use a special variable named ${user} to
denote the different elements associated with the UM. Since,
during the requirement elicitation phase the UM does not
exist, we assume that the ${user} variable is a prototype [14]
on which we can add properties simply by accessing it and
assigning it a value (e.g. ${user}.age:= 32). To refer to user-
specific characteristics or user-context information, we
directly access the property of the user variable, e.g.
${user}.age. In the case of domain dependent information
we add the DD prefix, e.g. ${user}.DD.booksBought.

The personalization actions can be specified over the
content, the navigation or the presentation of the Web
application. Though personalization of the presentation is out
of the scope of this paper, we can specify this kind of
requirements by associating mockups to interactions (which
is usual in WebSpec). Concretely, the personalization actions
that can be specified in WebSpec are the following:

• Updating user information: In WebSpec we can
specify updates on attributes of the UM by adding
actions to the navigations of a diagram. The syntax
is ${user}.attribute := value where the value can be a
literal or a formula.

• Filtering contents of the site: In WebSpec the labels
of the different interactions can be filtered according
to a condition. This is specified by means of
invariants associated to the interactions of a
diagram. To indicate if a label is shown or not, we
use the “visible” property. The syntax is as follows:
label.visible <--> (Boolean expression). The
Boolean expression can also contain a loop,
depending on the condition we want to express.

• Filtering the navigation: The links to be shown can
also be selected by means of the “visible” property,
by specifying invariants over the interactions of a
diagram. The syntax is as follows: link.visible <-->
(Boolean expression).

In order to illustrate the described concepts, let’s consider
a simple E-commerce application in which our stakeholders
want to personalize the discounts offered to customers,
depending on how many books they have already bought. In
particular, we would like to offer discounts in the book detail
page when the user has already bought 2 or more books.

Following the approach (Fig. 1), we start capturing the
requirements using WebSpec diagrams. This personalization
requirement implies that the application must perform at
least two actions. First, it must record how many books the
user has already bought, and then it has to show the discount
information in the book detail page, depending on how many
books he has already bought. The first action is performed
when the user navigates from the BookDetail to the Cart
interaction (Fig. 2). The navigation has the side effect of
adding the book to the shopping cart and thus incrementing
the books that the user has already bought. We express it in
the action of the navigation as follows:

${user}.DD.booksBought:=${user}.DD.booksBought + 1

This information is domain dependent, so the prefix DD
is added to the attribute to update it as explained before. The
second action is expressed in the invariant of the BookDetail
interaction. The invariant relates the visible attribute of the
label and a condition that must hold to let it be visible:

BookDetail.discount.visible <-->
(${user}.DD.booksBought >= 2)

Concretely, the discount label is visible if the user has

already bought 2 or more books.

Figure 3. Recommendations personalization scenario

Another example of personalization is a
recommendations feature (see Fig. 3); we would like to
recommend books of those authors that the user is interested
in, using his browsing history. For example, if the user has
visited many books of Jose Luis Borges, we could guess that
he is one of his favourite authors. This requirement needs
first to decide how the users’ interest is captured. We decide
to increase the degree of interest when the user navigates to
the book details:

authorName := BookList.authorName[${index}];
interests :=
${user}.DD.interestInAuthors[${authorName}];
${interests}.degree := ${interests}.degree + 10;

click(BookList.bookName[${index}])

The first action gets the author name. Then we retrieve
the information of the interest of the user in the author
(interestInAuthors) from the domain dependent information
and increase it in 10. Finally, we click on the book’s name to
move from the BookList to the BookDetail interactions.
These 4 actions store the activity of the user that can be later
used to show / hide its favourite authors.

Additionally this requirement requires hiding the link that
points to the recommendations node when we do not have
enough information about the user’s interests. So, we specify
its visibility in the Home’s invariant in this way:

Home.recommendations.visible <--> (Exists a in
${user}.DD.interestInAuthors / a.degree >= 100).

The above specification states that if there is an author

that the user is interested in (degree > 100) then we should
show the recommendations link.

B. Derivation of Interaction tests for Requirements

Validation

After a requirement has been specified by means of
WebSpec diagrams, we are able to automatically derive
meaningful interaction tests to assess whether the
requirement has been successfully implemented (see Fig 1,
step 2). An interaction test opens a Web browser and
executes a set of actions in the same way a user would do it.
Interaction tests allow making assertions on HTML elements
based on XPath expressions so we can check the values of
the different widgets.

For each diagram, we create a test suite. Each path
depicted in the diagram will be translated into a test case that
will be named as the complete path’s trail. A test case will
follow the actions specified in the path, and assertions will
be generated from the invariants of every interaction. The
actions specified on navigations will be translated into
sentences in the test, for example typing text into a text field
or clicking buttons. Reaching an interaction will require that
we check its invariant (if any), by generating assertions on
the test. As different interactions may alter the variables
bound to an invariant, it may be necessary to repeat the
updated assertions after navigating to the same interaction
more than once.

For example, the discount personalization diagram (see
Fig. 2) is derived into the following interaction test (in
Selenium [21]). Line 1 opens de application. Lines 2-11 add
2 books to the cart and assert that the discount is not present
yet. Lines 12-14 navigate to the book detail page and
validate that the discount is present (because the user has
already bought 2 books).

(01) selenium.open(

"http://localhost:8080/bookstore");
(02) selenium.click("id=bookList");
(03) selenium.click("id=book1");
(04) assertFalse(selenium.isElementPresent(

"id=discount"));
(05) selenium.click("id=buy");
(06) selenium.click("id=home");

(07) selenium.click("id=bookList");
(08) selenium.click("id=book2");
(09) assertFalse(selenium.isElementPresent(

"id=discount"));
(10) selenium.click("id=buy");
(11) selenium.click("id=home");
(12) selenium.click("id=bookList");
(13) selenium.click("id=book3");
(14) assertTrue(selenium.isElementPresent(

"id=discount"));

After the test derivation process is completed we can run

the tests to ensure that the application does not satisfy the
requirement yet (Step 3); the same tests will be run again
when the requirements have been implemented. The
personalization model (Step 4) will be automatically derived
from the WebSpec diagrams as shown in the following
section.

IV. AUTOMATIC GENERATION OF THE PERSONALIZATION
MODEL

Once the personalization requirements have been
specified and the tests have been generated, we focus on how
to automatically derive concrete software artefacts that
implement the personalization functionality from the
personalization requirements. In this way, the mismatch
between requirements and the developed application is
avoided. The generation of such software artefacts leads to
an application that satisfies the personalization requirements
expressed in the WebSpec diagrams.

In this case, the software artefacts generated from the
personalization requirements are personalization rules. We
have chosen to specify these rules using the PRML
(Personalization Rules Modelling Language) language [7].
PRML is a rule-based high level language devised to specify
personalization in an orthogonal way upon Web applications,
independently of the underlying methodology. PRML has
been successfully used in several Web methodologies and
applied to several Web systems and an engine to perform
and validate these rules has been implemented [7].

In the following subsections we present how to derive the
PRML rules from the WebSpec specifications in a formal
way. We also show an intuitive example of PRML rule
generation, and finally we explain how to build the UM from
the personalization rules.

A. Deriving PRML rules

By automatically generating the personalization model,
we provide the designer a first set of personalization rules
that he can refine or modify later. This helps avoiding many
manual errors and inconsistencies. In order to transform
WebSpec diagrams into PRML rules, we use the MOF 2.0
Query/View/Transformation language (QVT) [15] which is a
standard transformation language in the context of the MDA
(Model Driven Architecture) initiative. QVT is the means for
defining formal and automatic transformations between
models. Defining transformations by specifying QVT
relations has several advantages: (i) transformations are
formally established, easy to understand, reuse and maintain,
(ii) they do not have to be manually performed by an expert,

which is a tedious and time-consuming task, and (iii)
relations can be easily integrated into an MDA approach.

The objective of QVT is to define a formal mapping of
the elements of a source metamodel (e.g. WebSpec) into a
target metamodel (e.g. PRML). The PRML metamodel can
be checked at [7] and the WebSpec metamodel is shown in
Fig.4.

The generation of a PRML rule from a WebSpec diagram
is defined by a sequence of transformations (QVT relations).
A PRML rule is derived from a set of actions specified in
WebSpec diagrams. As PRML rules are event-condition-
action rules, each of these three parts should be derived from
WebSpec specifications:

Depending on the type of WebSpec interaction
performed by the user (e.g. navigation, diagram setup
actions, etc), we can generate the different PRML events.

• PRML conditions are automatically translated from
WebSpec conditions.

• The actions of PRML rules are derived by taking
into account the different expressions specified in
each of the actions of a WebSpec diagram. For
instance, we can derive a PRML setContent action
(which updates the user information in the UM)
from an assignment expression in WebSpec. We can
derive actions which filter the attributes to be shown
or the links (e.g. selectAttribute and hideLink in
PRML) by checking the “visible” attribute of the
WebSpec WidgetReference element of the
metamodel.

Due to space limitations, we cannot show all the QVT
rules we have defined. In Fig. 4, the QVT rule for deriving
the PRML SetContent action is shown as an illustration. This
relation checks that there is a set of elements in the WebSpec
action that represents an assignment expression according to
the WebSpec metamodel (see Fig. 5). These elements are: an

assignment class together with the corresponding variable to
assign the value, and the value (e.g. an expression) to be
assigned. The relation enforces that the corresponding
PRML expression has the following elements: a setContent
class, and an expression that expresses the assignment of a
value to a UM variable.

Figure 4. SetContent QVT transformation

To intuitively illustrate the rule generation process, let us
consider the discount requirement example explained before
(Fig. 2). As aforementioned (Sect. III), this requirement is
derived into two PRML rules. The first one (i.e. acquisition
rule) acquires/updates the number of books bought by the
user in the UM. The second one (i.e. personalization rule)
shows/hides the discount attribute to the user based on the
previously acquired information (i.e. books bought).

The acquisition rule determines the moment (navigation),
condition (always) and the action (increase the value of the
variable in the UM). Then, from the navigation in the
WebSpec diagram (see Fig. 2) we derive the following
PRML rule:

Figure 5. WebSpec’s metamodel

When Navigation.BookDetailBuy(NM.Book book) do
setContent(UM.User.booksBought,
UM.User.booksBought + 1)

endWhen

In a similar way, we derive the personalization rule from

the BookDetail invariant (see Sect. III). Since
personalization takes place every time the node is loaded, the
PRML event derived is LoadElement. The condition
corresponds with the right part of the WebSpec iff Boolean
expression, and the selectAttribute action matches the left
part of the iff because it references the visible property of a
label. The PRML rule derived is shown next:

When LoadElement.BookDetail(NM.Book book) do
If (UM.User.booksBought >= 2) then
 book.Attributes.selectAttribute(discount)
endIf
endWhen

In the following section we show how we incrementally

implement the UM using the derived PRML rules as a
starting point.

B. Incremental Implementation of the UM

In the previous section we showed how a set of
personalization rules in the PRML language are derived.
These rules express the Event-Condition-Actions that have to
occur to personalize the application. Since we are deriving
these rules from the requirements following a top down
process, the UM may not reflect yet the functionality
expressed on them. For instance, the first time we derive the
rules, the User class may not even exist. Additionally, when
the application has been deployed the UM may not reflect a
new attribute that has been added by a new requirement. All

these problems are detected by the PRML engine [7] when it
validates the generated rules. The validation process will fail
showing which parts of the UM do not exist yet.

Using the same philosophy of TDD, we create/enhance
the UM in an incremental way by trying to validate the
derived rules. The validation process will show which
information is not yet present in the UM. For each attribute
or class that does not exist in the UM, we create it manually
and run the validation process again until the validation
succeeds. In this way, we drive the development of the UM
using the rules that were automatically generated in the
previous step making it a straightforward process.

As an example, let us consider the first rule of the
previous subsection. Assuming that the User class already
exists, we run the PRML rule validation which fails because
the booksBought attribute does not exist in the User class. To
make the validation pass, we go to the class and add the
instance variable of type number. Then, we run the
validation again and finally the validation will succeed.

V. IMPLEMENTATION

WebSpec has been implemented as an Eclipse plugin
(Fig. 6) using EMF and GMF technologies. It supports the
specification of personalization requirements by means of
diagrams that the user can create within the environment and
using the palette on the left side of the diagram editor, the
user can create concepts like Interactions and Navigations
and complete the diagram with the personalization
specification.

The automatic derivation of interaction tests is performed
using a JUnit class writer that satisfies the syntax needed by
the Selenium framework. Also, during test derivation,
expressions are optimized for better readability. For

Figure 6. WebSpec’s Eclipse plugin

example, an expression like: ${long} -> Home.username =
”John” where the long variable has the value false (-> means
the implies relationship) is automatically optimized to true
using Boolean equivalencies. We have chosen JUnit and
Selenium because they are easily integrated in Eclipse
though other web testing framework such as Watir [22] can
also be used.

The automatic derivation of PRML rules is easily
performed as PRML is also implemented as an Eclipse
plugin thus allowing to seamless integrate both approaches.
The WebSpec menu has options to allow the derivation of
PRML rules that are automatically imported in the PRML
prototype tool. PRML rules are plain text files thus the
generation of such rules is easily performed by a model to
model transformation from the WebSpec´s metamodel to the
PRML metamodel. Then we reuse the transformation
process of the PRML tool to use the model to text
transformation.

We have used the WebSpec plugin with the PRML tool
to implement a personalization version of the E-commerce
application. Several personalization requirements have been
specified and validated using the derived tests in the context
of the WebTDD approach. We have used interaction tests to
drive the development of the personalization and functional
requirements. Tests were used to check that the new
requirements have been correctly implemented and that we
have not been unintentionally broken existing functionality.
The personalization model was derived from the
specification thus avoiding the mismatch between
requirements and the implementation. However, as
previously mentioned, we have to follow a short TDD cycle
to complete the derivation as it only covers some structural
aspects of classes in PRML. We expect to improve the
derivation process in future work.

VI. RELATED WORK

In the context of Web engineering, few approaches have
focused on defining an explicit requirement analysis stage to
model the user expectations. Some approaches consider the
modelling of personalization to some extent [3], [8], [9],
[12], [20]. In general those approaches ignore how
personalization requirements are captured.

A-OOH [8] is a model-driven approach which allows the
specification of personalization requirements. It uses the i*
framework in order to specify a goal-oriented requirements
model. From this specification, the conceptual models (e.g.
domain and navigation models) are generated by means of
QVT transformations. However, A-OOH does not allow the
derivation of the personalization model as done in WebSpec.

In [13], in the context of OOHDM [20], personalized
UIDs are used to capture a personalized version of the
interactions that users have with the application. The
difference with traditional UIDs is that they may have many
initial interactions one for each different type of user.
Webspec and personalized UIDs share the same terminology
as WebSpec is based on UIDs; however, personalized UIDs
do not provide automatic transformations to software
artefacts, so there may be a mismatch between requirements
and the final application.

