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Entanglement and area laws in weakly correlated gaussian states
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We examine the evaluation of entanglement measures in weakly correlated gaussian states. It
is shown that they can be expressed in terms of the singular values of a particular block of the
generalized contraction matrix. This result enables to obtain in a simple way asymptotic expressions
and related area laws for the entanglement entropy of bipartitions in pure states, as well as for
the logarithmic negativity associated with bipartitions and also pairs of arbitrary subsystems. As
illustration, we consider different types of contiguous and noncontiguous blocks in two dimensional
lattices. Exact asymptotic expressions are provided for both first neighbor and full range couplings,
which lead in the first case to area laws depending on the orientation and separation of the blocks.

PACS numbers: 03.67.Mn, 03.65.Ud, 05.30.Jp

I. INTRODUCTION

Entanglement is a valuable resource that plays a key
role in quantum information processing and transmission
based on qubits [1–4] or on continuous variable systems
[5]. It has also provided new insights into the role of
quantum correlations in the critical behavior of many-
body quantum systems [6–10]. Nonetheless, the evalu-
ation of genuine quantum correlations for a given state
of a many-body system is in general a difficult task. On
the one hand, rigorous computable entanglement mea-
sures exist just for pure states, where the entanglement
entropy, i.e. the entropy of the reduced state of a sub-
system, provides the basic measure of bipartite entan-
glement [11]. In the case of mixed states, rigorous mea-
sures like the entanglement of formation [12], which is the
convex-roof extension of the previous measure [13], in-
volve a minimization over a very high dimensional space
of parameters and are therefore not directly computable.
This has turned the attention to the negativity [14], or
equivalently, the logarithmic negativity [14, 15], which
quantifies the violation of the positive partial transpose
separability criterion by entangled states and is a bipar-
tite entanglement monotone [14], computable in principle
for any bipartition in any pure or mixed state. Neverthe-
less, the accurate evaluation of these quantities demands
a deep knowledge of the many body state, which requires
in general an amount of information which increases ex-
ponentially with the system size. This fact limits the
possibility of closed evaluations to states characterized
by a manageable number of parameters [9].

A prime example of such states are the gaussian states,

i.e., ground or thermal states of stable gapped Hamiltoni-
ans quadratic in boson operators, or equivalently general-
ized coordinates and momenta [5, 16, 17]. For such states,
of crucial importance for continuous variable quantum in-
formation [5], the entanglement entropy of bipartitions of
pure states and the negativity between arbitrary subsys-
tems in pure or mixed states can be evaluated in terms of
the elements of the covariance matrix [18–22], i.e., of the
generalized contraction matrix of pairs of boson operators

[23, 24]. However, even in this scenario, the extraction
of analytic expressions for these quantities for arbitrary
subsystems is in general not straightforward [18, 19, 25].

The aim of this work is to discuss the evaluation of the
previous measures in weakly correlated gaussian states,
such as typical ground states of gapped hamiltonians,
which can be characterized by excitations over a product
state. Gaussian states are usually described in terms of
the phase space formalism [5], which allows to connect
their entanglement properties with correlations in phase
space. Here we will consider a different approach, based
on the Fock representation, which provides an equivalent
yet in many cases more clear way to evaluate and repre-
sent entanglement measures [24]. We will show that the
entanglement entropy and negativity can be expressed in
terms of the singular values of sub-blocks of basic con-
traction matrices, which can be evaluated analytically in
the perturbative limit for some typical couplings. The
formalism also allows the straightforward derivation of
area laws [10, 19, 26–28] for these quantities. The emer-
gent area laws for the entanglement entropy and negativ-
ity are different, i.e., they depend on distinct measures
of the boundary size, and are affected by the orientation
and separation of the subsystems. Let us also remark
that the ground state of weakly interacting spin systems
can also be described by gaussian states through different
approximate bosonization techniques [23, 24, 29], entail-
ing that the scope of the present scheme is quite general.

The formalism is described in section II, while section
III considers its application to specific systems, essen-
tially ground states of two dimensional lattices with short
range couplings, although the full range case is also con-
sidered. The present scheme allows to easily obtain ex-
act analytic asymptotic expressions for the entanglement
entropy and logarithmic negativity of different types of
bipartitions and block pairs, both contiguous and sepa-
rated, which will be compared with exact numerical re-
sults. They clearly show the emergence of precise area
laws. Conclusions are finally drawn in IV. We also in-
clude appendices containing the details of the perturba-
tive expansion for the symplectic eigenvalue problem and
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the evaluation of singular values.

II. FORMALISM

A. Entanglement entropy and negativity in

Gaussian states

The class of Gaussian states in a bosonic system can
be defined as those states of the form

ρ = 1
Tr exp(−βH)T (α) exp(−βH)T †(α) , (1)

where H is a positive definite quadratic form on boson

operators bi, b
†
i ([bi, b

†
j ] = δij , [bi, bj] = 0),

H =
∑

i,j

(λiδij −∆+
ij)(b

†
i bj +

1
2δij)− 1

2 (∆
−
ijbibj + ∆̄−

ijb
†
jb

†
i )

= 1
2Z

†HZ , H =

(

Λ−∆+ −∆−

−∆̄− Λ− ∆̄+

)

, (2)

with Z =
(

b
b†

)

, and T (α) =
∏

i exp(ᾱibi − αib
†
i ) is a

displacement operator (T (α)biT
†(α) = bi + αi). In (2),

Λ is the diagonal matrix of local bare energies λi and
∆±

ij are the coupling strengths between pairs of different

bosons (∆+
ij = ∆̄+

ji, ∆
−
ij = ∆−

ji). In the pure state limit

β → ∞, ρ → T (α)|0〉〈0|T †(α), with |0〉 the ground state
of H . The displacements αi can be taken into account
by local shifts bi → bi − αi, so that in what follows we
will set αi = 0, such that 〈bi〉ρ ≡ Tr ρ bi = 0 ∀ i.
The key property of these states is that by means

of Wick’s theorem [23], the expectation value of any
bosonic operator (and hence ρ) is fully determined by
the displacements αi and the generalized contraction
matrix[23, 24]

