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Abstract. Convolutional Neural Networks have been providing a per-
formance boost in many areas in the last few years, but their performance
for Handshape Recognition in the context of Sign Language Recognition
has not been thoroughly studied. We evaluated several convolutional ar-
chitectures in order to determine their applicability for this problem.
Using the LSA16 and RWTH-PHOENIX-Weather handshape datasets,
we performed experiments with the LeNet, VGG16, ResNet-34 and All
Convolutional architectures, as well as Inception with normal training
and via transfer learning, and compared them to the state of the art
in these datasets. We included experiments with a feedforward neural
network as a baseline. We also explored various preprocessing schemes
to analyze their impact on the recognition.

We determined that while all models perform reasonably well on both
datasets (with performance similar to hand-engineered methods), VGG16
produced the best results, closely followed by the traditional LeNet archi-
tecture. Also, pre-segmenting the hands from the background provided
a big boost to accuracy.

Keywords: convolutional neural networks, sign language recognition,
handshape recognition.

1 Introduction

Automatic sign language recognition (SLR) is an important topic within the
areas of human-computer interaction and machine learning that also requires
the intervention of various knowledge areas, such as image and video processing,
computer vision and linguistics. Robust recognition of sign language could assist
in the translation process and the integration of hearing-impaired people, as well
as the teaching of sign language for the hearing population.

The problem it tackles is how to convert a video where a signer is speaking
in some variant of Sign Language to a text that conveys the same meaning
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as the signs in the video. SLR implies a pipeline of tasks which starts with the
recognition of the shape of the hands of the signer, their movement and position,
the shape of lips and face expressions, plus the objects in the scene, in every frame
of the video. Afterwards, the signs in the video must be identified, using both
information about how signs are made and the syntax and semantics of the sign
language. Afterwards, the sentences in sign language must be translated to some
target written/spoken language, such as English or Spanish [13,18]. Von Agris
and Cooper present general reviews of the standard techniques of the field [2,
18]

Previous work has shown that the quality of the handshape recognition ap-
pears to be the most important factor when recognizing signs [11,12]. Also,
most experiments focused on finding adequate descriptors for the handshapes
to be classified with conventional techniques such as SVM or Feedforward Neu-
ral Networks. Perhaps the most widely explored descriptors are the geometric
descriptors computed on the contour of the hand [18], such as the perimeter,
the orientation of the main diagonals, the area, the eccentricity, among others.
Another widely used feature for handshape classification is the Histogram of Ori-
ented Gradients (HOG) [3], where the image is divided in a square overlapped
grid of small sub-images and it computes a histogram of directions of different
gradient in each sub-image. In [13] the Radon transformation is used as a feature
for the classification of handshapes.

There have been great advances in the last few years in text, sound, image
and video processing by using Convolutional Neural Networks (CNNs), which
are simply deep networks that employ convolutional layers [9]. These layers im-
plement a convolution operation and have a sparse connection topology that
allows a better processing of images and other signals.

These networks have been recently used for sign language and action recogni-
tion [1,8]. In particular, [8] employs a semi-supervised training procedure with a
pretrained Inception [16] network as base classifier to perform handshape recog-
nition, with state-of-the-art results. However, to the best of our knowledge, there
has been no systematic study of the applicability of CNNs for handshape recog-
nition. This paper presents experiments on the applicability of various CNNs
models (LeNet, Inception, All Convolutional, VGG, ResNet) to the problem of
handshape recognition for sign language, using datasets LSA16 [13] and RWTH-
PHOENIX-Weather [5].

2 Architectures

In this section we will introduce the convolutional architectures used to com-
pare their performance on the task of handshape recognition. We have chosen
a simple convolutional models like LeNet, one of the first convolutional net-
works, as baseline and also more complex and deep models that have proved
their performance on image recognition problems in known datasets such as All
Convolutional, VGG, Inception-v3 and ResNet.
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2.1 LeNet

The LeNet model was proposed by LeCun et al.[10] in 1998. On their paper, the
authors propose a convolutional architecture for OCR and character recognition
in documents. It is one of the first convolutional neural networks and a common
baseline in the field of Deep Learning.