Adaptative OOWS [19] extends OOWS [16] to support
adaptation. It propose two artifacts to specify adaptative
requirements: an enhanced of Activity Diagrams called User
Stereotype Diagrams and their corresponding User and Data
Specifications descriptions which capture the adaptive part
of the requirements by means of intuitive and easy-to-
understand schemas. Afterwards, the requirements models
serve as a basis to derive the conceptual specifications of
users and adaptive features in the OOWS Conceptual
Modeling phase. This approach share some common features
with the work presented in this paper such as: specification
of requirements and derivation of the User model. However,
the approach does not provide automatic ways to validate
that the adaptative requirements are correctly implemented in
the application. Requirements validation is extremely
important to ensure that the behavior of the application is
preserved, e.g. when maintainability needs to be improved
by means of model refactorings.

In [6], Escalona and Koch have proposed a metamodel
based on WebRE profiles to specify web requirements. Its
main advantage is the automatic generation of conceptual
models (content and navigation models) which automatically
satisfy the requirements. Also, some tests are derived from
the profiles to validate that the functionality has been
correctly implemented. However, some requirements such as
detailed composition of the user interface and specifically
personalization requirements can not be specified thus
requirements cannot be validated and the personalization
models can not be derived using this notation.

In summary, the described approaches are, as far as the
authors are concerned, the only that allow specifying
personalization requirements, however they have the
following drawbacks:

• They do not allow the automatic derivation of the
personalization artefacts (personalization and UM).
Doing so we avoid many manual errors and we
assure that the defined model is aligned with the
previously specified requirements.

• They do not provide a way to validate
personalization requirements. Automatic validation
using tests helps not only to validate the correct
implementation of the personalization requirements,
but it also helps to detect unintended errors when the
application grows.

WebSpec supports the specification of Personalization
requirements and can be used in different development
processes to implement the personalization functionality. To
the authors’ knowledge, the work presented in this paper is
the first to provide test derivation and partial UM derivation
from a requirement artefact specifically for Personalization.
In addition to the advantages shown in this work, we can use
WebSpec in conjunction with mockups to improve the
communication between stakeholders while capturing the
personalization requirements as shown in [17].

VII. CONCLUSIONS AND FURTHER WORK

In this paper we have presented an approach for dealing
with personalization requirements in Web applications.
Requirements are captured in WebSpec diagrams which

allow us to derive a set of tests to validate requirements, and
to automatically derive the personalization rules in the
PRML language. In addition, we have shown how the UM
can be incrementally implemented by validating the
generated rules in the PRML engine. The idea has been
presented in the context of WebTDD, an agile approach for
developing Web applications, but it can be applied to any
other Web methodology.

We are currently working on the automatic derivation of
the UM which is, until now, done manually (as shown in
Sect. IV B). Furthermore, we are working on some field
experiences with the usage of mockups to help on
developing the look and feel of the personalization
functionality. Finally, we are analyzing how personalization
requirements evolve and how we handle this evolution along
the development cycle.

ACKNOWLEDGEMENTS

This work has been partially supported by the MANTRA
project (GRE09-17) from the University of Alicante, and by
the MESOLAP (TIN2010-14860) from the Spanish Ministry
of Education and Science.

REFERENCES

[1] Beck, K.: Test Driven Development: by Example, Addison-Wesley,
2003.

[2] Casteleyn, S., Garrigós, I., Troyer, O.D.: Automatic runtime
validation and correction of the navigational design of web sites. In:
APWeb. (2005) 453–463.

[3] Ceri, S., Daniel, F., Matera, M., and Facca, F. M. 2007. Model-driven
development of context-aware Web applications. ACM Trans.
Internet Technol. 7, 1 (Feb. 2007), 2.

[4] Ceri, S., Manolescu, I.: Constructing and integrating data-centric web
applications: Methods, tools, and techniques. In: VLDB. (2003) 1151.

[5] Escalona, M.J., Koch, N.: Requirements engineering for web
applications – a comparative study. J. Web Eng. 2(3) (2004) 193–212.

[6] Escalona, M.J., Koch, N. Metamodeling Requirements of Web
Systems. In Proc. International Conference on Web Information
System and Technologies (WEBIST 2006), INSTICC, 310--317,
Setúbal, Portugal. 2006.

[7] Garrigós, I.: A-OOH: Extending Web Application Design with
Dynamic Personalization. PhD thesis, University of Alicante, Spain
(2008)

[8] Garrigós, I., Mazón, J.N., Trujillo, J.: A Requirement Analysis
Approach for Using i* in Web Engineering. In: ICWE. (2009),
LNCS, 5648, 151-165.

[9] Houben, G.-J., Frasincar, F., Barna, P. and Vdovjak, R. (2004).
Engineering the presentation layer of adaptable web information
systems. In Web Engineering 4th International Conference, ICWE
2004, volume 3140 of Lecture Notes in Computer Science, pages 60-
73, Springer, ISBN 3-540-22511-0.

[10] Jacobson, I., Object-Oriented Software Engineering: A Use Case
Driven Approach, ACM Press/Addison-Wesley, 1992.

[11] Kim, K: Personalization: Definition, Status, and Challenges Ahead.
Journal of Object Technology, 1, (2002) 29-40.

[12] Koch, N.: Reference model, modeling techniques and development
process software engineering for adaptive hypermedia systems. KI
16(3) (2002) 40–41.

[13] Martin, A. Cechich, A: A Model-Driven Reengineering Approach to
Web Site Personalization. In Proceedings of the Third Latin
American Web Congress (October 31 - November 02, 2005). LA-
WEB. IEEE Computer Society, Washington, DC, 14.

[14] Noble, J., Taivalsaari, A., Moore, I. (eds.): Prototype-Based
Programming: Concepts, Languages and Applications. Springer-
Verlag. ISBN 981-4021-25-3. 1999.

[15] QVT Language: http://www.omg.org/cgi-bin/doc?ptc/2005-11-01.
[16] Pastor, O., Abrahão, S., Fons, J.: An Object-Oriented Approach to

Automate Web Applications Development. In: Bauknecht, K.,
Madria, S.K., Pernul, G. (eds.) ECWeb 2001. LNCS, vol. 2115, pp.
16–28. Springer, Heidelberg (2001).

[17] Robles Luna E., Garrigos I., Grigera J., Winckler M. Capture and
Evolution of Web requirements using WebSpec. To be published in
the Proceedings of 10th International Conference on Web
Engineering (ICWE 2010).

[18] Robles Luna, E., Grigera, J., Rossi, G.: Bridging Test and Model-
Driven Approaches in Web Engineering, Web Engineering, Lecture
Notes in Computer Science, pp. 136-150, Springer, Heidelberg, June
2009.

[19] Rojas, G., Valderas, P., and Pelechano, V. 2006. Describing Adaptive
Navigation Requirements of Web Applications. In Proc. of the 4th
International Conference on Adaptive Hypermedia and Adaptive
Web-Based Systems (AH 2006), Dublin, Ireland. LNCS 4018. 318–
322.

[20] Schwabe, D., Rossi, G.: An object oriented approach to web-based
applications design. TAPOS 4(4) (1998) 207–225

[21] Selenium, a Web application testing system, http://seleniumhq.org/
[22] Watir, http://watir.com/

7

Change management and tool support for WebSpec

The content of this chapter corresponds with the following papers:

Burella J., Rossi G., Robles Luna E., Grigera J. Dealing
with Navigation and Interaction Requirement Changes in a
TDD-Based Web Engineering Approach. Proceedings of the 11th
International Conference on Agile Software Development (XP
2010), Springer Verlag, LNCS, 2010. Trondheim, Norway. Core B.

Robles Luna E., Burella J., Grigera J, Rossi G. A
Flexible Tool Suite for Change-Aware Test-Driven Development
of Web Applications. Proceedings of the ACM/IEEE 32nd
International Conference on Software Engineering (ICSE 2010.
2010. Cape Town, South Africa. Core A.

In the previous chapters we have shown how to use WebSpec with WebTDD and in the context
of a methodology that uses i*. Also, we showed its use not only for specifying functional
requirements but also for personalization and accessibility ones.

Though we have briefly presented in the previous chapters some details about WebSpec
tool, in this chapter we concentrate in WebSpec’s change management support and its Eclipse
tool.

Fig. 7.1. Tool support of WebSpec in WebTDD

The content of this chapter corresponds with a paper published in the extreme program-
ming conference (XP) and with a research demo presented in the International Conference
on Software Engineering (ICSE). XP is a leading international conference on agile methods
in software and information systems development with the aim to bring together software
and information systems professionals, both researchers and practitioners, to discuss the latest
trends, applications, and theory, share experiences, and reveal new research results in agile
software development. On the other hand, ICSE is the premier international event for software

160 7 Change management and tool support for WebSpec

engineering. It provides a world class forum for software engineering professionals from indus-
try, government and academia to hear about and discuss the latest developments, trends and
innovations in software engineering.

Dealing with Navigation and Interaction Requirements

Changes in a TDD-Based Web Engineering Approach

Juan Burella
1,3

, Gustavo Rossi
2,3

, Esteban Robles Luna
2,3

, Julián Grigera
2

1
Departamento de Computación, Universidad de Buenos Aires

jburella@dc.uba.ar
2LIFIA, Facultad de Informática, UNLP, La Plata, Argentina

[gustavo, esteban.robles, julian.grigera]@lifia.info.unlp.edu.ar
3
Also at CONICET

Abstract. Web applications are well suited to be developed with agile methods.

However, as they tend to change too fast, special care must be put in change

management, both to satisfy customers and reduce developers load. In this pa-

per we discuss how we deal with navigation and interaction requirements

changes in a novel test-driven development approach for Web applications. We

present it by indicating how it resembles and differs from “conventional” TDD,

and showing how changes can be treated as “first class” objects, allowing us to

automate the application changes and also to adaptively prune the test suite.

1 Introduction

TDD and its variants like STDD [4] mostly focus on behavioural aspects of domain

classes, and since TDD is generally applied in a bottom up way, it tends to disregard

important features of Web applications such as navigation, interface or interaction. As

a consequence, usability, look and feel, and also navigation features may be checked

too late, once the application has been already presented to the customers, thus delay-

ing the correction process.

As a way to overcome the mismatch between “conventional” TDD and Web appli-

cations development, we present an approach for improving change management in

the context of our TDD-like mehotology by focusing on changes that affect naviga-

tion and interaction aspects. Requirements are represented using WebSpec diagrams,

which capture navigation, user interface (UI) and interaction application aspects.

WebSpec diagrams are then automatically translated into sets of meaningful interac-

tion tests the application must pass. While the developers work coding the solution,

the support environment captures the changes in objects and associates them to the

corresponding tests. Change objects can also help to semi automatically change struc-

tural parts of the Web application when a requirement is added or changed. In the

same way, we can reduce the number of tests that must be run to those that exercise

changed objects only, improving the overall development time. We illustrate the ap-

proach with a simple Twitter-like application and show an integrated environment

built on top of Seaside (www.seaside.st) that supports this functionality.

2 Background: A Test-Driven Approach for Web Applications

The key aspects of our requirements modelling stage are fast interface and interaction

prototyping on one hand, and navigation modelling on the other. Prototyping is car-

ried out with interaction mockups: simple HTML stub pages that significantly help to

agree on the application’s look and feel, and the way interaction must be performed.

We use WebSpec diagrams to specify navigation and interaction requirements

more formally than with User Stories (US) [3]. These artefacts (based on UIDs [5]

and Quickcheck [1]) capture navigation and interaction aspects in a similar way UIDs

do, but adding the formal power of preconditions and invariants to assert properties in

the interactions. A WebSpec diagram contains interactions and navigations. An in-

teraction represents a point where the user consumes information (expressed as a set

of interface widgets) and interacts with the application by using some of its widgets.

Some actions (clicking a button, adding some text in a text field, etc) might produce

navigation from one interaction to another, and as a consequence, the user moves

through the application’s navigation space. These actions are written in an intuitive

domain specific language. Fig. 1 shows a WebSpec that will let the user tweet, see

how many tweets he has, and allow him to logout from the application. From the

Login interaction, the user can authenticate by typing its username and password and

then clicking on the login button (navigation from Login to Home interaction). Then,

the user can add messages by typing in the messageTF and clicking on the post button

(navigation from Home to Home interaction).

Figure 1. WebSpec of Tweet’s interaction

From a WebSpec diagram we automatically generate a set of interaction tests that

cover all the interaction paths specified in it, thus avoiding the translation problem of

TDD between tests and requirements. Unlike unit tests, interaction tests simulate user

input into HTML pages, and allow asserting conditions on the results of such interac-

tions. Since each WebSpec interaction is related to a mockup, each test runs against it

and the predicates are transformed into tests assertions. These (failing) series of tests

set a good starting point for our TDD-like approach.

Once we have a set of tests for a specific requirement, it is time to develop the func-

tionality to make them pass. Since interaction tests define the functionalities at user

level, and we will drive the development from such tests, our approach will naturally

follow a top-down style, rather than the usual bottom-up way of regular TDD. Never-

theless, we will use regular TDD as we dive into the application’s underlying domain

model.

Basing ourselves in the mockups, we recreate the same UI using widgets, but this

time adding stubs for the dynamic behaviour in the places where the application will

interact with the domain objects. Next, for every stub message left in the presentation

and navigation classes, we code the model classes to fill the gaps.

At the time we engage in the development of the domain model classes, we follow

a traditional TDD cycle by creating the unit tests first to establish the purpose of the

new objects, which is in turn facilitated by the UI/navigation models which have al-

ready set specific requests for them. Once unit tests pass, we can run the interaction

tests to check whether we have completed the necessary functionality for the current

request. As usual, when tests do not pass, we keep working on the code until they do,

and once this happens we can go on with the next requirement.

 At times, some domain behaviour is needed, and it is not possible to state it as a

UI requirement triggered by the user, or cannot be validated at the interaction level.

In such cases, we capture the functionality using US and then create unit tests.

For the sake of conciseness, we will focus our explanation on navigation and pres-

entation requirements, and therefore we will not talk about the effect of changes in

“conventional” unit tests.

3 Our Approach to Change Management in a Nutshell

We borrow ideas from changeboxes [2] to make software changes explicit and man-

ageable. We specifically focus on navigation and interaction changes in Web applica-

tions requirements to minimize the effort for satisfying their impact on the implemen-

tation. These changes are explicitly represented as first-class objects, and related to

the artefacts in which they produce modifications, and as a consequence, we not only

obtain better traceability features, but we are also able to automate some of these

changes in the final application. Since navigation tests are also represented with ob-

jects, and we can determine the elements they access, and we can know exactly which

tests are affected by a change. As a result, we can set apart the tests that will not

check the new functionality at all, leaving only those that are really needed to check

the new change and its consequences.

We have built a support tool that manages change objects and their relationships

with the approach’s artefacts. Being developed on top of the Seaside Squeak’s envi-

ronment (www.squeak.org), it allows to maintain these relationships during the whole

life-cycle, helping to dynamically manipulate even application objects.