D = 〈ZZ†〉 −M =

(

F+ F−

F̄−
1+ F̄+

)

,

F+
ij = 〈b†jbi〉ρ , F−

ij = 〈bibj〉ρ , (3)

where M = ZZ† − [(Z†)tZt]t = (1 0
0−1

) is the symplectic

metric and F+
ij = F̄+

ji , F
−
ij = F−

ji .
We may diagonalize D or H by means of a symplec-

tic transformation W satisfying W†MW = M, corre-
sponding to a Bogoliubov transformation Z = WZ ′ to
boson operators Z ′ = (b

′

b′†
), such that D = WD′W†,

with D′ diagonal (F ′+
αα′ = fαδαα′ , F ′− = 0). This leads

to the standard diagonalization of the matrix DM (as
WDMW−1 = D′M). The matrix W can be written in
block form as

W =

(

U V
V̄ Ū

)

, (4)

where U and V should satisfy

U †U − V tV̄ = 1 = UU † − V V † (5a)

U †V − V tŪ = 0 = UV t − V U t . (5b)

The blocks F± of the contraction matrix acquire then a
simple form in terms of U , V and the diagonal block F ′+:

F− = V U t + V F ′+U t + UF ′+V t (6a)

F+ = V V † + V F ′+V † + UF ′+U † . (6b)

For a pure state, F ′+ = 0 and Eqs. (6) lead to F− = V U t,
F+ = V V †, implying

F−F̄− = F+ + F+2
. (7)

For such states, the entanglement between any subsys-
tem A and its complement Ā can be measured through
the von Newmann entropy of any of the reduced states:

EA,A = S(ρA) = S(ρA) , (8)

where S(ρ) = −Tr ρ log ρ. In a Gaussian state, the va-
lidity of Wick’s theorem[23] implies that the state of any
subsystem A is also Gaussian and hence fully character-
ized by the corresponding contraction matrix DA, which
is just the sub-block of D with indexes belonging to A:

DA =

(

F+
A F−

A
F̄−
A 1+ F̄+

A

)

. (9)

The von Newmann entropy (8) can then be expressed in
terms of the symplectic eigenvalues fA

α of DA as

S(ρA) =
∑

α

h(fA
α ) , h(x) = −x log x+(1+x) log(1+x) .

(10)
In the case of a mixed state or for pairs of non-

complementary subsystems B, C, the subsystem entropy
is no longer a measure of quantum correlations. Instead,
a well known computable entanglement monotone for
such systems is the negativity NB,C [14], which is just the
sum of the negative eigenvalues of the partial transpose

ρtBBC . An associated quantity is the logarithmic negativity

EN
B,C = log(1 + 2NB,C) = log ||ρtBBC ||1 , (11)

where ||A||1 = tr
√
A†A denotes the trace norm. For a

gaussian state, ||ρtBBC ||1 can be expressed in terms of the

negative symplectic eigenvalues f̃B,C
α of the contraction

matrix D̃BC determined by ρtBBC , with blocks

F̃±
BC =

(

F̄±
B F̄∓

B,C
F∓
C,B F±

C

)

, (12)

where F±
B,C denotes the matrix of elements F±

ij with i ∈ B
and j ∈ C, and F±

B ≡ F±
B,B. Eq. (11) then becomes

EN
B,C =

∑

f̃B,C
α <0

g(f̃B,C
α ) , g(x) = − log(1 + 2x) . (13)

We notice that f̃B,C
α ≥ −1/2 [24]. In the case where

B = A and C = Ā, Eq. (13) can be expressed in terms of
the symplectic eigenvalues fA

α of DA as [24]

EN
A,Ā = 2

∑

α

log(
√

fA
α +

√

1 + fA
α ) , (14)

which, like Eq. (8), is again a concave function of the fA
α .
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B. Weakly correlated pure Gaussian states

We consider now the case of weakly correlated pure
Gaussian states, i.e., states in which the local symplectic
eigenvalues (those corresponding to a single mode A = i)

fi =
√

(12 + F+
ii )

2 − |F−
ii |2 − 1

2 , (15)

satisfy fi ≪ 1 ∀ i, such that each mode is weakly en-
tangled with the rest of the system. In the local basis

where F−
ii = 0 (this implies replacing bi → uibi− eiφvib

†
i ,

with ui, vi =

√

F+
ii+1/2±(fi+1/2)

2fi+1 and φ the phase of

F−
ii ), fi = F+

ii and weak coupling implies, together with

the positivity of D and F+, that |F+
ij | ≤

√

fifj ≪ 1,

|F−
ij |2 ≤ Min[fi, fj] + fifj ≪ 1 ∀ i, j. In this limit, Eqs.

(6)–(7) then lead, neglecting terms ∝ (F−F̄−)2, to

F+ ≈ F−F̄− , (16)

which for a subsystem A implies

F+
A ≈ F−

A F̄−
A + F−

A,ĀF̄
−
Ā,A . (17)

Using Eq. (17) and the results of Appendix A, the sym-
plectic eigenvalues of DA will then agree at this order
with the standard eigenvalues of the matrix

F+
A − F−

A F̄−
A ≈ F−

A,ĀF̄
−
Ā,A , (18)

which are just the square of the singular values σA,Ā
α of

F−
A,Ā (see Appendix B). We then obtain, at this order,

fA
α ≈ (σA,Ā

α )2 . (19)

Entanglement depends at this level just on the F− con-
tractions between A and Ā. For instance, in the case of
a single site i, Eq. (19) implies fi ≈ σ2

i,̄i
=

∑

j 6=i |F−
ij |2.

