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ABSTRACT
Early detection of diseases and pests is a key factor in eradicating or 
minimising the damage that these may cause. In this work, 
a comprehensive solution is presented that is based on the compo
sition of existing cloud solutions and mobile tools to detect in-situ 
issues. The platform presented was used for the detection of pow
dery mildew and Cladosporium diseases in tomatoes. The results of 
using the approach to carry out this task were more than satisfac
tory since it managed to correctly detect the symptoms, having 
mAP of 0.41 in at least some of these symptoms. We analysed the 
performance of our dataset, on the one hand, and the combination 
of PlantDoc dataset, on the other hand. This shows that the plat
form can be used in the agriculture sector, as an additional tool for 
detecting diseases and pests in order to combat the problem and 
reduce its consequences.
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1. Motivation

Food security refers to people’s physical, social, and economic access to safe, nutritious, 
and sufficient food to meet their dietary needs and food preferences FAO-PESA 
Centroamerica 2011. Agricultural crop wastes and losses are so high that researchers 
and companies spend resources on studying solutions. The main goal is to avoid throwing 
away aliments that could be used to meet the unsatisfied food demand of a large part of 
the world’s population. Diseases and pests in horticultural crops are part of the produc
tion losses since they cause damage to crops that reduce the yield, the quality of 
harvested products, or the total loss of them International Plant Protection Convention 
FAO 2017. It is conservatively estimated that diseases, insects, and weeds cause annual 
losses of between 31% and 42% of all crops produced worldwide. Losses tend to be lower 
in more developed countries and higher in developing countries, i.e. countries that need 
more food. It has been estimated that of the average 36.5% of total losses, 14.1% are 
caused by diseases, representing approximately $220 billion FAO 2019. In the case of 
small producers, who generate 80% of the world’s food production FAO 2015, Instituto 

CONTACT Matias Urbieta matias.urbieta@lifia.info.unlp.edu.ar Facultad de Informática, Universidad Nacional de 
La Plata, La Plata, Argentina

JOURNAL OF DECISION SYSTEMS                      
https://doi.org/10.1080/12460125.2023.2226381

© 2023 Informa UK Limited, trading as Taylor & Francis Group 

http://orcid.org/0000-0002-4508-1209
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/12460125.2023.2226381&domain=pdf&date_stamp=2023-06-21


Nacional de Tecnología Agropecuaria 2017, the economic consequences can be devastat
ing if they do not have sufficient means to counteract the situation.

Early detection of diseases and pests is a key factor in eradicating or minimising losses. 
However, it is not an easy task as a myriad of diseases affects crops and wild plants. On 
average, each crop can be affected by 100 or more diseases. In this type of infection, at 
first, the disease is localised in one or a few cells and is invisible, but quickly the reaction 
becomes generalised and the affected plant parts develop changes visible to the naked 
eye, which constitute the symptoms of the disease G.N. Agrios 2005.

On the other hand, the crops are located scattered on a large land extension making it 
hard and expensive to transport professionals who can diagnose crop issues in an 
efficient way.

Taking advantage of the fact that this problem generally presents visible symptoms in 
crops, Convolutional Neural Networks can be used to train models that enable its 
detection.

During some interviews with local farmers, we identified some challenges to monitor
ing vegetable production. Firstly, the employees’ training is complicated as they are hired 
temporarily based on the season and sometimes they have basic or no training. 
Smartphone device adoption grows year after year and businesses are profiting from 
them to support operations. In this case, cultural work is not an exception and mobile 
devices can help with the in-situ task.

On the other hand, professional assistance is also difficult because of the long distances 
they need to travel to reach a given location. Travel hours can be from a few hours to 
a few dozen and the corresponding travel expenses must be paid, which increases the 
cost of professional services provided, reducing the frequency of attendance at the 
production site.

Finally, internet access is limited in some places in Argentina when trying to get online 
cloud solutions. It is the eighth-largest country in the world so mobile antennas do not 
have full land coverage. However, taking into account the technological advances related 
to mobile hardware, it is possible to run high-performance computing applications on 
mobile devices.

Convolutional Neural Networks are one of the techniques used nowadays for object 
detection tasks in images, largely due to their high accuracy in performing this task 
Krizhevsky et al., 2012. There is a large literature on them and different free tools are 
available, including TensorFlow and TensorFlow Lite, which allow the training and use of 
Machine Learning models on devices with limited resources, such as smartphones afford
able by any producer.

Although diseases and pest detection have already been studied for decades, the 
emergence of object recognition using neural networks has become the leading approach 
in many fields, with a vital role in the early detection and classification of plant pests and 
diseases Hasan et al., 2020. We propose a scalable approach that enables the real-time 
detection of diseases and pests in crops through the camera of a smartphone using 
Convolutional Neural Networks to accomplish the classification offline.