3.1. Representing Changes as first-class Objects

As we show in Fig. 2, an application is developed by incrementally applying sets of

changes (Step 4). Starting from the initial status, a first set of changes is applied in

order to get an initial prototype. In further iterations, the application is extended with

new sets of changes, fulfilling the requirements one by one. We stress that the main

difference with “pure” TDD is that we automatically derive navigation and interac-

tion tests from WebSpec diagrams, we actively use Mockups to derive the final appli-

cation’s interface, and we use interaction tests to guide the development of the appli-

cation’s behavior.

Figure 2. A TDD-based Web Development Process

Fig. 3 illustrates how the approach is improved using change management fea-

tures. In the first stage, changes made in WebSpecs are captured into change objects.

Then, changes made in the application’s model are also captured into objects and

associated with the corresponding test. We use these objects to reduce the set of inter-

action tests that drive the upcoming development steps to those affected by them.

Figure 3. Change Object’s relationship with model and tests artefacts

WebSpecs can suffer different coarse grained changes, such as the addition or de-

letion of an interaction or navigation. These entities can be modified too, by the addi-

tion or deletion of widgets to an interaction, changes in invariants, etc. Regarding

navigations, we can add or delete preconditions, change their source, target, or the

action that triggers them. All these types of changes have been represented as classes.

3.2 Mapping requirement changes onto the implementation

Some changes have direct effects on concrete application’s artefacts; an important

aspect of the corresponding change objects is that they can help to reduce the impact

of these changes on the implementation. A WebSpec change object is associated to an

effect on a Web artefact; this effect is also represented as a change object. These ob-

jects are able to produce the real modifications on their targets with the help of an

Effect Handler. The Effect Handler is a component that knows how to perform

changes on a concrete platform such as Seaside or GWT. For example, when a

change modifies an interaction structurally, the page that represents this interaction

must be modified: e.g. when a label is added to an interaction, it adds an equivalent

label on the page represented by the modified interaction (Fig. 4).

Regarding navigation changes, we can change preconditions, sources, targets, or

the actions that triggers them. The first type of change does not generate effects on

the final application look and feel; in turn, if the navigation target changes, we can

automate the effect of this change, for example linking the page associated to the new

target interaction. Something similar happens when a navigation action is changed.

Figure 4. A label addition change in action

4 A Proof of Concept

To illustrate our approach we describe how we put it into work in the Seaside frame-

work, by implementing a specific Effect Handler for this platform. In the simplified

Twitter-like application presented in Sect. 2, we started with a short sprint to capture

the basic user stories: login and tweet. We will only discuss changes related with the

tweet use story, and assume that we have finished the first iteration and the applica-

tion satisfies the requirements captured by the WebSpec presented in Fig. 1.

Let us suppose that our customer wants to add the possibility to navigate from the

home to a ‘Terms of Service’ page. In order to satisfy the new requirement, the de-

velopment iteration starts with the requirements change (Step 1 in Fig. 2). We specify

the interaction and navigation paths that we expect for the ‘Term of service’ require-

ment, which produces a set of change objects derived from the changes in the Web-

Spec diagram that express the link creation, the creation of the “terms of service”

interaction, and the navigation between both interactions (Fig. 5).

Figure 5. Change objects associated with the “Terms of Service” requirement

We then derive a set of tests from the WebSpec diagram and find that it generates

a new test that checks the terms of service navigation, while in the previous iteration

we had two tests that checked the addition of valid and invalid messages. To avoid

running all three tests, we ask the Change Manager to determine which are affected

by this change. As the only affected is the new one (Step 2 in Fig. 2) we run it, and it

fails (Step 3 in Fig. 2), thus we must implement the new changes to satisfy this test.

The process continues with the change effect management (Step 4 in Fig.2) iterat-

ing over each change to see how it impacts on the implementation. The first change

generates a creation method for the link widget in the WAHome class; it represents the

page for Home interaction, so it will be drawn each time a WAHome instance shows.

The next one modifies the widget label attribute to display the correct link name

‘Terms’. Fig. 6 shows these effects. Change number 3 creates the Seaside component

WATermsOfService that represents the page for this interaction. The next change gen-

erates a creation method for the paragraph widget in the WATermsOfServices class,

and the next one modifies its content attribute, in the creation method. The naviga-

tion addition change does not produce modifications, but the last change generates the

necessary code for associating the interaction pages through the “terms” link. Finally,

we run the affected test realizing that it passes because of the semi automatic changes

we applied on the application, thus completing the iteration (Step 5 in Fig.2).

Figure 6. Managing the effects of the “Term of Use” requirement

5 Concluding Remarks and Further Work

In this paper we have presented an approach to deal with navigation and presentation

requirement changes in the context of a TDD process for Web applications. Our main

strategy has been to reify these changes into “first class” objects, so they can not only

capture the history of changes, but also trace the effects of changes in different devel-

opment artefacts, such as tests and application components.

An integrated tool built on top of the Squeak environment allows us to manipulate

these change objects, making them extremely useful in the development process. In

particular, we have shown how to help the developer by automating some modifica-

tions at the presentation level, or advising him about the necessary changes. At the

same time, change objects allow reducing the number of tests that must be run, as

they maintain a trace with their corresponding tests. Notice that this kind of change-

aware development environment is easier to implement in a reflective system like

Squeak, though much harder in Java-based environments such as Eclipse. In this

sense, we are working on a light version of our environment for the Eclipse platform.

References

1. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of Haskell

programs. In: 5th ACM SIGPLAN international conference on Functional programming,

pp. 268-279. ACM, New York (2000).

2. Denker M., Gîrba T., Lienhard A., Nierstrasz O., Renggli L., Zumkehr P.: Encapsulating

and exploiting change with changeboxes. In: 2007 international conference on Dynamic

languages: in conjunction with the 15th International Smalltalk Joint Conference 2007,

vol 286, pp. 25-49. ACM, New York (2007).

3. Jeffries, R.: Extreme programming installed. Addison-Wesley, Boston (2001)

4. Mugridge, R.: Managing Agile Project Requirements with Storytest-Driven Develop-

ment. IEEE software. 25, 68-75 (2008).

5. Rossi, G., Schwabe, D.: Modeling and Implementing Web Applications using OOHDM.

In: Web Engineering, Modelling and Implementing Web Applications, pp. 109–155.

Springer, Heidelberg (2008).

A Flexible Tool Suite for Change-Aware
Test-Driven Development of Web Applications

Esteban Robles Luna

LIFIA. F. Informática, UNLP
La Plata, Argentina

Also at CONICET
erobles@lifia.info.unlp.edu.ar

Juan Burella
DC. F. Cs Exactas, UBA
Buenos Aires, Argentina

Also at CONICET
jburella@dc.uba.ar

Julián Grigera
LIFIA. F. Informática, UNLP

La Plata, Argentina
juliang@lifia.info.unlp.edu.ar

Gustavo Rossi
LIFIA. F. Informática, UNLP

La Plata, Argentina
Also at CONICET

gustavo@lifia.info.unlp.edu.ar

ABSTRACT
Though Web Applications development fits well with Test-Driven

Development, there are some problems that hinder its success. In

this demo we present a tool suite to improve TDD; the suite sup-

ports the representation of web requirements using a domain-

specific language and the automatic generation of interaction tests

among others.

Keywords
Web engineering, TDD, Web requirements, Change management.

1. INTRODUCTION
Test-Driven Development (TDD) [2] is well suited for Web appli-

cations because of its features: it is agile, it uses tests as require-

ments artifacts, and also uses them to determine what require-

ments have been fulfilled. However, traditional unit testing fails to

provide quick feedback to stakeholders about interaction and

navigational requirements (i.e. those that affect look and feel and

represent the very nature of most Web applications). Additionally,

as navigation and interaction requirements change rapidly and

often, there is a need to improve change management to automati-

cally update the test suite and simplify application evolution. By

capturing requirement changes and deriving traceability links

between requirements and the software components that fulfill

those requirements, we can use change objects to upgrade the

application under development.

In [4] we presented WebTDD, an improvement of TDD aimed at

Web software. Our approach follows the basic TDD principles,

but instead of driving the development from handcrafted unit

tests, we start the process from automatically generated interaction

tests, which capture the way users interact with the application

and also help to outline the navigation and business models.

Due to the gap between requirements (e.g. expressed in use stories

[3]) and tests, some customer requirements might remain un-

checked. To bridge this gap, and considering the nature of Web

applications, we have devised a domain-specific language (DSL)

called WebSpec. WebSpec is used to capture interaction and

navigation requirements. Its diagrams have a two-fold objective:

they formalize navigation and interaction requirements, and they

serve to automatically generate a suite of interaction tests that the

final application must pass. We complement these diagrams with

Mockups (stub HTML pages).

As shown in Fig. 1, WebTDD follows a sprint based process; in

each sprint a set of requirements is implemented. We first capture

requirements (Sect. 2) and use them to simulate the application.

Then, we automatically generate a set of interaction tests (Sect. 3)

that the application must pass. When we capture requirements we

record the changes (Sect. 4) as first class objects and use them to

improve the implementation phase. In this paper we present our

tool suite to support WebTDD. Specifically we show:

• How to express navigation and interaction requirements,

simplifying the discussion with stakeholders.

• How tests are derived automatically from requirements.

• How changes in requirements are captured and then used to

improve the development cycle.

Figure 1. WebTDD approach

2. CAPTURING REQUIREMENTS
The development cycle starts by capturing requirements with

Mockups and WebSpec diagrams (Step 1 of Fig. 1). Mockups

help to agree on the application look and feel and WebSpec al-

lows to specify navigation, interaction and user interface aspects

in a more formal and comprehensive way (than, for example, user

stories). A WebSpec diagram can be derived either from use cases

or usage scenarios or stories. Similarly, mockups can be created

using modern tools like Balsamiq [1]. WebSpec is independent of

these technologies as long as the user interface elements can be

referenced using an ID based location (e.g. button with id =

“search”). WebSpec has two key elements: interactions and navi-
gations. An interaction represents a point where the user can in-
teract with the application by using the interaction’s widgets. A
diagram has a starting interaction represented with dashed lines.

Some actions (like clicking a button) might produce navigation
from one interaction to another. These actions are written in an
intuitive DSL with the syntax: var := expr | actionName(arg1,…
argn). We associate a mockup to each interaction to allow switch-
ing between the formal description and the proposed user inter-

face while discussing with the stakeholders.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ICSE '10, May 2-8, 2010, Cape Town, South Africa

Copyright © 2010 ACM 978-1-60558-719-6/10/05 ... $10.00

An example of a WebSpec diagram as produced by the tool suite

is shown in Fig. 2. To express the properties the application must

hold, we add invariants (Boolean predicates) to the interactions.
For instance, the Home interaction (not shown for clarity) must
satisfy: Home.tweets = ${tweets} which states that the value
shown in the tweets label should be equal to the number of tweets

variable (see the navigations where the variable is updated).

Using the mockups together with the actions and properties the

application must hold, we derive a set of simulations that begin

from the starting interaction. Each simulation opens a browser and

reproduces a specific path executing actions and showing labels of

the expected behavior of the application. Stakeholders can use

them to propose changes before the implementation stage.

The WebSpec Eclipse plugin provides an environment to create

WebSpec diagrams and to simulate them in a real browser.

Figure 2. Tweet WebSpec diagram

3. REQUIREMENTS VALIDATION
In the 2nd step of Fig. 1 we automatically generate a set of inter-

action tests from the WebSpec diagram. An interaction test is a

test that pops a Browser and executes a set of actions on it, in the

same way a user would do. This kind of tests allows making asser-

tions on UI elements based on their location, so we can check the

values of the different widgets. We can also automatically verify

whether a requirement has been successfully implemented by

validating that the application passes all tests.

For each WebSpec diagram, we derive a test suite. Each path de-

picted in the diagram will be translated into a test case that will be

named as the complete path’s trail. If the diagram is cycled, we

obtain finite paths by pruning to a specific length. A test case will

follow the actions specified in the path, and assertions will be

generated from the invariants of every interaction. The sentences
(assignments or actions) on navigations will be translated to sen-
tences in the test, such as typing text into a text field or clicking

buttons. Reaching an interaction will require that we check its
invariant (if any), by generating assertions on the test. As different

interactions may alter the variables bound to an invariant, it is
necessary to repeat the updated assertions after navigating to the

same interaction more than once.

The WebSpec Eclipse plugin supports tests generation to Sele-

nium [5] but other testing frameworks could be easily added by

extending the generation algorithm.

4. EVOLUTION
Evolution of applications starts with changes in the requirements,

and navigation/interaction requirements changes are specially

frequent during the development process. WebSpec can suffer

different changes, such as the addition or deletion of an interac-
tion or navigation. An interaction can be modified too by the
addition or deletion of widgets, changes in invariants, etc. Regard-

ing navigations, we can change its preconditions or the actions

that triggers them. All types of changes have been reified as first-

class change objects that could be used to improve the tool’s

traceability features and automate some of these changes in the

implementation. The WebSpec editor captures the changes made

to the diagrams and stores them in files to be latter use.

To improve the development cycle (Step 4 of Fig. 1) the suite

includes a change management tool that allows the manipulation

of these change objects to automate the effects of changes on con-

crete application’s artifacts. The mechanics of these effects de-

pend on the underlying implementation setting (GWT, WebRatio

[6], etc) thus we have handlers for each particular case.

As an example, let us suppose that an interaction has been added

to a WebSpec, so we create the corresponding Web page for this

interaction. When a change modifies an interaction structurally,
the page that represents this interaction must be modified accord-

ingly; Figure 3 shows how a text field element is added as the

effect of the addition of a text field in the interaction. If any wid-

get attribute is changed, the effect on the page can be automati-

cally updated too. The tool suite has effect handlers for GWT,

Seaside and WebRatio, but new ones can be easily implemented.

Figure 3. Text field added to the Home interaction

5. CONCLUSIONS
We have shown an agile approach for Web applications develop-

ment and briefly described its supporting tool suite. Our WebTDD

tool suite allows us to visually specify navigation and interaction

requirements, automatically simulating the application according

to requirements and generating navigation tests to validate these

requirements. Changes are reified using “first class” objects, and

using a change management tool we can manipulate these change

objects, making them very useful in the development process. We

have shown how to improve the development process by automat-

ing the effect of presentation and navigation changes.

6. REFERENCES
[1] Balsamiq. http://www.balsamiq.com/products/mockups
[2] Beck, K. 2002 Test Driven Development: by Example. Addi-

son-Wesley Longman Publishing Co., Inc.

[3] Jeffries, R. E., Anderson, A., and Hendrickson, C. 2000 Ex-
treme Programming Installed. Addison-Wesley Longman

Publishing Co., Inc.