In this regime we may just set h(x) ≈ −x log2(x/e) in
Eq. (10), such that the entanglement entropy becomes

EA,Ā ≈ −
∑

α

(σA,Ā
α )2 log[(σA,Ā

α )2/e] . (20)

Considering now the negativity, in the present regime
the symplectic eigenvalues of D̃BC will be given at leading
order by the eigenvalues of (see Appendix A)

F̃+
BC − F̃−

BC
¯̃F−
BC ≈

(

ḠB F̄−
B,C

F−
C,B GC

)

, (21)

where, for S = B or C,

GS = F+
S − F−

S F̄−
S . (22)

For pure global states, Eq. (18) leads to GS ≈ F−
S,S̄ F̄

−
S̄,S ,

indicating that GS takes into account the correlations
with the environment of S. Up to first order in F−

B,C ,

we may neglect its second order effect in GB̄ and GC in
(21), such that

GB ≈ F−
B,BCF̄

−
BC,B, GC ≈ F−

C,BCF̄
−
BC,C , (23)

depend just on the correlation with the environment of
BC. If the sites of B and C correlated with each other
have correlations of the same order (or less) with BC, (i.e.
||F−

B,BC ||∞ and ||F−
C,BC ||∞ of the same order as ||F−

B,C ||∞,

at least for the subsets of B and C mutually correlated)
we can directly neglect GB and GC in Eq. (21) at order

||F−
B,C ||∞. The negative symplectic eigenvalues of D̃B,C

will then be given by minus the singular values σB,C
α of

F−
B,C (see Appendix B):

f̃B,C
α ≈ −σB,C

α , (24)

which depend again just on the F− contractions between
B and C. For instance, this is the case of contiguous
blocks in a scenario of short range couplings, and also
that where C is the complement of B (C = B̄).
In the general case, however, the whole matrix (21)

should be diagonalized. First order corrections lead to

f̃B,C
α ≈ −σB,C

α + [(ḠB)αα + (GC)αα]/2 , (25)

where (ḠB)αα = U †
αḠBUα, (GC)αα = V †

αGBVα are the
diagonal elements in the local basis of B and C where
(F−

B,C)αα′ = σB,C
α δαα′ (see App. B). As GB and GC are

positive matrices in the approximations (22)–(23), neg-
ative eigenvalues can only arise if (GB)αα and (GC)αα
are not much larger than σB,C

α . A sufficient condition

ensuring a negative eigenvalue f̃B,C
α of (21) is

σB,C
α >

√

(ḠB)αα(GC)αα . (26)

In the present regime, the logarithmic negativity can
be obtained setting g(x) ≈ −2 log(e)x in (13), such that

EN
B,C ≈ −2 log(e)

∑

f̃B,C
α <0

f̃B,C
α , (27)

i.e., EN
B,C ∝ ||F−

B,C ||1 in the approximation (24). For com-

plementary subsystems (C = B̄ = Ā), it is verified that
identity between Eqs. (14) and (27) holds at leading order

in the approximation (19) (log(σ+
√
1 + σ2) ≈ log(e)σ).

C. Ground state correlation matrix in the weakly

interacting case

A particular case of the previous results arises when
we deal with the ground state of a Hamiltonian of the
form (2). For weak couplings ∆± ≪ Λ, the diagonalizing
symplectic transformationW such that W†HW = Ω⊕Ω,
with Ωαα′ = δαα′ωα, can be evaluated perturbatively. At
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leading order (see Appendix A) the block U in (4) is a
unitary matrix that diagonalizes Λ−∆+, while

Viβ ≈
∑

α

Uiα
(U †∆−U)αβ
ωα + ωβ

. (28)

Note that, in contrast with the conventional perturbation
theory, a possible degeneracy in the local energies λk will
not spoil this result if the system is stable (ωα > 0 ∀ α).
Notice, however, that U can depart considerably from
the identity if the λk are degenerate.
If all local bare energies are nearly equal (|λk − λj | ≪

λk +λj ≈ 2λ), and if energy corrections arising from ∆+

are neglected (ωα ≈ λ), Eq. (28) reduces to V ≈ 1
2λ∆

−Ū .
In such a case, Eq. (6) leads to

F− ≈ ∆−

2λ
, (29)

with F+ given by Eq. (16). In this regime, correlations
are hence proportional to the pairing couplings ∆−, de-
creasing as λ−1 for increasing local energies. Noteworthy,
the strength of the hopping interaction ∆+ does not af-
fect the ground state correlations at this order. When
non degenerate, it just affects F± dressing the bare pair-
ing interactions.
In the same way, for a common local bare energy λ,

inclusion of second order terms in the couplings leads to

F− ≈ ∆−

2λ
+

∆+∆− +∆−∆̄+

4λ2
. (30)

This expression is useful in the present scheme when the
first order term vanishes (modes i, j unconnected by ∆−).
As the counter terms GB and CC in (25) will be of sec-
ond order in F− (Eq. (23)), subsystems unconnected by
∆− but connected at second order through Eq. (30) may
exhibit an O(∆/λ)2 non-zero negativity if Eq. (26) holds.

D. Area laws

The formulation of the area law for systems with local
interactions starts with the definition of a suitable mea-
sure for the size of the boundary ∂A of the subsystem A
[10, 19, 25]. An example of such measure is given by the
number of pairs of first neighbor modes, with one mode
belonging to A and the other to Ā. If we define the ma-
trix M with entries Mij = 1 if modes i and j are first
neighbors and 0 otherwise, that measure can be written
as

|∂A|2 =
∑

i∈A
nĀ
i = Tr

[

MA,ĀMĀ,A
]

= ||MA,Ā||22 (31)

where nĀ
i = (MA,ĀMĀ,A)ii is the number of first neigh-

bors of mode i in Ā. For the ground state of a gapped
bosonic system with constant and isotropic first neigh-

bor interactions ∆±
ij =

∆±

2 Mij , Eq. (29) implies F−
AĀ ≈

∆−

4λ MAĀ and Eqs. (19)–(20) lead then to

EA,Ā ∝ |∂A|2 , (32)

at leading order in ∆−/λ, which coincides exactly with
the result in [19] for non critical harmonic systems.
The logarithmic negativity presents, however, a

slightly different behavior: for contiguous subsystems,
the same procedure and Eqs. (24)–(27) lead to