Many researchers have reported different diseases and plague datasets Amara et al. 2017, 
Barbedo et al., 2018, Hughes and Salathe 2015, LeCun et al., 1989, Prajapati et al., 2017, 
Singh et al., 2019, Thapa et al., 2020, Wiesner-Hanks et al., 2018, Wu et al., 2019, Huang and 
Chuang 2020. Unfortunately, none is able to document most of the diseases worldwide 
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available to train a model. This makes sense because they vary depending on the location. 
So, the dataset generation involves farmers allowing them to enrich datasets with a new 
vegetable, their diseases, and plagues. The most critical problem facing the detection of 
plant pests and diseases is the lack of meaningful datasets Liu and Wang 2021. On the other 
hand, the results vary if the dataset contains the crops whose leaves have been separated 
from the plants for presentation presented with a background or were taken in the field 
Hasan et al., 2020.

It is not to our knowledge the existence of datasets that include tomato powder mould 
and Cladosporium. These pests and diseases had been selected as recognition targets for 
helping local tomato growers to detect and treat them during the APP trial phase.

In this work, we present a solution that combines cloud solutions for training 
neural networks and mobile devices to run Convolutional Neural Networks in situ. It 
combines the existing free cloud solutions for training and a mobile device app. It is 
intended to be easy to configure, extend and modify, allowing anyone to make use 
of it for any disease or pest detection. The mobile app is generic so it can be used to 
assess the quality of crops, for the recognition of species and weeds, and for 
substrate problems such as saltpetre, among others. The mobile app does not 
pretend to replace professional services but it aims at providing a preliminary 
diagnosis that could be used to warn about a possible issue. In the context of under- 
development countries, many of the crops are driven by unqualified farmer opera
tors with low economic resources and do not count economic resources to contract 
specialists.

This approach can extrapolate to other crops, identify those most common diseases 
and propose their prospective treatment with specific pesticides.

To be able to identify more than one disease in an image, with the highest 
possible speed and the least consumption of computational resources, it has been 
selected to use SSD Mobilenet v2 Chiu et al., 2020. Therefore, other techniques that 
allow image segmentation, such as Mask R-CNN He et al., 2017, were not selected for 
our solution, because identification by bounding boxes was considered sufficient. 
We picked SSD Mobilenet v2 network because its well-known model among other 
models like EfficientNet-Lite 2011 or newest Mobilenet versions. The reader should 
note we are not pursuing to compare and report best performing engines and 
models. Instead, we aim at introducing an extensible approach to support the 
plague and diseases

identification that can be extensible to support alternative engines (i.e. MNN Jiang et al., 2020 
and models.) Our contributions include:

(1) An approach that enables new strategies for decision-making in agriculture using 
Machine Learning.

(2) A platform that trains a neural network through the use of different Cloud services 
and runs the trained model on a mobile device to allow the detection of objects in 
real time and without the need to be connected to the internet (except for down
loading the model and its successive updates).

(3) A dataset for tomato diseases and pests that includes powdery mildew and 
Cladosporium.
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In section 2, we will discuss related work. In section 3, we will present the rationale for this 
work. The solution will be presented in section 5 and finally, in section 6, we will present 
conclusions and future work.

2. Related work

Machine Learning, and in particular Convolutional Neural Networks, has been used for 
several years to perform different tasks in the field of Agriculture, among which is the 
detection of crop diseases through the analysis of their symptoms. There is a large 
amount and variety of research on this, where different techniques and strategies are 
used to generate a model with high accuracy.

In general, research related to plants uses the Plant Village dataset as a source of 
images, which contains more than 50,000 images of healthy leaves and ill leaves with 
disease symptoms divided into 38 categories by species and disease. This dataset was 
used, for example, to identify two diseases in bananas with an accuracy of 98.6% using 
a LeNet LeCun et al., 1989, Amara et al., 2017; to identify 26 diseases in 14 crops with an 
accuracy of 99.35% Mohanty et al., 2016, using AlexNet Krizhevsky et al., 2012 and 
GoogleNet Szegedy et al., 2015 architectures; to detect black rot in apple by using 
Transfer Learning and VGG−16 Simonyan and Zisserman 2014 architecture with an 
accuracy of 90.4% accuracy, and

https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite
to detect diseases in the potato crop with an accuracy of 95%. In the same way, 

Singh et al., 2019 presents a dataset that does not include the diseases introduced in 
this work. This shows that there is no universal dataset documenting every disease 
on Earth, so a flexible approach for enriching the diseases database to train the 
neural network.

Fuentes et al., 2017 made use of the Faster R-CNN architecture Ren et al., 2017 with 
VGG−16 for training a tomato disease detector, which obtained an accuracy of 83% 
using the image magnification technique.

Ghoury et al., 2019 detect grape and grape leaves using Faster R-CNN Inception 
v2, with a classification accuracy of 78% to 99% with a processing time of 25–30  
seconds per image. The performance was compared with a Single Shot Detector 
(SSD) Liu et al., 2016 MobileNet v1 Howard et al., 2017 which was unsuitable for real- 
time classifications due to a high percentage of misclassifications. Despite the poor 
performance shown in mobilenet v1, the Mobilenet-SSDv2 Chiu et al., 2020 retains 
the advantage of fast processing of the first version, but also improves the detection 
accuracy. These works focus on analysing two different models but our work focuses 
on implementing a solution for real-time image classification that runs offline on 
mobile devices.