[4] Robles Luna, E., Grigera, J., and Rossi, G. 2009. Bridging
Test and Model-Driven Approaches in Web Engineering. In

Proceedings of the 9th international Conference on Web En-

gineering. Lecture Notes In Computer Science, vol. 5648.

Springer-Verlag, Berlin, Heidelberg, 136-150.

[5] Selenium web testing system. http://seleniumhq.org/
[6] The WebRatio Tool Suite. http://www.Webratio.com.

Part III

Appendix: Papers Already Submitted

A

WebSpec: a Visual Language for Specifying Interaction
and Navigation Requirements in Web Applications

The content of this chapter corresponds with the following paper:
Robles Luna E., Rossi G., Garrigos I. WebSpec: a Visual
Language for Specifying Interaction and Navigation Requirements
in Web Applications. Requirements Engineering Journal. In press.
Impact factor: 0.931. JCR.

In this chapter we present an evolution of the core language presented in chapter 4 in which
we detail the specification of requirements for rich internet applications. We show how to
specify some patterns that appear often in Web applications easily and provide the language’s
grammar. Also, we provide extensions to the case of study presented in chapter 4.

Fig. A.1. Extensions to WebSpec’s core language to express rich behaviour

The content of this chapter is a submitted paper to the Journal of Requirements Engineer-
ing. This journal provides a focus for the dissemination of new results about the elicitation,
representation and validation of requirements of software intensive information systems or
applications.

1

WebSpec: a Visual Language for Specifying
Interaction and Navigation Requirements in Web
Applications

Esteban Robles Luna1, Gustavo Rossi1,2, Irene Garrigós3

1LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{esteban.robles, gustavo}@lifia.info.unlp.edu.ar

2Also at Conicet

3Lucentia Research Group, DLSI, University of Alicante, Spain

igarrigos@dlsi.ua.es

Abstract. Web application development is a complex and time consuming process that involves
different stakeholders (ranging from customers to developers); these applications have some
unique characteristics like navigational access to information, sophisticated interaction features,
etc. However, there have been few proposals to represent those requirements that are specific to
Web applications. Consequently, validation of requirements (e.g. in acceptance tests) is usually
informal, and as a result troublesome. To overcome these problems, we present WebSpec, a
domain specific language for specifying the most relevant and characteristic requirements of Web
applications: those involving interaction and navigation. We describe WebSpec diagrams,
discussing their abstraction and expressive power. With a simple though realistic example we
show how he have used WebSpec in the context of an agile Web development approach discussing
several issues such as automatic test generation, management of changes in requirements, and
improving the understanding of the diagrams through application simulation.

1 Introduction
Several studies [1, 2] in industrial cases have shown the importance of requirements in Web

application development. Unfortunately, in this kind of applications, requirements are generally
described in informal documents (e.g. use cases [3]) shared by the different stakeholders of the
project, which are very poor to express the particularities of the Web (e.g. their interactive and
navigation-driven nature). The fact that development teams are usually multidisciplinary
(including customers, visual designers, developers, QA staff, etc) and that Web application
requirements change very fast (e.g. as the result of early users’ feedback), make things even
harder.

The fast evolution of Web applications poses additional constraints to allow continuous and
timely application testing against the requirement specification [2]. In this context, capturing and
modeling requirements should be efficient enough to accomplish the time constraint. Moreover,
requirement artifacts have to be easily understood to be validated by stakeholders prior to the
development, in order to avoid future wastes of time. Moreover, as in “ordinary” software, during
the development process the application has to be checked in order to validate that new
requirements have been correctly implemented without “breaking” previous ones.

In the context of model driven Web engineering approaches [4, 5, 6, 7, 8] the aforementioned
concerns have not been generally taken into account [9]. As a consequence, Web applications
developed with these methodologies might suffer well-known problems such as outdated
requirements, unfeasibility to check that the application fulfils the requirements and it might be
difficult to handle fast evolution.

Existing languages to model Web requirements e.g. user interaction diagrams [4], extended use
cases [10], etc. are useful to capture important aspects of Web applications like navigation or
interaction issues; however they are at most used to document the application [3] or in some cases
to help deriving the first version of the domain or navigation models [11, 12] and generally do not
consider either evolution or validation (see Sect. 6 for further details).

To tackle these problems we have developed WebSpec, a multi purpose domain specific
language used to capture navigation, interaction and UI (User Interface) features in Web
applications. To improve the requirements capture, WebSpec is used in conjunction with mockups

2

(sketches of UI) to provide realistic UI simulations. Also, to allow fast requirements’ validation in
the final application, the associated WebSpec tool automatically derives a set of interaction tests.
Finally, WebSpec enforces change management support, which could be used to improve the
development cycle by automating structural changes in the application. Since WebSpec diagrams
are intuitive and simple, they are suitable to drive discussions between stakeholders. The WebSpec
language supports a powerful composition model, improving their scalability for complex
applications. Finally, the WebSpec metamodel is open-ended, therefore allowing to broaden the
scope of features that can be represented in a diagram (as an example we have extended the
metamodel to incorporate rich interactions).

In this paper we present the WebSpec formalism, describing its components and the role they
play in the development process; we emphasize on its novel features and show how to:

• Simulate the application using WebSpec and mockups to improve their understanding
between the different stakeholders and reduce elicitation times.

• Derive tests from WebSpec diagrams to reduce requirement validation times.

• Capture requirement changes and use them to semi/automatically upgrade the application
and maintain quality standards.

Additionally, we present a tool we have developed to create and manage WebSpec diagrams
and describe in more details how WebSpec’s features have been implemented.

The rest of the paper is structured as follows: in Section 2 we present WebSpec, its concepts
and syntax. In Section 3 we show how WebSpec is used in different activities in the development
cycle by improving requirement’s elicitation, helping to automatically validate the requirements
and manage their changes. Section 4 shows the WebSpec Eclipse plugin covering the
implementation of its features. In Section 5 we present a case of study showing how WebSpec has
been used for the development of a Web application for the post-graduate area of the College of
Medicine in the University of La Plata. Section 6 presents related work and finally in Section 7 we
conclude and present further work.

2 WebSpec: a DSL to capture interactive Web
requirements

Web applications tend to change fast and it is hard for development teams to adapt to those
changes easily. As part of the solution, the proliferation of agile practices [13] has improved the
overall process as they have a continuous feedback from the different stakeholders. In these
practices, requirements are captured informally [3] and as a consequence checking if they have
been correctly implemented is sometimes impossible [1, 2]. Usually, development teams add
manually created tests not only to check software artifacts but also to guide design decisions like
in TDD (Test Driven Development) [14]. When the application evolves and the number of
implemented requirements grows, tests are particularly necessary in order to verify that every
unchanged requirement remains implemented in the application (known in the literature as
regression testing [15]).

In order to capture Web requirements, researchers have borrowed use cases and user stories
[13] from the software engineering field and try to use/adapt them in the Web engineering field
(e.g. extended use cases). These artifacts allow describing the requirements in semi-
structural/natural language making them flexible and appropriated to interact with customers.
However, they do not help to describe UI aspects which are essential in Web applications, and as a
consequence the validation of their correct realization in the application is performed manually.
Moreover, validation is only performed over the last set of implemented requirements (due to the
fact that the time spent on validating every requirement grows (in the best case) linearly with
respect to the number of requirements implemented) and thus those side effects that affect
previous requirements are not detected until a user finds a bug in the application.

On the other hand, there are more formal languages [16, 4] that help to specify interactive
requirements more precisely, making easier for the development team to implement them since
they usually provide some kind of automatic derivation of the basic application’s structure (e.g. the
topology of pages and the links between them). However, they usually do not provide automatic
derivation of tests and those that are related with a specific model driven Web engineering
approach (MDWE) [17] tend to be tightly coupled to the other modeling constructs of the
approach. To make matters worse, many times they are too abstract or complex to be used or
understood by customers and therefore unrealistic to be used in real life projects.

To tackle these problems, but preserving the advantages of the aforementioned languages, we
have developed WebSpec. WebSpec is a visual language which has support for simulation (Sect.

3

3.2) helping customers visualize the requirement prior to its implementation. Requirement
validation is done automatically (Sect. 3.3) by running a test suite obtained from the requirements
specification, which is independent of the implementation technology used as it is based on Web
browsers and not in the technology used to develop the application. As any formal language it also
provides derivation of some parts of the application (Sect. 3.4) to a particular technology (GWT
[18], Seaside [19], etc) all integrated in its supporting tool, the WebSpec Eclipse plugin (Sect. 4).

WebSpec is a visual domain specific language ([20]) that allows specifying navigation,
interaction and UI Web requirements. The main artifact for specifying requirements is the
WebSpec diagram (Sect. 2.1) which can contain interactions (Sect. 2.2), navigations and rich
behaviors (Sect. 2.3). As one of the main motivations of the language is automatic test derivation,
we borrow the idea of generator [21] to specify properties that the application must satisfy. For
example any of the following properties: “the price of a product must be a positive number” or “a
valid username is a string of length between 8 and 16 composed of letters and numbers” can be
specified using a generator. A generator (Sect. 2.4) provides a simple and reusable way to describe
a data set (by extension or comprehension); it can be interpreted as a function that returns a
random element of the specified set. For example a string generator configured with minimum
length of 8 and maximum length of 16 could be used to obtain valid usernames for the
aforementioned case (e.g. “administrator”). Finally, WebSpec diagrams can be composed (Sect
2.5) to cope with complexity and at the same time to allow reuse of requirements.

WebSpec is formally defined in the metamodel shown in Fig. 1. For the sake of conciseness we
avoid the Expression and Widget hierarchies but the reader could find more information in
Appendix A. A diagram (instance of the class Diagram) comprises Interactions and Transitions
(either Navigation or RichBehavior) instances. An Interaction instance knows its name, forward
transitions and its associated interface mockup. A Transition knows its source and target
Interaction, its precondition and the sequence of Action instances that triggers them. Finally, an
Interaction knows its root widget Container which can contain many AbstractWidget (Widget or
Container) instances. Each widget can also be associated with its representation in the mockup
using its location attribute.

Figure 1. WebSpec simplified metamodel

In the following subsections we will introduce the aforementioned concepts using an example

of an e-commerce application. The language will be described with a simple user story: “As a
customer, I would like to search products by name and see its details”.

2.1 WebSpec Diagrams
A WebSpec diagram defines a set of scenarios that the Web application must satisfy. It can

contain two main elements: interactions and transitions (which can be in turn navigations or rich
behaviors). Interactions represent points where the user can interact with the application and
transitions represent a movement from one point of interaction to another. Therefore, a WebSpec
diagram could be seen as a graph where interactions are the nodes of the graph and transitions
represent the edges. A scenario is represented by a sequence of interactions and transitions, e.g.
<interaction1, navigation1, interaction2, rich1, interaction3> that defines a possible path of
interactions between the user and the Web application.

4

Fig. 2 shows a WebSpec diagram for our exemplar user story. The diagram is constructed
iteratively between the customer and the analyst by having several meetings. Since the use of
WebSpec is not tight to any particular development process, we can use the techniques which are
common in unified development approaches or traditional customers meetings typical of agile
development approaches to build them. Their construction could be improved by using mockups
and simulating the application (Sect. 3.2); however, we expect that with some training the
customer would be able to solely build a diagram. The diagram of Fig. 2 defines the navigation
paths that the user can follow from the home page to the search results page and then to the details
of the products. Also, the user is able to go back to the search results page from the detail of the
product or go back to the home page.

Figure 2. Webspec diagram of the Search by name scenario

The set of scenarios that the diagram specifies is obtained by traversing the diagram using the

DFS algorithm [22]. The algorithm starts from a set of special nodes called “starting” nodes (Sect.
2.2) and follows the edges (transitions) of the graph (diagram). Typically, one or more diagrams
could be related with the same user story to specify concrete scenarios that the Web application
must satisfy. In the following sub-sections we elaborate the contents of the diagram.

2.2 Interactions
An interaction represents a point where the user can interact with the application by using its

interface objects (widgets). Formally, they represent the state of a Web page either when it is
loaded when the user navigates to it or when it has changed as a consequence of a rich behavior
(Sect. 2.3). Interactions have a name (unique per diagram) and may have widgets such as: labels,
list boxes, buttons, radio buttons, check boxes and panels. Labels define the content (information)
shown by an interaction. There are two types of widgets that allow defining widgets composition:
ListPanel and Panel. A ListPanel represents a repetition of the elements that it contains and the
Panel defines a simple placeholder that can contain any simple or composed widget. Interactions
are graphically represented with a rounded rectangle (Fig. 3) which contains the interaction’s
name and widgets. A WebSpec diagram must have at least one starting interaction represented
with dashed lines.

Figure 3. WebSpec’s interaction

To specify which properties must be satisfied by the application we use invariants (Boolean

expressions) on the diagrams’ interactions. Every interaction (either implicitly or explicitly)
defines an invariant that specifies which properties must be satisfied in the set of scenarios
specified by the diagram (in case that we do not define one explicitly, it is implicitly assumed that
the invariant is true). Boolean expressions may refer to the following elements:

• Widgets properties: Any property of a widget that is contained in the interaction. For
example, ProductDetail.productName.text refers to the text value of the productName
widget and is valid if is contained in the invariant of the ProductDetail interaction.

5

• Variables: When we need to refer to a value or the property of a previous interaction in
the scenario, we need to store them in variables, e.g. productName := “ipod” or
productName := ProductDetail.productName.text. We refer to the value of the
variables using the following syntax ${variableName} inside invariants.

• Generators: As we will show in Sect. 2.4, generators can be referenced using the
following syntax $generatorName$, e.g. productName := $prods$.

• Composed expressions: It is possible to compose expressions using and (&&), or (||),
implications (->) and negations (!). Please, refer to the Appendix A for the complete
grammar.

As an example, the ProductDetail interaction of Fig. 2 defines an invariant (marked with the I
icon near the interaction’s name): ProductDetail.productName.text = ${productName} that states
that the text of the productName label must be equal to the value of the productName variable. To
improve the clarity of the diagram, we avoid showing them directly as the expressions could be
quite complex. Instead, interactions are marked with an icon and the expression could be edited by
changing the interaction’s property in our Eclipse tool (Sect. 4).

Figure 4. Product details mockup created with Balsamiq

To improve the understanding of the diagrams by the different stakeholders, we can associate

interactions with mockups and WebSpec widgets with their concrete UI elements in the mockup.
Using this association, we can switch between the specifications in WebSpec with an exemplar UI
that will help to understand the requirements. Mockups can be created with tools such as Balsamiq
[23], Axure [24] or plain HTML and can be developed by, or with the participation of customers.
For example in Fig 4, we show a mockup of the product details page created with Balsamiq. The
mockup shows the information that must be presented on that page: the product name, its
description, price and the links to the home and search results. Fig. 5 shows a simple association
between the mockup of Fig. 4 with its corresponding interaction and widgets of Fig. 2.