EN
A,Ā ∝ |∂A|1 , (33)

where the boundary measure is now

|∂A|1 = Tr
√

MA,ĀMĀ,A = ||MA,Ā||1 =
∑

α

σ̃A,Ā
α ,

(34)

with σ̃A,Ā
α the singular values of the matrix MA,Ā (in

comparison, ||MA,Ā||22 =
∑

α(σ̃
A,Ā
α )2). If each site in Ā

has at most one neighbor in A (the opposite may not
hold), the rows of MA,Ā will be orthogonal and the sin-

gular values will be σ̃A,Ā
i =

√

nĀ
i , leading to

|∂A|1 =
∑

i∈A

√

(MA,Ā MĀ,A)ii =
∑

i∈A

√

nĀ
i , (35)

which will differ from (31) if nĀ
i > 1. In general, Eq. (35)

may provide a rough approximation to the area (34). In-
terestingly, in an isotropic hypercubic lattice in d dimen-
sions, the approximation (35) is just proportional to the
euclidean area for large planar surfaces, both parallel and
tilted (with an angle of π/4 with respect to the principal
axes of the lattice), which is not true in the tilted case
neither for |∂A|2 nor |∂A|1 (see next section).
In general, for two contiguous subsystems B, C, previ-

ous expressions generalize to

EN
B,C ∝ |∂B ∩ ∂C|1 , (36)

at leading order in λ, where

|∂B ∩ ∂C|1 = ||MB,C||1 =
∑

α

σ̃B,C
α , (37)

is a measure of the contacting area between B and C.
Again, if each mode in C is linked with at most one mode

in B, σ̃B,C
i =

√

nC
i , where nC

i = (MB,CMC,B)ii is the
number of first neighbors of i in C.
Previous geometric-like expressions can of course be

also applied to a general constant coupling ∆−
ij =

1
2∆

−Mij , where Mij = 1 if pairs i, j are linked by
the coupling and 0 otherwise, leading to effective areas
|∂A|1 = ||MA,Ā||1 and |∂A|2 = ||MA,Ā||22. On the other
hand, they cannot be directly applied to higher order ef-
fects, like those depending on Eq. (30), as discussed in
the next section.
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a) b)

c) d)

FIG. 1. (Color online) The complementary partitions con-
sidered in Eqs. (42). a) Single site, b) square block parallel
to the principal lattice axes, c) tilted square block and d)
checkerboard.

III. EXAMPLES AND ASYMPTOTIC

EXPRESSIONS

We will now use the present formalism to obtain an-
alytic asymptotic expressions for EA,Ā and EN

B,C̄ for typ-

ical subsystems A, B and C of a two-dimensional lat-
tice, which will be compared with the exact numerical
results and the estimations (32)–(36). We first consider
the ground state of a bosonic square lattice with attrac-
tive first neighbor couplings

∆±
ij =

1

2

∑

µ=x,y

∆±
µ (δi,j+uµ

+ δi,j−uµ
)

where uµ denotes the unit vector along the µ axis. We
have considered in Figs. (1–6) the isotropic case ∆±

x =
∆±

y = ∆±, with ∆−/∆+ = 2/3, and a uniform single
mode energy λi = λ. Away from the critical point λ = λc

(where, for fixed ∆±, the lowest energy ωα vanishes), the
system is gapped and a finite correlation length ξ < ∞
is expected. Approximately, λc ≈ 2(∆+ + |∆−|) (exact
result for the cyclic case [24]).

A. Entanglement between complementary

subsystems

We first consider the four global (A, Ā) bipartitions
depicted in Fig. 1. Eqs. (19), (24) and (29) lead to ana-
lytic asymptotic expressions for the corresponding singu-
lar values σA,Ā

α . At lowest order, their number is just the
number of sites at the border. Defining the basic single
link singular values

σµ = |∆−
µ |/(4λ) , µ = x, y,

in the case of a single site (Fig. 1a) we obtain

σi,̄i ≈
√

2(σ2
x + σ2

y) . (38)

In the rectangular nx×ny block 1b (parallel to the prin-
cipal axes), there are three different singular values, cor-
responding to the horizontal and vertical sides and the
four corners, given below with their multiplicity:

(σAĀ
α )2 ≈











σy , 2(nx − 2)
σx , 2(ny − 2)

√

σ2
x + σ2

y , 4
. (39)

In the n×n square block 1c tilted 45o with respect to the
principal axes, we obtain, by means of a discrete Fourier
transform and neglecting corner effects (see Eq. (C3)),

σA,Ā
k ≈

√

σ2
x + σ2

y + 2σxσy cos
2πk
m , (40)

where k = 1, . . . ,m and m = 4n − 4 is the number of
sites at the border. Corner effects will affect essentially
just 4 of these eigenvalues with O(1) corrections.

Finally, in the checkerboard partition 1d, an exact ana-
lytic expression for the nxny/2 singular values is available
in the cyclic case again by means of a discrete Fourier
transform (see Eq. (41) in [29]):

σA,Ā
k ≈ 2|

∑

µ=x,y

σµ cos
2πkµ

nµ
| , (41)

where k = (kx, ky) with kx = 1, . . . , nx, ky = 1, . . . , ny/2.

These expressions, together with Eqs. (19), (20), (24)
and (27), allow to easily obtain the asymptotic values of
the entanglement entropy and negativity of the present
bipartitions for large λ and n. For instance, in the
isotropic case ∆±

µ = ∆± considered in the figures, set-
ting σ = σµ and neglecting corner and border effects
(which just add terms of relative order n−1), we obtain

Ea
i,̄i ≈ −4σ2 log2

4σ2

e , (42a)

Eb
A,Ā ≈ −4nσ2 log2

σ2

e , (42b)

Ec
A,Ā ≈ −8nσ2 log2 σ

2 = −(4n)2σ2 log2(
e
2
2σ2

e ) , (42c)

Ed
A,Ā ≈ −2n2 log2(σ

2e) = −(
n2

2
)4σ2 log2(

e2

4
4σ2

e ) .(42d)

for the entanglement entropy of the single mode, the
parallel and tilted n × n square blocks and the n × n
checkerboard of Fig. 1. We have replaced sums over k in

c–d by integrals (
∑n

k=1 f(
2πk
n ) ≈ n

2π

∫ 2π

0 f(u)du). Note
that in the chekerboard case the entanglement entropy
scales with the “volume” n2 of A rather than the “area”
n, since all links are broken by the partition (maximally
entangled bipartition [29]).