Tahir et al., 2018 trained a model capable of detecting fungi with 94.8% accuracy using 
a proprietary dataset with 40,800 labelled images.

Ahmed and Reddy 2021 present a mobile system to detect plant leaf diseases 
using deep learning. The development uses CNN to classify 38 disease categories in 
14 crop species, using 96,206 collected images to train, validate and test the model. 
The dataset source has been Kaggle, PlantVillage, and Google Web Scraper. This 
approach allows capturing or uploading an image to the phone, which uploads it 
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to the cloud server to detect the disease class by applying the CNN model. The 
accuracy achieved reaches 94% operation. This operation of prediction and display
ing results took around 0.88 s, including the communication overheads. Our 
approach differs mainly in being an offline solution that allows operating in places 
without internet coverage and the dataset includes images of powdery mildew and 
Cladosporium obtained in the field.

Sarangdhar and Pawar 2017 presented a system for the detection and control of 
five cotton leaf diseases, which also performs soil quality monitoring. Once the 
disease detection is done, the name and its treatment are provided to farmers 
through a mobile application, which also provides different soil parameters, such as 
moisture and temperature, among others.

Although the aforementioned research has achieved good results in disease 
identification, it has certain limitations. The first limitation is the use of the Plant 
Village dataset as a source of images. As described in some papers, network 
training using this dataset generates models with poor accuracy when inferring 
real-world images. The reason for this is that Plant Village relies on images taken in 
controlled or laboratory environments, where real situations are not considered, 
such as the non-uniformity in the background of the images, the different resolu
tions of the cameras, the differences in illumination, the variety in the size and 
shapes of the symptoms and the possibility of the appearance of several leaves in 
the same image. Another limitation is that some of the investigations do not allow 
the detection of multiple symptoms and diseases on the same leaf, since they 
perform classification instead of object detection, and therefore take the leaf as 
a whole, instead of taking the different symptoms as distinct entities. Moreover, in 
the cited works, image magnification is not a strong point. In some of them, the 
images are neither prepared nor enhanced; in others, only conversion to black and 
white is performed, but in none of them a robust enhancement is implemented, 
which contemplates a wide variety of transformations that allow generating differ
ent conditions for the images. Finally, the analysed works were developed specifi
cally to work on certain diseases and neural network architectures.

Unlike them, this work proposes an end-to-end platform that, among other 
features, allows training a model capable of detecting objects in general and is 
fully configurable, where image enhancement is part of the workflow and the choice 
of the architecture to be used will depend on the type of problem and user 
preferences. Finally, among the specific objectives of this work is the availability of 
a mobile tool that allows running the neural network from the device without 
requiring an internet connection.

Figure 1. Activities contemplated in the platform.
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3. Design

With the aim of guaranteeing that the proposed platform covers the complete process of 
training and delivering the Machine Learning model using a mobile app, the following 
activities have been contemplated in the platform:

Figure 1 shows the four main activities: the image compilation for producing the training 
dataset, the training of the neural network, the deployment of the generated model and its 
delivery, and the use of the model by the mobile application. The dataset compilation 
includes the acquisition, labelling, and augmentation of the images to be used for training. 
Training is an iterative process during which the algorithm provides information and 
different metrics to the user regarding the performance of the model being trained. 
Based on this information, the user can choose to make adjustments to the network,

parameters, and input data, or even choose to use a different model, in case the results 
returned are not satisfactory. The model deployment consists of two activities. The first is 
the generation of the model from the files generated during training. The second activity 
is the storage of the model in a cloud storage service.

Finally, the use of the model by the application contemplates the synchronisation 
(downloading and updating) of the model on the smartphone and its use.

Storing a machine learning model in the cloud has some advantages: the size of the 
mobile application will be smaller during installation time since it does not include any file 
(model) in its source code and, in addition, in the case of wanting to update the model it is 
not necessary to generate a new version of the application with the updated model, since 
it can be downloaded from the Internet.

In order to fulfil the above-mentioned activities, the platform has the following 
components and their respective connections:

The workflow and data flow in the architecture showed in Figure 2 are as follows:

(1) First, the images to be used for training must be collected.
(2) Then, the images must be labelled using the LabelImg software, which will generate 

an .xml mapping file for each image. Once the images are labelled, they must be 
divided into two sets (training and testing). Both sets must be uploaded to a Github 
repository.