Figure 5. Association between a mockup and its corresponding interaction

2.3 Specifying the application’s behavior
Usually, the behavior of Web applications is exercised either by navigating from one page to

another or by local (interface) changes that may not involve navigation to a new page. These

6

behaviors are perceived by the user by changes in its browsing history or in the UI respectively;
therefore we will call them Interactive behaviors (Sect. 2.3.1). On the other hand, there are
behaviors that are not directly perceived by the user and are triggered as a consequence of
navigating from one page to the other. Examples of such behaviors are: sending an email, charging
a credit card, or even making a search in Google using the Google’s API; these can be informally
specified in WebSpec using either notes or by associating WebSpec’s elements with use cases
(Sect. 2.3.2).

2.3.1 Interactive behaviors

When the user navigates from one page to another, a new element in its browsing history is
added allowing him to go back to the previous page. During requirements elicitation these
elements are easily identified by the analyst in the customers’ vocabulary when they say “In this
page, I would like to allow users to go back to the previous page”.

Figure 6. WebSpec’s navigation

In WebSpec, a navigation is graphically represented (Fig. 6) with grey arrows while its name,

precondition and triggering actions are displayed as labels over them. In particular, its name
appears with a prefix of the character ‘#’, the precondition between {} and the actions in the
following lines. We must remark that the idea behind the transitions’ actions (either navigations or
rich behaviors) is that the execution of them produces the transition between interactions and not
in the other way. A transition should be understood like: “if the precondition holds and the user
executes the sequence of actions then the application should transit to the target interaction”.

A navigation from one interaction to another can be activated if its precondition holds, by
executing the sequence of triggering actions such as: clicking a button, adding some text in a text
field, etc. As well as invariants, preconditions can reference variables declared previously in the
diagram. Actions are written according to the following syntax: var := expr | actionName(arg1,…
argn) (a complete BNF [25] grammar can be found in the Appendix A).

Traditional hyperlink navigation is represented with no precondition (indeed, an always true
precondition) and with only one action click (a link widget), as illustrated with the ProductDetail
to Home navigation in Fig 2. An example of a more complex sequence of actions is the search
navigation (Fig. 2):

(1) productName := $productNames$;
(2) type(Home.searchField, ${productName});
(3) click(Home.search);

The first sentence assigns the data generated by the productNames generator (denoted between

$) in the productName variable (for later use). In the second sentence the content of the
productName variable is typed in the searchField text field, and finally in the third sentence the
search button is clicked.

On the other hand, the application may change its UI state as a consequence of some actions
performed by the user (e.g. on some interface widgets). For example, when the mouse is “on” a
widget, some additional information might pop-up, or while entering text in a field, the text might
be auto-completed. These “local” changes are common in the so-called rich Internet applications
[26] and it is nowadays usual that customers pose requirements of this type, either explicitly (“I
want an auto-complete feature in this field”), or implicitly (“I want that information appears as in
Amazon.com”). These “rich” behaviors are being increasingly used not only in Web 2.0
applications but also in traditional, e.g. e-commerce, ones.

In a Web application, a rich behavior is perceived by a local change in the UI of the Web
application and it does not add a new element in the browsing history. To specify a rich behavior
in Webspec, we use a red dashed arrow (Fig 7) though it has the same properties that a navigation
has (name, precondition and actions).

7

Figure 7. Rich behavior specification in WebSpec

Fig. 8 is an extension of Fig. 2 which shows a specification for the Hover detail pattern [27] in

the search result list. This pattern gives more information about an item when the user puts its
mouse over an item. In this case, a detail of the product is shown (SearchResultsProductHover
interaction) and allows the user to navigate to the product details page. Notice that from an
interaction reached as a consequence of a rich behavior we can also have navigations and rich
behaviors to other interactions (SearchResultsProductHover interaction to ProductDetail
interaction).

Figure 8. Hover detail in SearchResults interaction

2.3.2 Dealing with “non interactive” behaviors

Most Web application requirements are related with interactive aspects that can be specified
using invariants and actions. However as said before, there are some scenarios that may have
important “hidden” behaviors (not perceived directly by the user from an interaction point of view)
and that are important to be specified.

To capture this kind of requirements, Webspec can be combined with two different artifacts
(depending on the needed level of detail) for specifying hidden behavior. If we need to specify
simple functionality that does not require complex business rules we can use informal notes that
can be added to the diagram and/or linked to interactions or transitions. Notes provide an easy
way of specifying some details that will not be perceived from a user point of view. Fig. 9 adds a
note to the search navigation to explain that the search operation should be implemented by
integrating with Google Search.

Figure 9. Note explaining Search implementation details

On the other hand there are some complex cases, such as Web service calls, credit card

transactions, etc, that can not be detailed using notes. We have identified the following categories:

8

• Complex integrations between Web (or other kind of) applications are usually difficult
to achieve, and generally involve details such as APIs or other contracts, format of
exchange data, etc. In these cases it is better to use detailed documents about these
requirements.

• Low level technical details such as the information that needs to be stored in log files
as part of a business process of the application. This information is generally stored in
files on the server and therefore does not show up during user interaction.

• Any application’s behavior that is not perceived from a UI point of view such as
generating a PDF report with statistical data about the user’s activity.

In all these cases, WebSpec allows linking interactions and transitions with use cases for a
more complete description of the requirement (see the association between Interaction and
Transition classes with UseCaseReference in the metamodel of Fig 1).

2.4 Specifying Properties with Generators
With WebSpec it is possible to specify general and concrete application properties. A concrete

property is specified with one or more scenarios that use constant values in Actions (e.g.
type(Login.username, “admin”) and/or Invariants (Home.messages.text = “Welcome admin”).
One the other hand, sometimes it is necessary to specify more complex properties like “an error
must be shown if the user tries to add a comment larger than 150 characters to a product” for any
comment (any string of at most 150 characters).

To specify general properties, we can create the diagram with concrete values and then abstract
them using generators. Generators are necessary to map abstract scenarios (those without concrete
values) to concrete scenario instances (with the corresponding data distribution). This mapping is
used during test generation (Sect 3.3) and simulation (Sect 3.2). A generator helps to define which
are the valid data sets for the different scenarios and help the development team (as it is a formal
definition of a data set) to implement each scenario accordingly to the expected logic.

Following the idea of QuickCheck [21], we extract the data used for specifying interaction
requirements into generators. If a property in a WebSpec diagram holds, then it must hold for any
element that could be generated by a generator. A generator is a function that can be called from
transition actions (e.g. $productNames$) and generates data. For example, Fig. 2 has one generator
that generates product names for searching purposes. A generator can also be seen as a definition
of a set by comprehension; for example the generator usernames = all the strings of length between
8 and 16 that contains letters or numbers ({aaaaaaaa, aaaaaaab, …. }).

With the aim of specifying different types of requirements, WebSpec provides a variety of
generators based on the ones QuickCheck already provides; though adding a new generator is not a
hard task. Next, we detail the generators actually provided in WebSpec:

• One of many strings: The user can specify a set of strings and the generator chooses
one with uniform distribution probability. For example, if the generator is configured
with: “Home”, “Ipod”, “Smartphone”, the generator could generate the string “Ipod”.

• One of many numbers: Similar to one of many strings. For example the user can
configure the generator with 4, 5, 8, 10.5, 2, -1 and the generator could generate the
number 8.

• Uniform distribution of numbers: The user configures minimum and maximum values
and the generator picks a number in the continuous interval with equal probability. For
example for the interval [3.76, 15] the generator could generate the number 8.7.

• Random string: The user configures the minimum and maximum length of the string
and the generator generates a random string with a length in the specified interval. For
example for the interval [2, 10] the generator could generate “agfasg”.

• One of many arrays: The user configures a set of arrays and the generator chooses one
with equal probability of being chosen. We use arrays when there are
interdependencies between data. For example, the arrays of valid users that have
username and password: [admin, admin], [john, johnpass], [root, superuser]; thus the
generator could generate the array: [admin, admin].

Each of these generators has a visual representation shown in Fig. 10.

9

Figure 10. Different types of WebSpec’s generators

2.5 Diagrams’ composition
When the application grows, new requirements may refer to previous described (and perhaps

finer grained) requirements. Let us assume that we have the following requirements expressed as
user stories: “As an administrator, I would like to search for users by email in order to ban them”
and “As an administrator, I would like to check the user’s activity searching them by email”. Both
refer to some functionality of the administrator regarding actions they would like to perform:
search by email, banning and check user’s activity. Fig 11a and Fig 11b shows the WebSpec
diagrams corresponding to each requirement.

 Figure 11a. Ban user diagram Figure 11b. Check User’s activity diagram

Notice that both diagrams have a common sequence of interactions and transitions that sets the
preconditions to be able to express the requirement. In this case the sub-path: Login ->
AdminHome -> SearchUser is common to both diagrams and its main intent is to login with an
admin user and search for a user in the system. The interactions and navigations that follow this
sub-path are the ones that actually express the requirement.

To improve the understanding and scalability via composition, we define the concept of
operation as a path that can be composed in other diagrams or operations. Fig 12 shows the
definition of the LoginAsAdminAndSearchForUser operation.

Figure 12. LoginAsAdminAndSearchForUser operation

As a consequence, the diagrams of Fig. 11a and Fig. 11b can be written in a more shortly way

as shown in Fig. 13a and Fig. 13b. These diagrams are the composition between the
LoginAsAdminAndSearchForUser operation and the sub-paths of Fig. 11a and Fig. 11b.

10

 Figure 13a. Refactored Ban user diagram Figure 13b. Refactored Check User’s activity diagram

2.6 WebSpec guidelines
When using WebSpec for Web requirements specification, diagrams tend to grow with the time,

thus hindering comprehension; as a consequence we have written several simple guidelines to be
taken into account during the development process:

• Similar interactions: When two or more diagrams have an interaction with the same
name, we will assume that two interactions denote the same point of interaction. In this
way, when a stakeholder looks at two different diagrams and they see interactions with the
same name, they will know that they denote the same point of interaction improving
comprehension.

• Explicit specification: If a widget w is present in the interaction A of diagram D1 and
widget w is absent in the interaction A of diagram D2 then it does not mean that the widget
has been deleted. Indeed, it means that the widget is not meaningful for the specification.

• User story/Use case association: As the application evolves, the number of diagrams tends
to grow quickly thus it is important to keep track of which user story gives origin to a
diagram. This could be easily done by linking a diagram with its corresponding user story
(see the association between Diagram and UserStoryReference in Fig. 1).

Figure 14. Register WebSpec’s diagram

As an example, we have added a new diagram to the one in Fig 2 that specifies the register User

story. Fig 14 shows the Register user story and it shows a Home interaction which has the same
name to the one previously created in Fig 1. According to the first guideline they refer to the same
point of interaction. Also, the two versions of the Home interaction have different widgets inside;
a search button and a searchField field in one case and a register link in the second one. According
to the second guideline, the absence of the search button in Fig 14 does not mean that the widget
has been deleted. If we want to specify that the widget is not visible then, the widget has to be
added to the interaction and the invariant must contain an expression like: !Home.search.visible

3 WebSpec in use
In the previous sections we have presented the language and the way in which we specify

interactive requirements in Web applications; in this section we explain how Webspec is used in
the development cycle. As an introduction we detail how a diagram that has cycles and specifies
infinite scenarios is used in practice (Sect. 3.1). Next we show WebSpec’s features such as
simulation of the application (Sect. 3.2), requirement validation (Sect. 3.3) and requirement
changes (Sect. 3.4).

11

3.1 Bounding infinite scenarios
As the diagram of Fig. 2, WebSpec’s diagrams may specify an infinite set of scenarios when

they have cycles. For example, the diagram of Fig. 2 has a short cycle between SearchResults and
ProductDetail interactions. So if the diagram specifies such infinite scenarios how are we going to
simulate the application or validate that the requirements are correctly implemented? In both cases,
we have adopted a pragmatic approach; as the scenarios are infinite and either the simulation or
validation would not end, we prune those “infinite” paths according to a maximum occurrence
(constant) of an interaction. Therefore, a scenario can either end on an interaction with no
transition or when the number of occurrences of an interaction reaches a maximum number set per
diagram.

To have a better idea of what pruning means in this context, let us look at our example of Fig. 2;
we will allow a path to contain as much as two occurrences of the same interaction in the path. We
have chosen that number because we would like to have concrete scenarios where the user goes
through the same interaction more than once. In order to compute the scenarios we start
transversing the diagram starting from the starting interactions and following the diagram using
the DFS algorithm. Therefore, the algorithm starts from the Home interaction and follows the
SearchResults and ProductDetail interactions. The paths shown below are the ones computed by
the algorithm. In the first case, the algorithm stops because either if we add Home or
SearchResults interactions, we will violate the maximum occurrences of 2 elements. The same
applies for the 2nd path. The paths computed are shown next:

Home -> SearchResults -> ProductDetail -> Home -> SearchResults -> ProductDetail
Home -> SearchResults -> ProductDetail -> SearchResults -> ProductDetail -> Home

If the diagram has cycles, WebSpec forces to define a maximum number of occurrences for the

same interaction. The number to be set really depends on the requirement we are specifying; for
instance if we are specifying the add to cart requirement (which is an important requirement of an
e-commerce application), we may allow 10 occurrences of the same interaction when trying to
validate them on the final application just to be a bit more sure that the application behaves as
expected.

3.2 Improving team understanding with WebSpec and Mockups
With the aim of improving the requirement elicitation phase, WebSpec diagrams allow the

simulation of the application under development. Simulation is important to bridge the gap
between the understanding of customers and analysts about requirements, thus helping to get real
feedback from them. Usually, requirement artifacts [28] require some level of knowledge from
customers to be fully understood, causing understanding problems during elicitation that are
handled lately when the application is under active development.

Understanding a WebSpec diagram may not be a simple task; it takes time and requires the
knowledge of WebSpec’s concepts, e.g. variables and interactions. To ameliorate this scenario
WebSpec provides some interesting features such as mockup associations (Sect 2.2) and invariants
specification which allow simulating the application in a rather rigorous way to improve their
understanding between stakeholders during elicitation. Our simulation basically opens a Web
browser with the developed mockups and show descriptions and performs actions that show how a
hypothetical user would interact with the application. It is rigorous, because differently from the
simulation provided by tools such as Balsamiq [23], we not only show transitions between the
pages but also execute real actions and provide descriptions of what would be the real output of the
application, directly over mockups. These descriptions are generated automatically from the
WebSpec diagrams, and they are easy to understand because they are written in natural language.
In this way, from every WebSpec diagram, a set of simulations is automatically generated which
can be used at any time by customers to understand the meaning of the diagram and suggest
changes or improvements to the analyst.

12

Figure 15. Simulation metamodel

The interaction between the development team and the customer starts by specifying a diagram

and usually involves the creation of some mockups. During this process each interaction and its
widgets are associated with their corresponding elements in the mockup as shown in Sect. 2.2.
Afterwards an automatic transformation is applied over the diagram obtaining a set of scenarios.
Then, a simulation is derived from each scenario and captured as instances of the metamodel
shown in Fig. 15.