A standard 2D convolutional layer applies a convolutional operation on an
input feature map with two spatial dimensions and a filter/channel dimension.
The convolutional mask has size Height*Width*Channels, and is learnable. A
layer typically has many such convolutional masks, which determine the number
of output channels/filters. Convolutions can be strided to perform downsampling
in the same operation.

A max-pooling layer reduces the spatial size of the input to reduce the amount
of parameters and computations in the network.

This architecture consists of two sets of convolutional, activation and max-
pooling layers followed by two fully-connected layers and finishing with a softmax
classifier.
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Fig. 1. Diagram of the LeNet5 architecture.

2.2 All Convolutional

This architecture was introduced by Springenberg et al.[15] in 2014. Their model
is based on removing the pooling layers of a traditional convolutional network
such as LeNet. The spatial downsampling is performed instead by using con-
volutional layers with a stride greater than 1. The model can achieve state of
the art performance on several object recognition datasets such as CIFAR-10,
CIFAR-100 and ImageNet, which provides some evidence for the hypothesis that
the max pooling operation’s contribution to a network comes mostly from the
downsampling effect, and not from the maximum computation.

2.3 VGG

The VGG network was first described by Simonyan and Zisserman in their 2014
paper [14]. Tts main contribution is providing evidence in favour of stacking

15



XXIII Congreso Argentino de Ciencias de la Computacion La Plata - 9 al 13 de octubre de 2017

convolutional layers with small filters (3x3) instead of using a single layer with
bigger filter sizes (5x5, 7x7), since stacked 3x3 filters can approximate bigger
ones. The network therefore consists of a many 3x3 convolutional filters stacked
in groups of two or three, with max-pooling layers between them and finishing
with two 4096-dimensional fully-connected layers

Predictioa

Fig. 2. Diagram of the VGG architecture with its stacked filters with max-pooling
layers between them.

This gives a massive number of parameters and learning power. That is why
this architecture is costly at runtime and many models that improve it try to re-
duce the dimensionality of the input to accelerate the computations. The training
of VGG is very challenging, specially for the 16 and 19 depth versions. Symonyan
and Zisserman trained versions of VGG with less weight layers first. When this
smaller networks converged, they were used as initializations for the larger and
deeper networks. Two disadvantages of this network are that its training is slow
and that its architecture is quite large in terms of memory compared with other
state of the art networks.

2.4 Inception

The Inception architecture was introduced by Szegedy et al.[16] in 2014.This
original network was called GoogLeNet but later its newer versions were called
Inception-vN, with N representing the version named by Google.

The main contribution of this model is the bottleneck layer applied before the
parallel convolutions that reduces the computational cost of all the architecture.
This bottleneck layer consists employing 1x1 convolutional filters to reduces the
spatial input dimension giving a lower number of computations in the subsequent
layers.

The goal of this model is to extract features at multiple levels in the same
instance of the model. In that way, when a layer of this model receives its input,
first, it reduces the input size in a bottleneck layer, and then computes 1x1, 3x3,
and 5x5 convolutional filters in parallel. After that, the output of this filters are
concatenated in a last filter maintaining the channel dimension. The main goal
of this architecture was to reduce the computational cost of the network.
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Fig. 3. Diagram of the inception module with its bottleneck layer applied before the
3x3 and 5x5 convolutional filters.

The Inception-v3 was described in 2015 by Szegedy et al.[17] on a paper
which proposes updates to the architecture to boost its ImageNet classification
accuracy. Even with these updates, the weights of this model are still smaller
than those of the VGG model.

2.5 ResNets

This model was presented by He et al.[6] in the year 2015. It presented a modi-
fication of the convolutional architecture that allowed training of very deep net-
works. The problem it addresses is that while adding layers to a network should
never lower its performance, since in the worst case the layer should just learn
the identity function, in practice networks with many layers. Its main insight
was the design of convolutional blocks called residual modules, which outputs
the sum of the features obtained from the convolutional layers with the input.
This design causes residual modules to be initialized to a slightly distorted iden-
tity function. Also, the fact that the input is bypassed to the output allows a
shortcut path for the gradient to go backwards.