(3) A Colab document is going to be in charge of the augmentation of the images 
uploaded to Github. After that, it will generate the necessary files to perform the 
network training, which it will upload to Github. A second Colab document, using 

Figure 2. Platform components.
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the files generated in the previous point, will perform the network training. During 
the training, checkpoints will be generated, which will be uploaded to Google 
Drive. A third Colab document will obtain the most recent checkpoint from Google 
Drive and will generate the TFLite model, which will be available for download in 
the same storage service. The mobile application will download the model from 
Google Drive. Once downloaded, the application will be ready to start detecting 
objects in real-time through the phone’s camera.

Next, we will describe step by step the different activities of the platform, from the 
assembly of the training dataset to the use of the model in the application. At each 
stage, we will explain the components involved and the exchange of information within 
the platform.

3.1. Building the training dataset

The first activity contemplates capturing the images, their labelling, and their augmentation.

3.1.1. Getting images
The first thing we must do is obtain the images that are going to be used for network 
training. As far as possible, they should be images with good definitions and where the 
objects of interest are clearly displayed. It is desirable not to include images that have 
zoom, noise, low light, excessive brightness, and so on, since the augmentation step will 
generate all these variations.

As far as possible, images that do not have the objects to be detected should also be 
included. The goal of adding this type of image is to reduce the number of false positives, 
a situation in which the model erroneously detects the objects. The variety of images to 
include will depend on several factors, such as the type of object to be detected, and the 
ideal is to include both images related to the context of the objects and images not 
related to it at all.

Before proceeding to tag the images, it is convenient to resize them to a single size, 
generally to the size of the smallest image, so that they take up less storage space. The 
resizing will also allow reducing the number of parameters and computations used during 
the training of the neural network. There are many free tools to resize images. There are 
available free tools for image resizing like the Image Resizer for Windows 2017 software 
(that allows us to select all the images and with a few clicks resize them to the chosen 
size), or scikit-image and Pillow which are Python libraries that run cross-platform.

https://www.bricelam.net/ImageResizer

3.1.2. Image tagging
The type of learning required by the convolutional network is supervised and therefore 
the learning uses labelled data.

When working with images and object detection, one of the ways we provide labelled 
data is through .xml mapping files. So, the image will serve as input and the.xml file as 
output.

For the generation of these files, we have used the software LabelImg 2019, a free, light, 
and easy-to-use image annotator that is available for Windows, Mac, and Linux.
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It should be clarified that this software is the only component of the platform that is 
not cloud, because the Web tools available at the time that could be used to carry out this 
work have errors when handling a large number of images or are paid, which does not 
meet our requirement of using only free services.

Using this tool is easy and intuitive. In Figure 3 you can see its main screen, in which 
two labelled objects appear (with the class ‘oidio’).

After labelling the images, they must be divided into two folders (training and test). 
The first will be used for training, and the second to periodically evaluate training 
performance, which will allow the algorithm to make the necessary adjustments to the 
network in order to improve predictions. The percentage of distribution between both 
folders is usually 80% for training and 20% for the test; however, the percentage is left to 
the programmer’s choice, according to his preferences or needs.

After dividing the files, they must be stored in the cloud, for this Github 2015 will be 
used. This service provides free repositories (both public and private) with a limit of 
100MB per file uploaded and a maximum of 1GB (recommended) per repository 2017, 
which is more than enough for our use.

3.1.2.1. Image augmentation. What we need to do next is expand the set of labelled 
images. To do this, we are going to use the augmentation technique, which allows us to 
generate new images from existing ones. This technique is really useful when we have few 
images or when they are difficult to label. Its importance lies in the fact that it allows for 
increasing the effectiveness of the model since a large number of extra images will be 
provided that contemplate different conditions or situations that were surely not 

Figure 3. LabelImg main screen.
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contemplated in the original images. It is also useful to avoid overfitting, that is, the 
memorisation by the model of the training images, which leads to low accuracy in detecting 
new images.

Augmentation generates images by performing transformations to the original 
image. It is possible, for example, to rotate, add zoom, change colours or lighting, 
add noise, etc.

Modifying an image means that we also have to update its mapping file since if, for 
example, we flip and rotate an image, the positions of the objects it contains will change.

We are going to carry out this augmentation process using the Google Collaboratory 
service Agrios, 2005 (Colab), which is a free Jupyter Notebook environment Krizhevsky 
et al., 2012.

Jupyter Notebook is an open-source web application that allows you to create and 
share documents that contain code. Each document is made up of cells, which can 
contain code or text, and their result (text, graphics, tables, results of operations) is 
displayed after each one of them. By supporting Python, it is widely used in Machine 
Learning tasks.

Google Colab, for its part, requires no configuration, runs completely in the cloud, and 
provides a K80 GPU, 12GB of RAM, and 12 hours of continuous use in its free version until 
the environment is restarted. In addition, it provides a

(1) https://github.com/tzutalin/labelImg
(2) https://www.github.com
(3) https://help.github.com/es/github/managing-large-files/what-is-my-disk-quota
(4) https://colab.research.google.com
(5) https://jupyter.org

filesystem, has pre-installed libraries ready to be used, and allows you to connect to 
services such as GitHub and Google Drive in a simple way. This approach is not restricted 
to Google Colab, you can use any other cloud service like AWS.