A simulation contains several steps (items) that must be executed (on the Web browser) to
simulate the scenario. Those items are the following:

• OpenMockup: it opens the mockup in the specified URL.

• ExecuteAction: Executes the action over an already opened mockup with some
arguments.

• ShowDescription: Shows the description at a specific position.

• ShowGeneralDescription: Shows the description covering the full page.
Each simulation is created following the sequence of interactions and transitions of a concrete

scenario. Next, we show a simplified version of the transformation algorithm written in natural
language:

(01) Create a simulation S for the scenario C.
(02) for each element E in the scenario C {
(03) if (E is an Interaction) {
(04) Open the mockup M associated with E.
(05) Show a description that must hold according to E’s invariant.
(06) } else {
(07) Show a description that must hold according to E’s precondition.
(08) for each action A in the transition E {
(09) Simulate the action A over the mockup M.
(10) }
(11) }
(12) }

Line 1 creates the simulation model; for every item (interaction or transition) in the path (2): if

it is an interaction (3) we show its associated mockup (4) and show the predicate of its invariant to
describe which properties must hold (e.g. “The label should have the value ‘John’) (5); if the item
is a transition, we show the precondition (7) and for every action we simulate it (08-10).

As an example, let us consider the scenario Home -> SearchResults -> ProductDetail -> Home -
> SearchResults -> ProductDetail. As the model generated by the algorithm includes 16 instances
of SimulationItem we show next a text representation of the same instances so that they can be
easily understood.

(01) Open Home’s mockup.
(02) Execute action type on searchField with value “Ipod”.
(03) Execute action click on search.
(04) Open SearchResults’s mockup.
(05) Execute action click on productName.
(06) Open ProductDetail’s mockup.
(07) Show description at productName with value “The value should be ‘Ipod’”.
(08) Execute action click on home.
(09) Open Home’s mockup.
(10) Execute action type on searchField with value “book”.
(11) Execute action click on search.
(12) Open SearchResults’s mockup.
(13) Execute action click on productName.
(14) Open ProductDetail’s mockup.
(15) Show description at productName with value “The value should be ‘book’”.
(16) Execute action click on home.

After an instance of the Simulation metamodel is created, the application can be simulated

inside a Web browser by opening mockups in the browser, showing descriptions and performing
actions on it. In Sect. 4 we provide details of how this feature has been implemented in our Eclipse
plugin.

13

3.3 Requirements validation
New requirements must be validated to guarantee their correct implementation while previous

ones still work as intended. However, it is hard to perform this task efficiently, therefore keeping
the requirements updated is extremely important.

A well known way of validating requirements consists in running automated tests (that express
the requirements) over the application. If one of these tests fails, then a requirement is not satisfied
by the application. In particular, interaction tests play an important role in industrial settings as
they execute a set of actions in the same way a user would do on a real Web browser, thus their
use is continuously growing [29]. As an example, in a recent work we have introduced the use of
interaction tests in the WebTDD test/model-driven approach [30].

The test suite (a set of test cases) is built from a WebSpec diagram by creating a test for each
scenario that the application must satisfy. To capture the basic concepts of tests, we have created a
metamodel (Fig. 16) which is independent of the automated test technology used. The metamodel
contains the Test and TestSuite classes that conceptualize a test and a set of tests. A Test has a
sequence of actions: assertions on interface objects or actions performed by the user over the
application. Both cases are covered by the TestItem hierarchy.

Figure 16. Test metamodel

To build the test suite, we transform each scenario into a SimpleTest (see Fig. 16) by executing
the following simplified version of the algorithm. Similar to simulations, we use generators to
generate data according to the specification when an expression references it. The TestSuite is
obtained by simple composition (see the composition relationship in the metamodel of Fig. 16) of
the previous SimpleTest instances.

(01) Create a test T for the scenario C.
(02) Add an item to open the URL of the application in T.
(03) for each element E in the scenario C {
(04) if (E is an Interaction) {
(05) Add an assertion that must hold according to E’s invariant.
(06) } else {
(07) for each action A in the transition E {
(08) Add an execution of the action A.
(09) }
(10) }
(11) }

The algorithm works as follows: line 1 creates the test model and line 2 generates the action to

open the application. For each element in the path: if it is an interaction (4), we assert its invariant
(5); if it is a transition (7) we execute the actions that allow us to navigate from one interaction to
another (7-9).

To better illustrate these ideas, let us consider a specific scenario: Home -> SearchResults ->
ProductDetail -> Home -> SearchResults -> ProductDetail. Applying the previous algorithm to the
scenario produces a test model with 16 TestItem instances; we show a textual version of the model
so that it can be better understood.

(01) Open the URL of the application.
(02) Execute action type on searchField with value “Ipod”.
(03) Execute action click on search.
(04) Wait for the page to load.
(05) Execute action click on productName.
(06) Wait for the page to load.
(07) Assert that the widget productName has the value “Ipod”.
(08) Execute action click on home.
(09) Wait for the page to load.
(10) Execute action type on searchField with value “book”.
(11) Execute action click on search.
(12) Wait for the page to load.
(13) Execute action click on productName.
(14) Wait for the page to load.
(15) Assert that the widget productName has the value “book”.
(16) Execute action click on home.

14

After an instance of the test metamodel is created, the application can be validated using a

technology-dependent interaction test framework which operates on a Web browser. In Sect. 4 we
provide further details about the implementation of test derivation in our Eclipse plugin.

As aforementioned, Web applications tend to change very fast, thus recording requirements
changes is important to improve the development process. In the next subsection we show how
requirement changes are captured (Sect. 3.4.1) and later used to ease the evolution of the
application under development (Sect. 3.4.2).

3.4 Requirement changes

3.4.1 Capturing requirement changes

Capturing requirements changes is an important feature to predict their impact in the
application. Though some mature requirement artifacts [3] provide extensions to support change
management, in the Web engineering field this issue has been often ignored (see Sect. 6 for
details).

Figure 17. Change metamodel

In WebSpec, changes are recorded into change objects that group a set of changes. Change
objects are created even in the initial stage (when a diagram is being created).

WebSpec diagrams can suffer different coarse grained changes, such as the addition or deletion
of an interaction or transition element. These elements can be modified too, by the addition or
deletion of widgets to an interaction, changes in invariants, etc. As for transitions, we can add or
delete preconditions, change their source, target, or the actions that triggers them. All these types
of possible changes have been represented in the metamodel of Fig. 17. When the user modifies
the diagram, a change object is created and the sequence of changes is recorded as instances of this
metamodel.

As an example, let us suppose that we add a Register interaction with its widgets and a link to it
from the Home interaction (Fig. 18). The change in the diagram generates a new change object
which has the following elements: the new interaction (Register), a new navigation (Home ->
Register), a new link (register) in the Home interaction and set of widgets in the Register
interaction.

Figure 18. Adding a register page to our E-commerce application

In the following section we show how changes in the requirements help to upgrade the

application under development to satisfy the new requirements.

15

3.4.2 Using requirement changes to ease application evolution

Though handling requirement changes serves for multiple useful purposes, we will focus on
how to semi automatically upgrade the application using them. Since change objects represent
changes at the WebSpec level (requirements), we decouple the process of upgrading the
application by providing different effect handlers. An effect handler is a component responsible of
mapping the changes in the diagrams to a concrete technology and storing the trace links between
the WebSpec elements and the technology ones.

To keep the discussion at a conceptual level and show a concrete example, let us assume that
the application under development is designed with classes and that we already have a version of
the application. In Fig. 19 we show a class diagram of the classes involved in the UI model of our
application before applying the change of Sect. 3.4.1.

 Figure 19. Class diagram of the UI model before applying the change

To upgrade the application after the changes, we need to define a mapping between the changes

in WebSpec to the concrete implementation. In a class-based design, we have defined the
following mapping:

• New Interaction: A new class is created.

• New Widget: A new instance variable and a creational method are created.

• Update Interaction/Widget name: The class or instance variable is renamed.

• Delete Interaction: The class is deleted if no other class references it.

• Delete Widget: The instance variable and the creational method are deleted if the
instance variable has no references.

Using the previous mapping, we upgrade the UI model automatically and obtain a new UI
model which is shown in Fig. 20. The RegisterView class is created with its corresponding
instance variables. Also, the HomeView class is modified with a new instance variable register
that contains the link to the Registerview. In the following section we show our implementation
plugin and explain some details of its implementation.

Figure 20. Upgraded version of the UI model after applying the change

4 Tool Support
A WebSpec tool has been implemented as an Eclipse plugin using EMF [31] and GMF [32]

technologies; it is currently available as an open source project1. The plugin supports the following
features:

• Creation of WebSpec diagrams: a visual editor allows creating, modifying and
updating diagrams. The properties of the elements can be modified by selecting each
item and updating the property editors in the properties view.

1 http://code.google.com/p/webspec-language/

16

• Association with HTML mockups: taking advantage of the Eclipse framework,
HTML mockups are files inside the project. The editor allows selecting an interaction
and associating it with the HTML file. Association between Webspec’s widgets and
HTML widgets is performed by editing the location property of Webspec’s widget.

• Simulation of the application: Using the previous association, the plugin opens the
mockups in the Web browser and show descriptions of what is the expected behavior.
This feature has been implemented by extending the Selenium [33] communication
mechanism and using a JQuery plugin [34] for showing the descriptions.

• Selenium test derivation: As previously shown, each diagram is transformed into a
test model. Then, the plugin allows the translation of the test model into a Selenium
test.

• Change recording: Using the EMF observer pattern [35], we hook on all changes
that are performed in the diagram and the plugin creates a change model. The user of
the plugin can set when should the plugin start recording changes and when not. When
some changes are captured and the user stops recording, the change model is stored
into a file for later use.

• Generation/Update of GWT and Seaside UI classes: Finally, using the previous
stored change model, the UI model can be generated. Currently, the plugin allows the
generation of GWT and Seaside classes and handles not only a first version of
changes but also an incremental set of changes.

Fig. 21 shows a screenshot of the WebSpec’s Eclipse plugin. In the following subsections we

provide more details regarding the implementation of the aforementioned features in the plugin.

Figure 21. WebSpec’s Eclipse plugin

4.1 Dealing with Simulation
The simulation feature comprises three elements: transformation between WebSpec and

Simulation models, association with mockups and execution of the simulation. The transformation
between WebSpec and the Simulation models has been implemented directly in Java as it was
much simpler to deal with path computing algorithms than using QVT.

Mockups association has been easily implemented by taking advantage of the Eclipse
environment. We add a new property for interactions and widgets and a file dialog to let the user
choose the right HTML mockup.

17

Figure 22. WebSpec’s simulation

The actual simulation aspect was more complex and required the extension to the Selenium

framework. We used the existing communication mechanisms of Selenium to open the Web
browser and execute actions. As shown in Fig. 22, we show descriptions over the mockups by
using a JQuery plugin. To make it work, we had to extend the Selenium framework to load these
libraries and actually show the descriptions when necessary. We must notice that the same mockup
(which could be richer than the interaction since it has more widgets) could be used in multiple
and different simulations. Our approach maintains the mockup as it is without removing any
existing widgets because doing so will confuse the stakeholders about their presence or absence.

4.2 Requirements validation
The support for requirements validation has been implemented in a two phase process:

transformation from WebSpec to Test models, and test derivation to a specific automated test
technology. The transformation between the models has been implemented by taking advantage of
the existing simulation architecture (the transformation module), since both transformations use
path computing algorithms.

In order to perform test derivation to a specific technology, we transformed the test models into
a plain text representation of the test. The plugin currently supports Selenium and we are working
on the derivation to Webdriver [36]. As an example we show next the generated code for the
Selenium framework for our example scenario:

(01) selenium.open("http://localhost:8080/index.html");
(02) selenium.type("id=searchField", "Ipod");
(03) selenium.click("id=search");
(04) selenium.waitForPageToLoad("30000");
(05) selenium.click("id=product0");
(06) selenium.waitForPageToLoad("30000");
(07) assertTrue(selenium.getText("id=productName").equals("Ipod"));
(08) selenium.click("id=home");
(09) selenium.waitForPageToLoad("30000");
(10) selenium.type("id=searchField", "book");
(11) selenium.click("id=search");
(12) selenium.waitForPageToLoad("30000");
(13) selenium.click("id=product0");
(14) selenium.waitForPageToLoad("30000");
(15) assertTrue(selenium.getText("id=productName").equals("book"));
(16) selenium.click("id=home");

Line 1 opens the application in the Web browser. Lines 02-04 search for Ipod product, lines 05-

06 selects the first product and finally line 07 asserts that the selected product has the name Ipod.
Lines 08-09 navigate to the Home page. Lines 10-12 search for book product, lines 13-14 select
the first product and finally line 15 asserts that the selected product has the name book. Line 16
navigates to the Home page.

4.3 Requirement changes
When a diagram is modified, we record its changes and store them in change files. A change

file is a serialization version of the change model presented in Section 3.4.1 in XML format. To
capture the changes we use the observer pattern and incrementally build the change model;
afterwards we serialize it into an XML file.

Changes are read and used to upgrade the application models by effect handlers (a component
that is able to map changes in the WebSpec level to technology ones), the plugin supports the
generation of classes and methods compatible with Seaside and GWT, and we are actively
working to provide a derivation to WebRatio design models [37].

18

As an example of the use of effect handlers, we next show how to use the change objects of our
exemplar upgrade (Add a register functionality) to generate classes and methods in GWT. For the
sake of conciseness we show the new RegisterView class created by the GWT effect handler.
Basically, lines 09-15 define the instance variables representing the widgets, and lines 21-29
initialize the objects with the proper GWT classes. Also, notice that RegisterView extends
VerticalPanel (a GWT base class for implementing UIs).

(01) package org.webspeclanguage.re;
(02)
(03) import com.google.gwt.user.client.ui.VerticalPanel;
(04) import com.google.gwt.user.client.ui.TextBox;
(05) import com.google.gwt.user.client.ui.Button;
(06)
(07) public class RegisterView extends VerticalPanel {
(08)
(09) private TextBox firstName;
(10) private TextBox lastName;
(11) private TextBox username;
(12) private TextBox password;
(13) private TextBox confirmPassword;
(14) private Button register;
(15) private Button cancel;
(16)
(17) public RegisterView() {
(18) this.initializeComponent();
(19) }
(20)
(21) public void initializeComponent() {
(22) this.firstName = new TextBox();
(23) this.lastName = new TextBox();
(24) this.username = new TextBox();
(25) this.password = new TextBox();
(26) this.confirmPassword = new TextBox();
(27) this.register = new Button();
(28) this.cancel = new Button();
(29) }
(30) }

5 Case study

5.1 Introduction
We have used the WebSpec plugin to assist the development of an application for the post-

graduate area of the College of Medicine in the University of La Plata. The development team is
composed of 2 developers, 1 analyst and a project manager using as a development approach an
updated version of WebTDD [30] (suitable for code-based development). WebTDD is an agile
test-driven development approach with strong emphasis on using mockups and tests to drive the
development process.