The corresponding values of the scaled logarithmic
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0.002

0.004
a)
b)
c)
d)

asymp. a)
asymp. b)
asymp. c)
asymp. d)

0.025

0.050

0.00

0.05

0.10

2 4 6 8
λ/λc

EA,Ā

|A|2

EN
A,Ā

|A|2

EN
A,Ā

|A|1

FIG. 2. (Color online) Exact and asymptotic (Eqs. (42)-(43))
results for the scaled entanglement entropy EA,Ā (top) and

logarithmic negativity EN

A,Ā
(center and bottom) of the four

bipartitions a, b, c, d, of Fig. 1, as functions of the ratio λ/λc.
In the top and central panels results were scaled with the
boundary measure |∂A|2 (4, 4n, 8n, 2n2 in a, b, c, d, according
to Eqs. (31)–(46)), which is seen to provide an adequate scal-
ing for EA,Ā but not EN

A,Ā
. The latter scales accurately with

the measure |∂A|1 (2, 4n, 16

π
n, 8n

2

π2 according to Eqs. (34)–
(46)), as verified in the bottom panel. Results correspond
to a 30× 30 lattice with ∆−/∆+ = 2/3 and 10× 10 blocks in
b) and c).

negativity ẼN
A,Ā = EN

A,Ā/[2 log(e)] are

ẼN a
i,̄i ≈ 2σ =

√
4σ , (43a)

ẼN b
A,Ā ≈ 4nσ , (43b)

ẼN c
A,Ā ≈ 16

π
nσ = (4n)

√
22

√
2

π σ , (43c)

ẼN d
A,Ā ≈ 8n2

π2
σ = (

n2

2
)
√
4(2

√
2

π )2 σ . (43d)

The last expressions in (42)–(43) indicate the way to
read them. They are of the form

EA,Ā ≈ −Lmσ2 log(αj mσ2

e ) , (44)

ẼN
A,Ā ≈ L

√
mβjσ , (45)

where L is the number of modes at the border of A (L =
1, 4n, 4n, n2/2), m is the number of connections with the
environment Ā per mode at the border (m = 4, 1, 2, 4),
i.e., the number of links per mode broken by the parti-
tion, and αj , βj , with α = e/2 ≈ 1.36, β = 2

√
2/π ≈ 0.9,

a) b)

c) d)

FIG. 3. (Color online) Non complementary subsystems: Con-
tiguous (top) and one-site separated (bottom) blocks, with
contacting sides parallel (left) and tilted (right) with respect
to the principal axes. The negativity and its size dependence
are determined by both separation and slope of the contacting
boundary.

are geometric correction factors for the tilted (j = 1) and
checkerboard (j = 2) cases (j = 0 for the single mode and
parallel square). We can easily identify from (44)–(45)
the boundary measures of Eqs. (32)–(33):

|∂A|2 = Lm, |∂A|1 = L
√
mβj . (46)

Comparison with the exact numerical results (Fig. 2)
indicate that all these asymptotic expressions are actu-
ally quite accurate already for λ & 4λc. The scaling of
EN
A,Ā with the area |∂A|1 rather than |∂A|2 is clearly ver-

ified. Moreover, this scaling is more accurate than that
of the entanglement entropy EA,Ā with |∂A|2, since the
latter contains in 1c− 1d an additional geometric correc-
tion Lm log(αjm)σ2 (Eq. (44)), not comprised in (32).
Note also that in the case of the tilted block, |∂A|2 = 2L

and |∂A|1 = L
√
2β = (4/π)L are, respectively, larger

and smaller (90%) than the geometric perimeter
√
2L.

We may also rapidly determine with Eqs. (39) and
(44)–(45) the corner effects in case 1b. The actual asymp-
totic expressions for the finite n× n parallel block are

Eb
A,Ā ≈ −4(n− 1)σ2 log2

σ2

e − 4σ2 log2
4σ2

e , (47)

ẼN b
A,Ā ≈ 4(n− 1)σ + 4(

√
2− 1)σ , (48)

where the first term is proportional to the number of sites
at the border, 4(n−1), and the second represents the pos-
itive correction arising from the four corners, reflecting
their increased coupling with the environment Ā.

B. Non-complementary subsystems

Let us now consider the non-complementary subsys-
tems of Fig. 3. For contiguous parallel blocks contacting
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at n sites, F−
B,C has n identical singular values

σB,C
α = σx . (49)

In the case of contiguous blocks with contacting surfaces
tilted 45o with respect to the principal axes, we obtain,
neglecting edge effects, the same expression (40) for the

σB,C
k , with m replaced by the number of contacting sites

n and k = 1, . . . , n. In the isotropic case we then obtain,
using Eqs. (24)–(27),

ẼNa
B,C̄ ≈ nσ , (50)

ẼNb
B,C̄ ≈ 4

π
nσ = n

√
2 2

√
2

π σ , (51)

for the logarithmic negativity of parallel and tilted con-
tiguous blocks, which are clearly of the form (45) or (33):
|∂B ∩ ∂C|1 = n and 4n/π respectively. Tilted boundary
surfaces exhibit a larger entanglement per contacting site
due to the increased connectivity.
In the case of blocks separated by one site, we should

use instead the full Eq. (25) with the second order ex-
pression (30). For parallel blocks with n sites at sep-
aration s = 1, the n negative eigenvalues of the ma-
trix (21) become, neglecting edge effects and setting
σ+
µ = |∆+