When generating each new image, its mapping file will also be created with the 
positions of the updated objects.

It is important to clarify that image augmentation will be applied over images having 
tags defined.

Once all the images have been created, the files train.record, test.record and label map. 
pbtxt will be generated, which are required by the neural network to perform the training. 
The first two files are in the TFRecord format, which is a record-oriented binary file format 
that allows efficient storage and processing of large data sets. The remaining file is a text 
file where the ID and name of the tagged objects are specified.

After generating the files, they will be uploaded to the /annotations directory of the 
GitHub repository specified in the document parameters.

3.1.2.2. Training. The next activity of the platform is the training of the Machine 
Learning model. In order to perform the training, we provide a script. These resources 
are available at Ibrahim Hasan et al., 2020 that takes the images, and annotations from 
a GIT repository, and generates a set of checkpoints.
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Certain parameters must first be configured in the document, such as the number of 
training stages and the address of the GitHub repository that contains the files generated 
by the previous activity. In addition, the pre-trained model to be used must be selected. 
By default, the platform selects the ‘ssd mobilenet v2 quantised’ model since it is an 
optimised version to run on mobile phones and also works correctly with any problem 
involving simple objects.

To carry out the training it is necessary to make some modifications in the configura
tion file of the selected model to be reused. This file can be downloaded from the 
TensorFlow repository LeCun et al., 1989 and has all the configurations to be used during 
the training. At a minimum, the paths of the directories where the train.record, test.record 
and label map.pbtxt files are located must be modified, and the number of classes. The file 
provides several parameters (specific to TensorFlow), such as the feature extractor, the 
learning rate, and the loss function that will be used to perform the training.

Running the Colab document will link the file system to our Google Drive account 
Amara et al., 2017. This storage service was selected as it has a maximum capacity (shared 
with Gmail and Google Photos) of 15GB Singh et al., 2019 for its free version, which will 
allow us to work without problems.

Then, the pre-trained model to be used will be downloaded and the training will 
begin, which will be carried out using the free TensorFlow Hughes et al., 2015 library.

During the training, Colab will show relevant information, such as the loss and the 
metric mAP. The value of the loss will be displayed at the end of each training stage. 
A normal value for this indicator is between 0 and 1, and although in the early stages, the 
value is normally high, it will decrease as training progresses. If the value of the loss does 
not decrease, it may be due to a problem in the set of images. If the value increases 
rapidly, it may be due to the appearance of overfitting in the model. For a throughout 
report, it is available in the TensorBoard Prajapati et al., 2017 tool, which is included in the 
TensorFlow framework. This tool allows not only to observe of the loss and the mAP, but 
also a large number of different metrics and also the predictions made in the different 
training stages.

During the training, different checkpoints will be generated, which save the state 
(variables, operations, weights) that the neural network contains at a given moment.

The checkpoints will be uploaded to Google Drive automatically, which will allow the 
TFLite model to be generated and also to be able to resume the training in the event of an 
error.

3.1.2.3. Deploy from TFLite model. The mobile application uses the TensorFlow Lite 
Garcia Arnal Barbedo et al., 2018 library to perform object detection, which is designed to 
run models efficiently on devices with limited resources. Part of that efficiency comes 
from using the TFLite format.

Models generated by TensorFlow must be converted to TFLite format before 
TensorFlow Lite can make use of them. This conversion substantially reduces its size and 
introduces optimisations that do not affect its accuracy. It is also possible to further 
reduce the size of the model and increase its execution speed, at the cost of some slight 
penalties, such as its detection efficiency.

To carry out this activity, a final Colab document will be used under the name generate 
model.ipynb Wiesner-Hanks et al., 2018.
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When executing the script, the filesystem will be linked to a cloud storage (i.e. Google 
Drive account) where the checkpoints generated by the previous activity are located. The 
checkpoint to be used will be the most recent.

(1) https://cololaborde.github.io/notebooks/train model.ipynb, ready to be executed 
in Google Colaboratory.

(2) https://github.com/tensorflow/models/tree/master/research/object detection/ 
samples/configs 10. https://drive.google.com

(3) https://one.google.com/faq/storage
(4) https://www.tensorflow.org
(5) https://www.tensorflow.org/tensorboard
(6) https://www.tensorflow.org/lite
(7) https://cololaborde.github.io/notebooks/generate model.ipynb

To convert the model, two TensorFlow scripts will be used (tflite convert and export tflite 
ssd graph), which will be automatically downloaded by the mobile app as the model will 
be publicly available using a URL. The script ‘tflite convert’ converts the model to TFLite 
format. This script operates with a file extension of ‘.pb’, so the checkpoint must first be 
converted to that format.

The .pb extension refers to ‘protobuf’, a type of file used by TensorFlow that contains 
the neural network graph definition and model weights.

When executing the script, the file ‘tflite graph.pb’ will be generated, which will be used 
in the execution of the command ‘tflite convert’.