The requirements were obtained from one person (the head of the college) thus avoiding any
conflict resulting between different stakeholders. The project was divided in sprints (as in most
agile approaches) in which we tackle a set of requirements delivering a running application to the
customer. In our case we had 6 sprints to implement several user stories though here we only show
the first 3 sprints. Each sprint was delivered within 2 weeks thus gathering quick feedback from
the customer. The first 3 sprints tackle the following user stories:

• Sprint 1

o Login: As a user, I would like to login in the application using my gmail account.
o Log out: As a user, I would like to log out from the application.
o Create user: As an administrator, I would like to create users with roles of

administrators or doctors.

• Sprint 2

o Create patient: As an administrator, I would like to create new patients describing
their personal information.

o Create hospitalization: As an administrator, I would like to create a
hospitalization for a patient and assigning it to an existing doctor.

o Update patient status: As a doctor, I would like to update the status of the patient
according to its vital signs.

o Close hospitalization: As an administrator, I would like to close a hospitalization
when a patient leaves the hospital.

19

• Sprint 3

o Notify doctor about pending patient status: As an administrator, I would like to
notify a doctor by email when it forgets to update a patient status.

o Update patient: As a doctor, I would like to be able to update the patients’
personal information.

o Assign doctor to hospitalization: As an administrator, I would like to change the
assignation of a patient to a doctor.

o Report about patients by doctor: As an administrator, I would like to see a report
about how many patients have been attended by each doctor filtering by dates,
doctor and sex.

5.2 WebSpec use
WebSpec was used across the development cycle to specify the whole set of requirements since

they all involved with interaction features. For each user story, we created a set of WebSpec
diagrams to specify them and in some cases such as “Notify doctor about pending patient status”
we have added some notes to the diagram to specify behavior not perceived from the UI (e.g.
sending emails). Mockups were used in conjunction with WebSpec only on the first sprint mainly
to define the UI of the application. On the other hand, the test suite that was obtained from the
diagrams and grew along the sprints was used to drive the development cycle and to avoid
breaking existing functionality. As an example, in Fig. 23 we show the diagram for the “Notify
doctor about pending patient status” diagram.

Since WebSpec already provides derivation to GWT, we have used a solution based on the
following technologies to implement the application: GWT, Spring and Hibernate. We took
advantage of the automatic evolution of the structural part of the UI classes handled by WebSpec
and therefore we only needed to code those aspects related with UI behavior and business logic.

Figure 23. Notify doctor about pending patient status

As a summary, Table 1 shows for each sprint the number of user stories per sprint, the number

of test cases obtained from the diagrams and if simulation and code generation was used or not in
the sprint. We must notice that we didn’t use code generation in the last sprint as it was a
behavioral change which can not be automated by the GWT effect handler. Also, because of the
nature of the application, simulation was only used in the first sprint and afterwards it was not
needed.

 Nro user stories Nro WebSpec Tests generated Simulation? Code generation?

Sprint 1 3 3 10 Yes Yes

Sprint 2 4 3 14 No Yes

Sprint 3 4 4 16 No Yes

Sprint 4 3 4 8 No Yes

Sprint 5 4 5 10 No Yes

Sprint 6 2 1 7 No No

Table 1. Summary of WebSpec use

5.3 Advantages and disadvantages
After we finished the 6 sprints of the project we conducted a survey with the customer and the

development team to asses the experience of using WebSpec in the development process.
The customer liked the use of mockups and the simulation features of WebSpec as they gave

him a clear picture of the understanding of the analyst regarding the requirements. Though
simulation was used in the first sprint, it helped to define the base UI and behavior necessary to

20

build the Web application. On the other hand, some diagrams were rather complex (specially the
list of actions) and thus hard to understand by the customer. He suggested providing a simplified
view of the diagram in those cases.

In the development team the most appreciated feature was the test suite derived directly from
the diagrams. The test suite was used to asses if the requirements were correctly implemented
during the development cycle and to check that new code did not break existing functionality. The
test suite grew quickly and therefore the time consumed to run the tests also grew. As a criticism to
the kind of tests that WebSpec derives, the development team agree on the necessity of interaction
tests but they prefer small unit tests to be derived (A feature that WebSpec does not have yet). As
an improvement, the development team created a continuous build 2 to run the test suite. Finally, in
the coding side, mockups and WebSpec diagrams help to implement the requirement using the
code derivation features (GWT effect handler) and were appreciated by developers as it automates
UI changes.

In conclusion, the experience with both customers and the development team was positive
though some features can be improved such as the language readability and the generation of unit
tests. We expect to improve these features in future works.

6 Related Work and Discussion
As we have previously stated, the specification of interaction and navigation requirements is a

complex task due to some unique characteristics of Web applications such as the need to represent
the navigation in information spaces, the need of describing technical constraints related to the
information flow (e.g. session management), the rapid evolution of requirements and the
participation of customers and other stakeholders in the development process (e.g. marketing
experts, editorial board, etc) [38]. In the last years, a large variety of artifacts have been employed
to capture Web requirements like UML use cases and sequence diagrams [39], User Interaction
Diagrams [4], task models [40], and navigation models [8]. It is also worth noting a widespread
use of paper-based mockups to capture requirements related to the user interface of Web
applications [41] which has lead to the development of advanced tools for sketching and
storyboarding the user interface of Web applications such as Denim [42] and Balsamiq [23].

However, existing approaches have some drawbacks: many of them are not suitable to be used
as communication tools with clients, others provide very informal ways of specifying the
requirements, which cannot be then validated and some others which provide partial derivation of
domain or navigational models don’t deal well with evolution. In the following sub-sections we
survey how the most important Web engineering methodologies support the specification of
requirements and compare the different requirement artifacts used.

6.1 Requirements in Model Driven Web engineering
In [9], Escalona and Koch have investigated how different Web engineering methods support

the capture of requirements. They showed that some methods employ classical notations to deal
with Web requirements, and others simply ignore this phase in the development process. It is
interesting to notice that requirement artifacts might play several roles during the development
process: they can act as communication tools (for elicitation requirements with clients), as
elements for early specifications (that should be taken into account during implementation phases)
and as checklists for assessing if the final implementation complies the initial requirements.
Requirement checklists can indeed be employed in regression testing [15] for assessing in a longer
term, the evolution of requirements expressed for a single application.

Many Web engineering methods, such as UWE [6], WebML [7], OOWS [5], OOHDM [4] and
NDT [43], include UML use case diagrams for capturing requirements. However, use case
diagrams are not sufficient for capturing all the details of Web application requirements.
Therefore, these Web engineering methods have often included more than one artifact for
capturing requirements; for example use cases are present in OOHDM in combination with UIDS
[4]. Besides, use cases and activity diagrams, WebML uses semi-structured textual descriptions to
capture additional information that can hardly be expressed using the former models. Similarly,
UWE [6] proposes extended use cases, scenarios and glossaries for specifying requirements and
OOWS [5] combines use cases with extended activity diagrams with the concept of interaction
points to describe the interaction of the user with the system.

2 A continuous build is a program that compiles the application and runs the tests separately without

interfering in the developer’s activity.

21

Other approaches do not consider UML diagrams, such as WSDM [10] which employs task
models using concurrent task trees and A-OOH [12] which considers the i* framework [44] in
order to specify the requirements model which is goal-oriented.

Some authors have investigated how to automate the generation of the system specification
from the requirements specification; for example OOWS provides automatic generation of (only)
navigation models from the tasks description, by means of graph transformation rules. In A-OOH
the conceptual models (e.g. domain and navigation models) are generated by means of QVT [45]
transformations from the requirements specification in i* models. NDT defines a requirement
metamodel and allows transforming the requirements into conceptual models (content and
navigation models) by using QVT rules [45].

Table 2 summarizes the most relevant development approaches and which requirements
artifacts they use. We have also added a row indicating the existence of a requirement analysis tool
for the process.

Approach NDT WebML UWE OOWS WSDM A-OOH WebTDD

Textual templates X

Use cases X X X X X

Activity diagram X X

Task diagrams X X

I* X

User stories X

Mockups X

WebSpec X

Other techniques FRT Concept maps

Derivation of the
application or models

X X X X X

Requirements Analysis

Tool

NDT-Tool No Magic

UWE

OOWS-

Suite

No Eclipse
Plugin

Eclipse

plugin

Table 2. Requirements artifacts in Web engineering approaches

6.2 Requirements Artifacts and Discussion
In Table 3 we compare the expressive power of some artifacts with respect to the different

aspects that are needed for representing Web requirements [9]. Next, we will describe and
compare some other important requirement artifacts.

As shown in table 3, each artifact includes only part of the concepts required to express
requirements of Web applications. For example, whilst use cases can be used to represent
functional requirements, mockups (either paper-based or supported by tools) are more likely to
capture and represent requirements related to the composition of the user interface. Task models
allow expressing fine-grained functional requirements including navigation, user transactions and
business processes.

Artifacts used for representing requirements Concept

Use cases Task Models WebRE WebSpec Mockups I* extension

Navigation Dependencies

between UC

Dependencies

between tasks

Navigation Navigation arrows Arrows Navigation

requirement

Process Use cases Tasks, WebProcess WebSpec diagram - Service

requirement

User

interaction

Functional

requirements

Interactive

tasks

User

transaction

Action - -

Constraints OCL Lotus

operators

OCL Precondition &

Invariants

Annotated

text

OCL

B
e
h

a
v
io

r

Information

flow

- Data transfer

between tasks

Data transfer in

user transaction

Data transfer

between

interactions

-

Table 3. Expressiveness power of requirement artifacts for Web applications

All these artifacts are quite similar from what they can express; however, they have different

notations and may use similar concepts. In order to provide a more uniform view on the coverage
of requirements by each artifact, Escalona and Koch have proposed a metamodel based on WebRE
profiles [46]. Its main advantage is the automatic generation of conceptual models (content and
navigation models) which automatically satisfy the requirements. Notwithstanding, some
requirements such as detailed composition of the user interface and behavior constraints cannot be
fully described with this notation.

Two widely used artifacts for capturing requirements in Web engineering are textual templates
and use cases. Textual templates are specified in natural language in a structured way as tables
with predefined fields that the designer should fill in. Natural language is ambiguous so
requirements are specified in an imprecise and informal manner. Also they are difficult to fill in,

22

maintain and unsuitable for expression UI aspects. Use cases are also an ambiguous technique
when defining complex requirements. Usually they have to be complemented with other
techniques such as textual templates or activity diagrams and if special attention is needed to
represent UI concepts, it should be combined with mockups or UML UI models.

As a way to overcome some of the problems of using natural language while capturing
interaction aspects, User interaction diagrams [4] (UID) were proposed. UIDs help to define the
interactions that the user has with the Web application. Despite the fact that they are formally
defined, the actions that produce navigations are described in a non structural fashion. As a
consequence, UIDs can only be used for capturing requirements and do not help to validate them.
As aforementioned, requirement artifacts are not updated if they do not help during the
development process thus making the validation process harder.

In the requirements engineering field, I* [44] is widely used to model the expectations, needs
and goals of the users and making design decisions from the very beginning of the development
phase. Recently, we have proposed an extension [12] to express navigation and UI requirements as
stereotypes of goals and tasks. However, our approach is not suitable for communication with
clients as requirements are describe in an abstract way and do not described precisely UI aspects.
As a consequence, those details are discussed with customers too late.

In the agile track, user stories and mockups are the typical way of capturing requirements
because they improve the communication with clients, since they allow specifying a prototypic
user interface. The story describes informally the requirement that the client has, and sets a starting
point to talk and discuss requirements with clients. If these artifacts are not combined with a test-
based development approach, checking if a requirement is still satisfied by the application after
several iterations would be impossible. The main drawback of using these artifacts solely is that
tests are written manually and by deducing the behavior from an informal textual representation.

MoLIC [16] though not explicitly defined for the Web field, was devised to represent the
human-computer interaction as the set of conversations that users may (or must) have with the
system (more precisely, with the designer’s deputy) to achieve their goals. The main aim of
MoLIC is to support the designers’ reflection on the interactive solution being conceived. As it
was proposed for human usage, MoLIC is not a formal, computer-processable model. Molic
diagrams are similar to WebSpec’s, however WebSpec is a formal language and Molic is not.
Therefore, you cannot derive a test suite or simulate the application using mockups as in WebSpec.
Also, MoLIC seems good for communication with stakeholders but due to its lack of automatic
features it tends to be an overhead if it is used in agile methodologies. WebSpec meanwhile can be
used in both Agile and more cascade style of approaches due to its automatic features.

According to industrial studies [1, 2] one of the main problems of the current use of
requirements artifacts for Web applications is that it is impossible to validate that the requirement
has been implemented correctly. Therefore, we strongly believe that obtaining a test suite from the
requirement specification is important to validate new and old requirements (regression testing) in
the application and most important when the application grows during its life cycle. In this aspect,
WebRE is the only approach that provides test derivation from the specification, though it is
tightly coupled with the NDT development approach. In WebSpec we can derive a test suite that
can be used with any development approach as tests are derived in Selenium. When the test suite is
run it opens a Web browser and executes actions over it as a user would do it making it a
technology independent approach. Even an application written manually in PHP could be validated
with the tests generated from a WebSpec diagram.

As a summary, table 4 shows a comparison between the features of each requirement artifact.
We have included the features that we think are needed for actively using requirements during the
development cycle (simulation, test derivation and application derivation). Many of the
requirement artifacts provide some type of derivation of the application; either class or model
derivation. However, most of the do not help to validate that the requirements they express were
correctly implemented and also to improve the interaction between the different members of the
development team (simulation). With WebSpec we expect that requirements artifacts play a key
and important role mainly acting as drivers during the whole development cycle.

 Use cases Task Models WebRE WebSpec Mockups i*

Simulation X X

Technology independent test derivation X

Derivation of the application or models X X X X

Table 4. Comparison of the features of each requirement artifact

23

7 Concluding Remarks and Further Work
In this paper we have presented a detailed and complete definition of the WebSpec domain

specific language. Webspec allows building requirements artifacts used to capture navigation,
interaction and UI features in Web applications independently of the underlying software
development process.

We have shown examples of how to specify navigation and rich behaviors and we have briefly
described how we can scale up when thousands of requirements are specified with WebSpec by
using its composition features. We have shown how a Web application can be simulated when
using WebSpec with mockups by presenting the mockups and showing descriptions over them. An
interesting property of WebSpec diagrams is that test suites that validate the specified
requirements are obtained automatically from the diagram (e.g. a selenium test suite). Finally,
changes in the requirements are captured in change objects and then by using a specific effect
handler, a set of classes/models are created or updated. In this case we have shown the code
generated by the GWT effect handler. In Sect. 5, we have shown how we have used WebSpec in
the context of an agile approach like WebTDD to develop an application in several sprints while
deriving part of the GWT code and using the derived test to validate the correct behavior of the
application.