µ |/(4λ),

f̃B,C
α ≈ −(2σ+

x σx − σ2
x) . (52)

For blocks separated by one site through a 45o tilted
surface of n modes, a discrete Fourier transform leads,
neglecting edge effects, to (see Eq. (C3))

f̃B,C
k ≈ −{2[α2

xy + α2
x + α2

y + 2αxy(αx + αy) cos
2πk
n

+2αxαy cos
4πk
n ]1/2 − σ2

k} , (53)

where αµ = σ+
µ σµ, αx,y = σ+

x σy + σ+
y σx and σk denotes

the expression (40) for m = n. In the isotropic case, Eq.
(53) becomes just 4σ(2σ+ − σ) cos2 πk

n . For the paral-
lel and tilted subsystems c–d of Fig. 3 we then obtain,
replacing sums by integrals and assuming σ ≤ 2σ+,

ẼNc
B,C̄ ≈ nσ(2σ+ − σ) , (54a)

ẼNd
B,C̄ ≈ 2nσ(2σ+ − σ) . (54b)

Hence, the logarithmic negativity of the tilted case is,
remarkably, twice that of parallel blocks when separated
by one site, instead of 4/π ≈ 1.27 as in the contiguous
case (Fig. 4). Since they are a second order effect, Eqs.
(54) are not of the form (45) but rather

ẼN
B,C̄ ≈ Lmσ(2σ+ − σ) , (55)

if m is again the number of connections with the en-
vironment per mode. They scale, therefore, with the
measure |∂A|2 (Fig. 5). For larger separations s the neg-
ativity vanishes at second order in ∆/λ, as F−

B,C will be of
higher order while the counter terms GB and GC remain
of second order for sites at the surface. Consequently,
the negativity becomes vanishingly small for s ≥ 2.

0

0.25

0.5

0.75

1

1.2
a)
b)
c)
d)

asymp. a)
asymp. b)
asymp. c)
asymp. d)

0

1
4/π

2

1 2 3 4 5 6 7 8 9
λ/λc

s=0
s=1

EN
B,C

EN
tilted

EN
parallel

FIG. 4. (Color online) Top: Exact and asymptotic logarith-
mic negativities (Eqs. (50)–(51)) for subsystems of the type of
fig. 3 (for 10× 10 blocks) as functions of λ/λc. Tilted blocks
exhibit a larger negativity per contacting site. Bottom: The
tilted to parallel logarithmic negativity ratio for separations
s = 0 (a–b) and 1 (c–d). It is asymptotically 4/π in the
contiguous case and 2 for one site separation.

We finally remark that previous expressions are inde-
pendent (at leading order) of the width d of the blocks
(assumed finite), provided d ≥ 2. In the case of two lines
(d = 1, Fig. 6), the extra interaction with the environ-
ment at the other side of the line leads to an additional
negative second order contribution in Eq. (26). Hence,
while it can be neglected in the case of contiguous lines,
it will double the negative term in Eqs. (54) in the case
of lines separated by one site, leading to the lower values

ẼNe
B,C̄ ≈ nσ(2σ+ − 2σ) , (56a)

ẼNf

B,C̄ ≈ 2nσ(2σ+ − 2σ) , (56b)

which are now valid for σ ≤ σ+. In this case negativity
will vanish at second order if σ > σ+. Edge effects in
Eqs. (54)–(56) are also of second order and lead, using
Eq. (25), to a negative correction −2σ2.
All present expressions can be directly extended to

three dimensions if present subsystems are extended
parallel-wise along the z axis, replacing n by nnz.

C. The fully connected case

The evaluation of singular values is also straightfor-
ward in the opposite case of a fully and uniformly con-
nected system of n modes [24, 30–32] (LMG type model
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0.00

0.05

0.10

0.15

asymp. tilted
asymp. parallel

tilted n=14
         10
          4

parallel n=14
           10
            4

0.0

0.1

2 4 6 8
λ/λc

0.00

0.01

1 2 3 4 5 6 7 8
λ/λc

asymp. tilted
asymp. parallel

tilted  n=14
          10
           4

parallel n=14
           10
            4

0.00

0.01

2 4 6 8
λ/λc

EN
B,C

|A|1
EN
B,C

|A|2

EN
B,C

|A|1
EN
B,C

|A|2

FIG. 5. (Color online) Top: Asymptotic and exact values
of the logarithmic negativity of two contiguous n × n blocks
with parallel and tilted boundary surfaces, scaled with |∂A|1
in the main panel and |∂A|2 in the inset, with ∂A = ∂B∩∂C.
Bottom: Same details for two blocks separated by one site.
The appropriate scaling is verified to be |∂A|1 in the top panel
and |∂A|2 in the bottom panel.

[23]), where

∆±
ij = (1− δij

∆±

n− 1
) . (57)

Here we can also compare with full exact results, since it
is exactly and analytically solvable [24, 31]. The present
system can be used to describe entanglement between
systems whose separation is small in comparison with
the correlation length.
In the present case, the matrices F±

ij are obviously con-
stant for i 6= j, i.e.,

F±
ij = F±

0 δij + F±
1 , (58)

and the entanglement between disjoint subsystems B and
C will just depend on the number of sites in B and in C,
being independent of their separation or shape.
The matrix F−

B,C will then have just a single non-zero

singular value ∀ disjoint B, C, namely (see Appendix)

σB,C =
√
nBnC |F−

1 | . (59)

In the approximation (19) we then obtain a single non-
zero symplectic eigenvalue for any global bipartition
A, Ā,

fA ≈ nAnĀ(F
−
1 )2 , (60)

e) f)

0.00

0.02

0.04

0.06

0.08

2 4 6 8 10 12 14 16 18 20

λ/λc

 asymp. d=1
 asymp. d>1

d=1
d=2
d=3

EN
B,C

FIG. 6. (Color online) Top: Parallel and tilted lines separated
by one site. Due to the extra interaction with the environ-
ment, the associated negativity (Eqs. (56)) is lower than that
of the corresponding blocks (c, d) of Fig. 3 (Eqs. (54)), as
appreciated in the bottom panels for the parallel case.