To allow the application to download a model and its successive updates using the 
same URL, it is necessary that the model detect.tflite is always available at the same 
location.

3.1.2.4. Use of the model in the mobile application. The last activity is the use of the 
object detector model through the mobile application.

An Android application was developed to run the trained model and its source code is 
available at Thapa et al., 2020.

The first time the app is open, it downloads the latest trained model from the cloud. 
This only happens once and no internet connection is required to use the trained model 
later in-situ.

The detected objects are marked with a rectangle that indicates the position, 
confidence in the prediction, and optionally the name of each of them. Each object 
class has a randomly generated colour, and it is possible to detect multiple instances 
of multiple classes at once. In addition to showing the objects in the camera image, 
they are listed below it, where the name, colour, and number of instances detected are 
indicated.

In terms of customisation, the app allows some UI adjustments, such as the thickness of 
the rectangle used to mark the objects, the minimum percentage of confidence used to 
filter the results of the predictions, and whether or not to show the name of the detected 
objects. A minimum confidence percentage of 80% indicates that if predictions with 30% 
or 40% confidence are returned, they will be rejected.
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4. Detecting diseases and pests in crops

In this section, we will describe how the platform was used to train a model capable of 
detecting symptoms of two tomato diseases, demonstrating that it is possible to use it for 
the detection of symptoms in any type of crop.

The image gathering was performed by professors from the Faculty of Agronomy of 
the National University of La Plata, whom we thank since they provided us with a large 
number of tomato images with symptoms of two of their diseases: Cladosporium and 
powdery mildew. This could be extended to more vegetables and their diseases.

Tomato leaf mould Cladosporium is a disease that develops in humidity conditions 
above 70% and temperatures between 5 and 25 Cº. The symptoms appear on the 
underside of the leaves, first as coloured spots yellowish green on older leaves. These 
correlate with yellow chlorotic spots on the upper surface. Later, the spots enlarge and 
coalesce, turn brown to black, may spread to the remaining younger leaves, and may 
cause defoliation G.N. Agrios 2005.

Dry environmental conditions, without rain, but with high relative humidity, favour 
tomato infection due to powdery mildew. They can infect leaves at extreme temperatures 
(10 to 32ºC), but the optimal temperature is 27ºC. Powdery mildews, although common 
and causing severe disease in cool or warm humid areas, are even more common and 
severe in warm and dry weather G.N. Agrios 2005, Rossini et al., 2010. A white powdery 
mould develops on the upper surface of older leaves, which then become chlorotic and 
finally necrotic. They can also affect stems and other organs. Powdery mildew is most 
common on upper leaves but also affects lower leaves, young shoots and stems, buds, 
flowers, and young fruit peduncles.

The number of images used was 146, 49 of which responded to Cladosporium, 43 to 
powdery mildew, and the remaining 54 showed no symptoms of either diseases. These 
latter images were added to reduce possible overfitting and false positives. These 

Figure 4. Transformations performed on an image.
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included images of healthy plants, images that had symptoms of other diseases, and 
some random images downloaded from the internet.

After labelling the images with LabelImg, they were divided into the training and 
test sets, with a distribution of 70 and 30%, respectively, and uploaded to GitHub.

Images were then augmented using the respective Colab document. As we had only 
146 images in total, it was necessary to generate a large number of extra images, to allow 
the neural network to learn better. We chose to generate 30 images for each image that 
had labelled symptoms, resulting in a total of 2,906 images for training.

In Figure 4, you can see some of the transformations applied to a particular image.
After performing the augmentation, the Colab document generated the files 

train.record, test.record, and label map.pbtxt, which it uploaded to the Github 
repository.

Then, we continued with the Colab document in charge of training the neural 
network.

After finishing the training, the last Colab document was used to generate the TFLite 
model. With the model uploaded to Google Drive, he downloaded it from the mobile app.

In the images of Figure 5 you can see the different detections made by the application.
Tensorflow offers detection models pre-trained on the COCO 2017 dataset Xiaoping 

et al., 2019. Additional model’s weights are available at TensorFlow 2 Detection Model 

Figure 5. Predictions made by the app.
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Zoo repository. In order to illustrate our approach, we selected EfficientDet D0 512 × 512, 
Faster RCNN resnet50 V1 640 × 640, and SDD with Mobilenet v2 pre-trained models for 
training and benchmark diseases and plague detection. We evaluated both models with 
80,000 steps and measured mAP and lost metrics using coco detection metrics. When 
using PASCAL VOC, we got poor mAP but visual inspection of prediction showed good 
results. Because of this inconsistency, we decided to use COCO metrics which reported 
a better fit for visual inspection of the detection.