We are currently working on several research lines to improve WebSpec both from an internal
perspective (intrinsic to the language and its features) and more external (related with other
approaches and development processes). Our first effort is to complete a set of testing frameworks
for WebSpec, so that we can give more flexibility to development teams. These frameworks
include Watir [47] and Webdriver [36]. On the other hand, we are improving support for a set of
technologies to be used to automatically manage implementation changes. Right now we support
Seaside (Smalltalk based) and GWT (Java based), but we are also working on PHP, Ruby and
.NET.

Also, we have obtained some preliminary results on several areas that need further research.
First, from an internal perspective, we proposed a small extension to specify usability in the
language [48, 49] and personalization requirements by means of special variables [50]. In the first
case, usability is a distinctive feature in the current competitive market to attract more users (e.g.
in social networks like facebook, sonico or myspace). Allowing to express usability aspects in the
diagrams help to define a test suite that the application must satisfy. On the other hand,
personalization is pretty important for e-commerce applications and therefore specifying this kind
of requirements is critical. Our approach is simple and lets specifying the most basic
personalization scenarios. However, we are in the preliminaries of this work which needs further
research for example to automate the definition of reusable personalization patterns.

Second, according to the definition of [52], WebSpec can be considered a requirement artifact
that should be used on a late requirement analysis phase. Therefore, we have proposed in [51] the
use of WebSpec with an early phase with i*. Our work proposes an automatic validation algorithm
of the i* model based on the association between WebSpec and the goals and tasks of the i*
model. However, the derivation process can still be improved by mixing the derivation process of
domain and navigation classes proposed in [51], with the navigation and UI derivation process of
WebSpec. As a consequence, we could automatically derive the three design models that most
model-driven development approaches for Web applications support (domain, navigation and UI
models).

Finally, in [53] we have presented an approach to derive a complete structural UI model/class
from a mockup. Though the approach is independent from WebSpec, our first experiments have
shown that when used together with WebSpec, we can obtain a more complete derivation of the
application.

References
1. McDonald A. and Welland R., Web Engineering in Practice, Proceedings of the Fourth

WWW10 Workshop on Web Engineering, Page(s): 21-30, 1 May 2001.
2. Lowe D, Web system requirements: an overview. Journal of Requirements

Engineering pp 102–113. Springer-Verlag (2003).
3. Jacobson, I., Object-Oriented Software Engineering: A Use Case Driven Approach,

ACM Press/Addison-Wesley, 1992.
4. Rossi, G., Schwabe, D.: Modeling and Implementing Web Applications using

OOHDM. In: Web Engineering, Modelling and Implementing Web Applications, pp.
109–155. Springer, Heidelberg (2008).

24

5. Valderas, P., Pelechano, V., Pastor, O. 2008. A transformational approach to produce
Web applications prototypes from a Web requirements model. Int. J. Web Engineering
Technology, IJWET 3(1): 4-42 (2007)..

6. Koch, N., Zhang, G. AND Escalona, M.J. 2006. Model Transformations from
Requirements to web System Design. ICWE'06, Palo Alto, California, USA.

7. Ceri, S., Fraternali, P., Bongio, A., Brambilla M., Comai S. and Materna M. 2003.
Designing Data-Intensive web Applications. Morgan Kaufman.

8. Gómez, J., Cachero, C.: OO-H Method: extending UML to model web interfaces. In:
van Bommel, P. (ed.) Information Modeling For internet Applications, pp. 144–173.
IGI Publishing, Hershey (2003).

9. Escalona, M.J., Koch, N.: Requirements engineering for web applications – a
comparative study. J. Web Eng. 2(3) (2004) 193–212.

10. De Troyer, O., Casteleyn, S. Modeling Complex Processes for Web Applications using
WSDM. In: 3rd Int. Workshop on Web-Oriented Software Technologies. Oviedo,
Spain (2003). At: http://www.dsic.upv.es/~west/iwwost03/articles.htm

11. Escalona, M.J., Koch, N. Metamodeling Requirements of Web Systems. In Proc.
International Conference on Web Information System and Technologies (WEBIST
2006), INSTICC, 310--317, Setúbal, Portugal. 2006.

12. Garrigós, I., Mazón, J.N., Trujillo, J.: A Requirement Analysis Approach for Using i*
in Web Engineering. In: ICWE. (2009), LNCS, 5648, 151-165.

13. Martin, RC. Agile Software Development: Principles, Patterns, and Practices. Prentice
Hall PTR, Upper Saddle River, NJ, USA. 2003.

14. Beck, K.: Test Driven Development: By Example. Addison-Wesley Signature Series
(2002).

15. Zheng, J. In regression testing selection when source code is not available. In
Proceedings of the 20th IEEE/ACM international Conference on Automated Software
Engineering (Long Beach, CA, USA, November 07 - 11, 2005). ASE '05. ACM, New
York, NY, 752-755. DOI= http://doi.acm.org/10.1145/1101908.1101997.

16. de Paula, M. G., da Silva, B. S., Barbosa, S. D. 2005. Using an interaction model as a
resource for communication in design. In CHI '05 Extended Abstracts on Human
Factors in Computing Systems (Portland, USA, April 02-07, 2005), pp 1713-1716.

17. Rossi G, Pastor O, Schwabe D, Olsina L. Web Engineering: Modelling and
Implementing Web Applications. Human-Computer Interaction Series. Springer,
London, 2008.

18. GWT. Available at: http://code.google.com/webtoolkit/
19. Seaside. Available at: http://www.seaside.st/
20. Fowler M. Domain Specific Languages (1st ed.). Addison-Wesley Professional. 2010
21. Claessen K., Hughes J., “QuickCheck: a lightweight tool for random testing of Haskell

programs”, Proceedings of the fifth ACM SIGPLAN international conference on
Functional programming, vol. 35, pp. 268-279, September 2000.

22. Bondy, J. A. Graph Theory with Applications. Elsevier Science Ltd. 1976.
23. Balsamiq. Available at: http://www.balsamiq.com/products/mockups
24. Axure - Wireframes, Prototypes, Specifications. Available at: http://www.axure.com/.
25. Chomsky N. Three models for the description of language. Information Theory, IRE

Transactions on, 2(3):113–124, January 2003.
26. Duhl, J. Rich Internet Applications. A white paper sponsored by Macromedia and

Intel, IDC Report, 2003.
27. Yahoo Patterns, http://developer.yahoo.com/ypatterns/.
28. Moody D, "The Physics of Notations: Toward a Scientific Basis for Constructing

Visual Notations in Software Engineering," IEEE Transactions on Software
Engineering, pp. 756-779, November/December, 2009

29. Maximilien, E. M. and Williams, L. 2003. Assessing test-driven development at IBM.
In Proceedings of the 25th international Conference on Software Engineering
(Portland, Oregon, May 03 - 10, 2003). International Conference on Software
Engineering. IEEE Computer Society, Washington, DC, 564-569

30. Robles Luna, E., Grigera, J., and Rossi, G. 2009. Bridging Test and Model-Driven
Approaches in Web Engineering. In Proceedings of the 9th international Conference
on Web Engineering. Lecture Notes In Computer Science, vol. 5648. Springer-Verlag,
Berlin, Heidelberg, 136-150.

31. Eclipse EMF. Available at: http://www.eclipse.org/modeling/emf/.
32. Eclipse GMF. Available at: http://www.eclipse.org/modeling/gmp/.
33. Selenium web application testing system. Available at: http://seleniumhq.org/.

25

34. jQuery: The Write Less, Do More, JavaScript Library. Available at: http://jquery.com/
35. Gamma E., Helm R., Johnson R., Vlissides J. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA. 1995.

36. WebDriver. Available at: http://webdriver.googlecode.com
37. The WebRatio Tool Suite. Available at: http://www.webratio.com.
38. Uden, L., Valderas, P., Pastor, O. An Activity-theory-based to analyse Web

applications requirements. Information Research Vol. 13, N. 2. June 2008.
39. Conallen, J., Building Web Applications with UML, Addison-Wesley, 2000, 300 p.
40. Winckler, M.; Vanderdonct, J. Towards a User-Centered Design of Web Applications

based on a Task Model. In Proceedings of IWWOST'2005. Porto, Portugal, June 12-
13th 2005.

41. Flannagan, S. The Paper Version of the Web. In Deeplinking, available at:
http://deeplinking.net/paper-web/

42. Lin, J., Newman, M. W., Hong, J. I., and Landay, J. A. 2000. DENIM: finding a
tighter fit between tools and practice for Web site design. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (The Hague, The
Netherlands, April 01 - 06, 2000). CHI '2000. ACM, New York, NY, 510-517.

43. Escalona, M.J., Aragon, G. 2008. NDT. A Model-Driven approach for web
requirements. IEEE Transaction on Software Engineering, 34(3), pp. 370-390.

44. Eric S. K. Yu. 1997. Towards Modeling and Reasoning Support for Early-Phase
Requirements Engineering. In Proceedings of the 3rd IEEE International Symposium
on Requirements Engineering (RE '97). IEEE Computer Society, Washington, DC,
USA, 226.

45. QVT. http://www.omg.org/spec/QVT/
46. Escalona, M.J., Koch, N. Metamodeling Requirements of Web Systems. In Proc.

Internacional Conference on Web Information System and Technologies (WEBIST
2006), INSTICC, 310--317, Setúbal, Portugal. 2006.

47. Watir. Available at: http://watir.com/.
48. Robles Luna E., Panach J.I., Grigera J., Rossi G., Pastor O. Incorporating Usability

Requirements in a Test/Model-Driven Web Engineering Approach. Journal of Web
Engineering (JWE). 2010.

49. Robles Luna E., Rossi G., Burella J., Grigera J. Incremental Usability Improvement in
an Agile Approach for Web Applications. Proceedings of the 1st workshop Dealing
with Usabiliy in an Agile Domain, XP’2010 workshop, 2010. Trondheim, Norway.

50. Robles Luna E., Garrigos I., Rossi G. Capturing and Validating Personalization
Requirements in Web Applications. Proceedings of the 1st Workshop on The Web and
Requirements Engineering (WeRE 2010). Sydney, Australia.

51. Robles Luna E., Garrigos I, Mazon J-N., Trujillo J., Rossi G. An i*-based Approach
for Modeling and Tesing Web Requirements. Journal of Web Engineering (JWE).
2010.

52. Alencar, F. M. R.; Castro, J. F.B.; "Integrating Early and Late-Phase Requirements: a
Factory Case Study". Proceedings of XIII Brazilian Symposium on Software
Engineering - SBES99. Florianopólis, SC, Brasil, Outubro 1999. pp 47-61.

53. Rivero J.M., Rossi G., Grigera J., Burella J., Robles Luna E., Gordillo S. From
mockups to user interface models: An extensible model driven approach. Proceedings
of the 6th Model-Driven Web Engineering Workshop. (MDWE 2010). Vienna,
Austria.

A WebSpec’s grammar
Helpers

letter = [['a' .. 'z'] + ['A' .. 'Z']];
digit = ['0' .. '9'];
whitespace = ' ';
varh = '$';
left_braceh = '{';
right_braceh = '}';

Tokens

26

string_type = 'String';
number_type = 'Number';
boolean_type = 'Boolean';

add = '+';
sub = '-';
mul = '*';
div = '/';
var = varh;
left_brace = left_braceh;
right_brace = right_braceh;
greater = '>';
greater_equal = '>=';
not_equal = '!=';
equal = '=';
lower = '<';
lower_equal = '<=';

and = '&&';
implies = '->';
or = '||';
not = '!';

concat = '#';
left_paren = '(';
right_paren = ')';
number = (digit)+ ('.' (digit)+)?;
array_index = (digit)+;
true = 'true';
false = 'false';
whitespaces = (whitespace)+;
identifier = (letter | '_' | digit)*;
string = (''' | '"') ('@' | ':' | '/' | '.' | letter | digit | whitespace | left_braceh | varh | right_braceh)* (''' |
'"');
point = '.';
semicolon = ';';
comma = ',';
assign = ':=';
left_block = '[';
right_block = ']';
percent = '%';

Ignored Tokens

whitespaces;

Productions

actions =
 {singleaction} action
 | {manyactions} action semicolon actions;

action =
 {let} type? identifier assign [expr]:expr
 | {expr} expr ;

arguments =
 {onearg} expr
 | {manyargs} expr comma arguments;

expr =

27

 {and} [left]:expr and [right]:comp_expr
 | {or} [left]:expr or [right]:comp_expr
 | {implies} [left]:expr implies [right]:comp_expr
 | {not} not [comp_expr]:comp_expr
 | {comp_expr} comp_expr;

comp_expr =
 {greater} [left]:comp_expr greater [right]:num_expr
 | {greater_equal} [left]:comp_expr greater_equal [right]:num_expr
 | {not_equal} [left]:comp_expr not_equal [right]:num_expr
 | {equal} [left]:comp_expr equal [right]:num_expr
 | {lower} [left]:comp_expr lower [right]:num_expr
 | {lower_equal} [left]:comp_expr lower_equal [right]:num_expr
 | {num_expr} num_expr;

num_expr =
 {add} [left]:num_expr add [right]:factor
 | {sub} [left]:num_expr sub [right]:factor
 | {factor} factor;

factor =
 {mul} [left]:factor mul [right]:value
 | {div} [left]:factor div [right]:value
 | {concat} [left]:factor concat [right]:value
 | {value} value;

value =
 {number} number
 | {string} string
 | {boolean} boolean
 | {functioncall} identifier left_paren arguments? right_paren
 | {variable} variable
 | {generator} [left]:var identifier [right]:var
 | {parens} left_paren expr right_paren
 | {nativefunctioncall} percent identifier left_paren arguments? right_paren
 | {array} array
 | {array_access} variableorliteralarray left_block expr right_block
 | {widget_path} [interaction]:identifier
[widgets]:widget_or_widget_access_list_with_property+;

variableorliteralarray =
 {variable} variable
 | {array} array;

array = left_block arguments right_block;

variable = [left]:var left_brace [i]:identifier right_brace;

widget_or_widget_access_list_with_property = [p]:point widget_or_widget_access;

widget_or_widget_access =
 {simplewidget} [widget]:identifier
 | {widgetarrayaccess} [widget]:identifier left_block expr right_block;

boolean =
 {true} true
 | {false} false;

type =
 {string_type} string_type
 | {number_type} number_type
 | {boolean_type} boolean_type;

Reunido el Tribunal que suscribe en el día de la fecha acordó otorgar, por a la Tesis

Doctoral de Don/Dña. Esteban Robles Luna la calificación de .

Alicante de de

 El Secretario,

El Presidente,

UNIVERSIDAD DE ALICANTE
CEDIP

La presente Tesis de D. Esteban Robles Luna ha sido registrada con el nº ____________ del

registro de entrada correspondiente.

Alicante ___ de __________ de 2011

El Encargado del Registro,