where nĀ = n− nA, leading to

EA,Ā ≈ −nAnĀ|F−
1 |2 log(nAnĀ(F

−
1 )2/e) ,

which corresponds to an area |∂A|2 = nAnĀ in (32) (here
Mij = 1 for i 6= j).
Similarly, we obtain a single negative symplectic eigen-

value for any pair of subsystems B, C, given by (59) or,
in the complete approximation (21)–(25), by

f̃B,C ≈ −√
nBnC |F−

1 |+ 1
2 |F

−
1 |2(nBnB̄ + nCnC̄) , (61)

with EN
B,C = −f̃B,C. The second term in (61) becomes

important for small subsystems in a large environment
(nB, nC ≪ n). Otherwise it can be neglected, in which
case (61) corresponds to |∂A|1 =

√
nBnC in (33)–(36).

For the scaling (57), F−
1 is proportional to n−1, so that

Eqs. (59)–(61) remain finite for large n. The scaling is
then again as in Eqs. (44)–(45) with L = 1, j = 0 and
m = nAnĀ for global partitions or m = nBnC for a pair
of subsystems.
The previous picture is, remarkably, also that of the

exact treatment, where there is a single non-zero sym-
plectic eigenvalue fA for any subsystem A, given by

fA =
√

1
4 + F+

1 nAnĀ/n− 1
2 , (62)

(see ref. [24] and Appendix C). Here we have used the
local basis where F±

0 = 0 in Eq. (57), in which case Eq.
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(7) leads to

F+
1

2
+ F+

1 /n = (F−
1 )2 .

A first order expansion of (62) in F+
1 leads then to fA ≈

F+
1 nAnĀ/n, which coincides with Eq. (60) since for weak

coupling F+
1 /n ≈ (F−

1 )2.
In the same way, the exact partial transpose of DBC

has a single negative symplectic eigenvalue [24]

f̃B,C =

√

1
4 + γB,CF

+
1 −

√

F+
1 (βB,C + γ2

B,CF
+
1 )− 1

2 .

(63)
where βB,C = nBnC/n, γB,C = 1

2 (nB + nC)(n − nB −
nC)/n + 2βB,C (see appendix C). Expansion of (63) up
to first order in F+

1 leads then exactly to Eq. (61) set-
ting F+

1 ≈ n(F−
1 )2. The present approximate scheme

allows then to immediately determine the weak coupling
expressions (60)–(61) and to rapidly identify their be-
havior with sizes nA, nB, nC . The exact value of F±

1 (to
be inserted in (62)–(63)) is given in the appendix (Eq.

(C4)). Up to first order in ∆− we obtain F−
1 ≈ ∆−

2(n−1)λ .

IV. CONCLUSIONS

We have shown how entanglement properties of weakly
correlated gaussian states can be recast in terms of the
singular values of a sub-block of the generalized con-
traction matrix associated with the state. This allows
to obtain in a quite simple way analytic expressions for
both the entanglement entropy between complementary
subsystems and the logarithmic negativity for non com-
plementary subsystems, which imply distinct area laws
for these two quantities in the case of short range or
constant couplings. Several illustrative examples were
considered, which show the dependence of these laws on
the geometry, connectivity and separation between the
subsystems. A final comment is that through applica-
tion of the bosonic RPA formalism [24, 29, 33] or other
bosonization treatments, [23, 31], the present scheme can
be applied to weakly interacting spin systems. Moreover,
it can in principle be also implemented in phases exhibit-
ing symmetry-breaking at the mean field level (i.e., fields
below the critical field in attractive XY or XY Z chains)
away from the critical field, provided the proper multi-
plicity corrections accounting for the different degenerate
mean fields [24] is taken into account. Such application
is currently being investigated.
The authors acknowledge support of CONICET

(NC,JMM) and CIC (RR) of Argentina.

Appendix A: Perturbative expansions for the

symplectic eigenvalue problem

In this work we have used perturbative results which
are not necessarily trivial and which can be obtained fol-

lowing techniques similar to those employed in the per-
turbative diagonalization of the Dirac equation. We start
with the symplectic diagonalization of the contraction
matrix DA of a subsystem A, which leads to the system

F+
AUf − F−

A V̄f = f Uf , (A1)

F̄−
AUf − (1+ F̄+

A ) V̄f = f V̄f (A2)

where (
Uf

V̄f
) is the symplectic eigenvector associated with

the eigenvalue f . Eq. (A2) allows to write Vf as

V̄f = [1(1 + f) + F̄+
A ]−1F̄−

AUf . (A3)

Replacing (A3) in (A1) leads to the equivalent non-linear
reduced diagonalization problem

{F+
A − F−

A [1(1 + f) + F̄+
A ]−1F̄−

A }Uf = fUf .

For small F±, in agreement with the hypothesis that the
state is weakly correlated, the symplectic eigenvalues f
are small. Hence, at leading order V̄f ≈ F̄−

AUf and we
obtain the reduced standard eigenvalue equation

(F+
A − F−

A F̄−
A )Uf = fUf , (A4)

which leads to Eq. (18) and implies Eq. (21). If A is
the whole system and the latter is assumed to be in the
ground state of H , all f vanish and the relation F+ ≈
F−F̄− (Eq. (16)) is obtained.
Let us now consider the Hamiltonian (2). The sym-

plectic diagonalization of H entails the standard diago-
nalization of MH and leads to the system

(Λ−∆+)Uω −∆−V̄ω = ω Uω (A5)

∆̄−Uω − (Λ − ∆̄+) V̄ω = ω V̄ω . (A6)

In this case, ‖∆−‖∞ is considered small. For a positive
eigenvalue, the zero order approximation is obtained by
neglecting all terms proportional to ∆− and V̄ω , which
are assumed small in comparison with Uω, ω and Λ−∆+.
It leads to (Λ − ∆+)Uω = ω Uω, which is a standard
hermitian eigenvalue equation for Uω. We then obtain

V̄ω = (Λ− ∆̄+ + ω1)−1∆̄−Uω (A7)

≈ U∗(Ω + ω1)−1U t∆̄−Uω , (A8)

(Eq. (28)), where we have written Λ − ∆+ ≈ UΩU †,
with Ω = diag(ωα) the diagonal matrix of eigenvalues. It
should be noticed that if Λ is degenerate, ∆+ will affect
U considerably even if small. Ground state entanglement
will remain however small since it depends on V . It can
be also easily seen that expansion of Eq. (A7) up to sec-
ond order in ∆± leads to Eq. (30).