(1) https://github.com/cololaborde/app obj detection
(2) https://github.com/tensorflow/models/blob/master/research/object detection/ 

g3doc/tf2 detection zoo.md

In practice, it is possible to combine different datasets to support a wider set of diseases 
and plagues. Therefore, we aggregate two different datasets in order to show how to 
profit from existing datasets. In this case, we combined the TomAR and The PlantDoc 
dataset. The latter provides healthy tomato images and eight new tomato diseases. In 
PlantDoc, the leaves are tagged and not pested, unlike TomAR. PlantDoc presents images 
within a size range from 6000 × 4000to 130 × 69. TomAR dataset has all images sized 
640 × 480.

Table 3 shows the frequency of the PlantDoc dataset classes and our classes. In the first 
place, it is observed that we present two pests not previously reported by PlantDoc. In 
the second place, the class powdery mildew (oidio) and Cladosporium are positioned 20 
and 28, respectively, out of a total of 31 positions.

Table 1. Comparison of EfficientDet, Faster RCNN resnet v1, and SSD with mobilenet v2 based on 
TomAR dataset and applying 80,000 steps.

TensorFlow 2 
Detection Model

EfficientNet 
B0 coco17 
512z512

Faster 
RCNN 

Resnet50 
v1 

640×640

SSD with Mo- 
bilenet v2 300 ×  

300

Dataset TomAR
Steps 82300 80000 80000
Total Loss 0.477 0.363 1.125
PerformanceByCategory/mAP/cladosporium 0.578 0.561 0.416
PerformanceByCategory/mAP/oidio: 0.659 0.687 0.486
Average Precision (AP) @[IoU = 0.50:0.95 — area= all – maxDets = 100] 0.618 0.624 0.451
Average Precision (AP) @[IoU = 0.50 — area= all – maxDets = 100] 0.901 0.902 0.828
Average Precision (AP) @[IoU = 0.75 — area= all – maxDets = 100] 0.726 0.721 0.436
Average Precision (AP) @[IoU = 0.50:0.95 — area= small – maxDets =  

100]
0.496 0.591 0.346

Average Precision (AP) @[IoU = 0.50:0.95 — area=medium – maxDets  
= 100]

0.653 0.64 0.477

Average Precision (AP) @[IoU = 0.50:0.95 — area= large – maxDets =  
100]

0.589 0.597 0.49

Average Recall (AR) @[IoU = 0.50:0.95 — area= all – maxDets = 1] 0.110 0.11 0.089
Average Recall (AR) @[IoU = 0.50:0.95 — area= all – maxDets = 10] 0.554 0.568 0.447
Average Recall (AR) @[IoU = 0.50:0.95 — area= all – maxDets = 100] 0.684 0.699 0.55
Average Recall (AR) @[IoU = 0.50:0.95 — area= small – maxDets = 100] 0.573 0.655 0.405
Average Recall (AR) @[IoU = 0.50:0.95 — area=medium – maxDets =  

100]
0.710 0.711 0.574

Average Recall (AR) @[IoU = 0.50:0.95 — area= large – maxDets = 100] 0.687 0.707 0.61
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Table 1 shows the training with EfficientDet, Faster RCNN, and SDD with MovileNet v2 
on the TomAR dataset, with 80,000 steps. For the EfficientDet model, the mAP perfor
mance per category is mAP = 0.659 for powdery mildew, mAP = 0.578 for Cladosporium 
and the total loss value is 0.477. For Faster RCNN, the mAP performance by category was 
mAP = 0.687 for powdery mildew, mAP = 0.561 for Cladosporium and the total loss value 
is 0.363. Finally for the SDD with Mobilenet v2 model, the mAP performance per category 
is mAP = 0.486 for powdery mildew, mAP = 0.416 for Cladosporium and the total loss 
value is 1.125.

Considering that the available datasets do not include the classes introduced in 
this work, it was not possible to perform a performance comparison for the same 
pest using two datasets. On the other hand, the mobile models require less 
computing capacity, and therefore, the performance is lower than the models 
without this hardware restriction.

Our approach can profit from existing datasets to enrich the diseases and pest 
detection. So, the Table 2 presents the results of training the EfficientDet model 
with the TomAR dataset together with the tomato images subset from the PlantDoc 
dataset. The mAP performance per category is mAP = 0.206 for powdery mildew, 
mAP = 0.286 for Cladosporium and the total loss value is 0.569.

The performance values per category mAP obtained from the EfficientDet model 
trained with the mixed TomAR and PlantDoc dataset (only tomatoes), were lower than 
the SDD with Movilenet v2 model trained only with TomAR, both with 300 × 300 images.

Table 2. EfficientNet and mix dataset TomAr and PlantDoc (tomato).
TensorFlow 2 
Detection Model

EfficientNetB0 
coco17

Dataset
TomAR+PlantDoc 

(tomato)

Steps 81000
Total Loss 0.5699
Average Precision (AP) @[IoU=0.50:0.95 — area= all — maxDets=100] 0.219
Average Precision (AP) @[IoU=0.50 — area= all — maxDets=100] 0.417
Average Precision (AP) @[IoU=0.75 — area= all — maxDets=100] 0.197
Average Precision (AP) @[IoU=0.50:0.95 — area= small — maxDets=100] 0.16
Average Precision (AP) @[IoU=0.50:0.95 — area=medium — maxDets=100] 0.23
Average Precision (AP) @[IoU=0.50:0.95 — area= large — maxDets=100] 0.279
Average Recall (AR) @[IoU=0.50:0.95 — area= all — maxDets= 1] 0.189
Average Recall (AR) @[IoU=0.50:0.95 — area= all — maxDets= 10] 0.399
Average Recall (AR) @[IoU=0.50:0.95 — area= all — maxDets=100] 0.456
Average Recall (AR) @[IoU=0.50:0.95 — area= small — maxDets=100] 0.379
Average Recall (AR) @[IoU=0.50:0.95 — area=medium — maxDets=100] 0.461
Average Recall (AR) @[IoU=0.50:0.95 — area= large — maxDets=100] 0.583
PerformanceByCategory/mAP/Tomato Early blight leaf 0.145
PerformanceByCategory/mAP/Tomato Septoria leaf spot 0.351
PerformanceByCategory/mAP/Tomato leaf 0.239
PerformanceByCategory/mAP/Tomato leaf bacterial spot 0.151
PerformanceByCategory/mAP/Tomato leaf late blight 0.400
PerformanceByCategory/mAP/Tomato leaf mosaic virus 0.231
PerformanceByCategory/mAP/Tomato leaf yellow virus 0.157
PerformanceByCategory/mAP/Tomato mold leaf 0.236
PerformanceByCategory/mAP/cladosporium 0.286
PerformanceByCategory/mAP/oidio 0.206
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5. Conclusions

This research work does not intend to delve into the field of Machine Learning since there is 
extensive literature on it; on the contrary, it aims to leverage a comprehensive solution by 
composing existing solutions available in the cloud.

The presented approach was used for the detection of Powdery Mildew and 
Cladosporium diseases in tomatoes. The results of using the approach to carry out 
this task were more than satisfactory since it managed to correctly detect the symp
toms, having mAP of 0.41 in at least some of these symptoms. This shows that the 
platform can be used in the agricultural sector, as an additional tool for the detection of 
diseases and pests to combat the problem and reduce its consequences.

Although the platform was conceived for the aforementioned goals, from the first moment it 
was kept in mind to generate a comprehensive, generic, configurable, free, and easy-to-use 
solution, so that it can be applied to any domain of interest and can boost any other similar goal.

This work differs from similar investigations of symptom detection using image aug
mentation. In general, research related to plants uses the Plant Village dataset Hughes 
and Salathe 2015 which is a large dataset that has more than 50,000 images. The main 
challenge with training models using this dataset is that the images it contains are images 
obtained under controlled conditions, which means that the neural network is trained 
with ‘perfect’ images, instead of with ‘real-world’ images. This generates that when the 
model must infer real images, its precision can be greatly impaired.

Table 3. PlantDoc and TomAR datasets classes and frequency.
Nr Class Frequency Dataset

1 Blueberry leaf 849 PlantDoc
2 Tomato leaf yellow virus 829 PlantDoc
3 Peach leaf 620 PlantDoc
4 Raspberry leaf 556 PlantDoc
5 Strawberry leaf 492 PlantDoc
6 Tomato Septoria leaf spot 436 PlantDoc
7 Tomato leaf 396 PlantDoc
8 Corn leaf blight 372 PlantDoc
9 Potato leaf early blight 333 PlantDoc
10 Bell pepper leaf 323 PlantDoc
11 Tomato mold leaf 293 PlantDoc
12 Tomato leaf bacterial spot 280 PlantDoc
13 Soyabean leaf 266 PlantDoc
14 Bell pepper leaf spot 264 PlantDoc
15 Tomato leaf mosaic virus 261 PlantDoc
16 Squash Powdery mildew leaf 257 PlantDoc
17 Potato leaf late blight 250 PlantDoc
18 Apple leaf 247 PlantDoc
19 Cherry leaf 240 PlantDoc
20 oidio 226 TomAR
21 Tomato leaf late blight 221 PlantDoc
22 grape leaf 220 PlantDoc
23 Tomato Early blight leaf 214 PlantDoc
24 Apple rust leaf 179 PlantDoc
25 Apple Scab Leaf 171 PlantDoc
26 grape leaf black rot 133 PlantDoc
27 Corn rust leaf 127 PlantDoc
28 cladosporium 90 TomAR
29 Corn Gray leaf spot 79 PlantDoc
30 Potato leaf 11 PlantDoc
31 Tomato two spotted spider mites leaf 2 PlantDoc
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To our knowledge, there is no other similar solution to the one proposed in this work 
and for this reason, we want to dedicate a few lines to the importance of making 
technology accessible so that everyone can learn about it and use it.

The approach and its assets are intended to be used as a ”step by step” and for this reason, it 
was ”separated” into simple activities connected, to guide through the whole process that it 
contemplates to those who want to learn about this subject.
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