Appendix B: Singular values

The singular values σα of an arbitrary m × n matrix
A are the square root of the non-zero eigenvalues of AA†

or equivalently A†A, which are both positive matrices
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with the same non-zero eigenvalues. The singular value
decomposition implies the existence of unitary matrices
U , V such that A = UDV †, with D a diagonal ma-
trix with diagonal elements σα or 0, and U , V unitary
eigenvector matrices of AA† and A†A: AA†U = UDD†,
A†AV = V D†D, i.e., AA†Uα = σ2

αUα, A
†AVα = σ2

αVα

for the non-zero eigenvalues σα, with Vα = A†Uα/σα.
For an hermitian A, σα = |λα|, with λα the (non-zero)
eigenvalues of A.

The singular values determine the matrix m norm of
A used in this work, defined as

||A||m = [Tr (A†A)m/2]1/m = (
∑

α

σm
α )1/m . (B1)

||A||1 is the trace norm, ||A||2 the standard Hilbert-
Schmidt norm and ||A||∞ the spectral norm, which is
just the largest singular value.

The singular values σα of A also determine the non-
zero eigenvalues of the hermitian (m+n)×(m+n) matrix

B =

(

0 A
A† 0

)

, (B2)

which are ±σα, since B2 = (AA† 0
0 A†A) has eigenvalues σ2

α.
Eigenvalues ±σα correspond to normalized eigenvectors
( Uα

±Vα
)/
√
2, with AA†Uα = σ2

αUα, Vα = A†Uα/σα and

U †
αUβ = δαβ , V

†
αVβ = δαβ .

These results first imply that the non-zero eigenval-
ues of the matrix (18) are the square of the singular

values σA,Ā
α of F−

A,Ā, as F̄−
Ā,A = (F−

A,Ā)
†, implying

σA,Ā
α = σĀ,A

α . They also entail that the negative eigen-
values of the matrix (21) are minus the singular values
σB,C
α = σC,B

α of F−
B,C , when ḠB and GC are neglected.

Appendix C: Evaluation of singular values

In the first order approximation (29), the matrix F−
B,C

for first neighbor couplings and disjoint contiguous blocks
B, C with n contacting sites, has elements of the form

(F−
B,C)ij = f(j − i) (C1)

if the sites are adequately ordered, where f(l) = δl0σµ⊥
for parallel and f(l) = σxδl0 + σyδl1 for tilted blocks.

For blocks separated by one site, we should use the
second order approximation (30), which leads again to a
matrix of the form (C1), with f(l) = 2δl0σ

+σ for par-
allel blocks and f(l) = 2[σ+

x σxδl0 + (σ+
x σy + σ+

y σx)δl1 +

σ+
y σyδl2] for tilted blocks. In all previous cases, F−

B,CF̄
−
C,B

is an hermitian matrix with elements of the form

(F−
B,CF̄

−
C,B)ij =

∑

k

f(k − i)f̄(k − j) = g(i− j) , (C2)

if edge effects are neglected, where g(l) =
∑

k f(k)f̄(k +
l) = ḡ(−l). Such matrix can then be exactly diagonalized
(neglecting edge effects) by a discrete Fourier transform
[32], leading to eigenvalues σ2

k =
∑

l g(l)e
i2πkl/n, where

k = 0, . . . , n−1 and n is its dimension (this result is exact
if g(−l) = g(n−l)). For real g(l), as in the previous cases,
we then obtain

σ2
k = g(0) + 2

∑

l>0

g(l) cos 2πk
n , (C3)

which leads to Eqs. (40)–(53) (in the case of C = Ā with
A the tilted block, the final matrix F−

A,ĀF̄
−
Ā,A is again of

the form (C2)).
In the fully connected case, the exact singular values

(59) arise immediately as the matrix F−
B,C is just a rank 1

constant matrix, i.e., F−
B,C = c ∀ i, j, which therefore has

a unique non-zero singular value σ =
√
nBnC |c|: F−

B,CF̄
−
C,B

is a nB×nB rank 1 matrix with constant elements nC |c|2,
whose unique non-zero eigenvalue is nBnC |c|2 due to trace
conservation.
The full exact symplectic diagonalization can also

be performed (see appendix in [24] for details). We
quote here that the exact symplectic eigenvalues of
the reduced state of L sites for the couplings (57) are

σ1 =
√

(F+
0 + LF+

1 + 1
2 )

2 − (F−
0 + LF−

1 )2 − 1
2 and σ0 =

√

(F+
0 + 1

2 )
2 − (F−

0 )2 − 1
2 (L − 1 fold degenerate). For

a pure global state, σ0 = 0. In the local basis where
F−
0 = 0, this implies F+

0 = 0, which leads to Eq. (62).
In the same way, we obtain Eq. (63). The exact value of
the present F+

1 was also evaluated in [24] in terms of a
parameter ∆ (F+

1 = ∆/(2n)):

F+
1 = n(λ2−ω̄2)

4(n−1)ω0ω1
, (C4)

where ω̄ = ω0+(n−1)ω1

n , ω0 =
√

(λ−∆x)(λ −∆y) and

ω1 =
√

(λ + ∆x

n−1 )(λ+
∆y

n−1 ), with ∆± = (∆x ±∆y)/2.
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