F(x) %
vheirup
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Fig. 4. Diagram of the ResNet architecture.

Hence, the most important contribution of this architecture is the evidence
of a very deep network having hundreds of layers can actually be trained using
standard stochastic gradient descent through the use of residual modules.
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The network has 1x1 convolutional filters in the residual modules to form
bottleneck layers as seen in the Inception architecture; this helps reducing the
dimensionality inside the residual module, and then restoring it, since a hard
constraint of this models is that the dimensionality of the output has to match
that of the input. ResNet uses a global pooling layer plus softmax as final clas-
sifier.

3 Experiments and Results

We performed experiments with the models described in section 2 and two
datasets that contain images of the hands of several people with different hand-
shapes.

3.1 Datasets

LSA16 The LSA16 handshape dataset was originally presented in [13], for the
purpose of being the first dataset for handshape recognition of Argentinian Sign
Language (LSA), and freely available. It consists of 16 different handshapes
of the most used in the LSA. There are 10 experimental subject that made 5
different poses of each handshape, with a total of 800 images in the dataset. The
interpreters had colored gloves in their hands, to facilitate the task of segment
the hands in the raw image, allowing so to focus on next classification tasks.
Figure 5 shows the 16 handshapes configurations presented in the dataset.

Fig.5. Samples of the 16 handshapes of the pre-segmented version of the LSA16
dataset.

RWTH-PHOENIX-Weather (RWTH) We are employing the labeled im-
ages collected for handshape experiments in [8], which contains 3359 samples
and 45 classes. We will call this dataset RWTH-PHOENIX-Weather([5] since it
contains images form that dataset. Originally presented in 2012. The dataset
contains video clippings of a television channel where interpreters translated
reports of the state of the weather.

It is important to highlight that this dataset is highly imbalanced: some
classes have over 200 examples while others have 5. In order to make a fair
comparison, we removed those classes with 7 or less examples, which reduced

18



XXIII Congreso Argentino de Ciencias de la Computacion La Plata - 9 al 13 de octubre de 2017

the number of classes from 45 to 30. The resulting dataset was had 3289 examples
(70 less than the original).

3.2 Comparison of models on LSA16 and RWTH

Methodology We measured the test set accuracy of the models on both datasets.
Since there is no official test set for these datasets, and their size is relatively
small, we averaged 100 runs of stratified randomized subsampling cross-validation
to estimate the test set accuracy. We employed the Feedforward network as a
baseline model, and also evaluated the LeNet, AllConvolutional, VGG, ResNet
and Inception architectures.

In the case of Inception, we also employed an Inception network that was pre-
trained on the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC2012)
dataset, and performed transfer-learning experiments by replacing the last layer
by either a linear support vector machine (SVM) or a two-layer feedforward
network [4]. Only these last layers were retrained, and therefore we effectively
employed the output of the penultimate layer of the network as a feature.

We trained all networks using a base learning rate of 0.0007 and the ADAM
learning algorithm [7], which uses a per weight adaptive learning rate to remove
learning rate effects from the experiment as much as possible. The Feedforward
and LeNet architectures were trained for 20 epochs and the AllConvolutional,
ResNet, VGG and Inception architectures for 50, 50, 60, and 120 epochs respec-
tively, since they contain significantly more parameters. We determined these
hyperparameters via monitoring the training loss and classification error on an
initial run to make sure the networks converged. We did not perform hyperpa-
rameter optimizations or modify them in subsequent experiments.

In the transfer learning experiments with the Inception network, the SVM for
the final layer employed a linear kernel and a regularization coefficient C' = 0.1.
The two-layer feedforward network had a hidden layer of size 512.

Since our datasets are smaller than the standard datasets on which these
models are usually evaluated, we reduced the capacity of some models to both
avoid overfitting and allow the network to train succesfully. For the AllConvolu-
tional architecture, we decreased the size of the filters to (96, 96, 96,192, 192, 192),
while keeping the topology untouched. For the VGG architecture, we used the
VGG16 version and set the filter sizes to (32, 32,64, 64, 64, 64, 64, 128,128, 128, 128,128, 128)
and feedforward layer sizes to (512,512). We used the 34-layer version of the
ResNet architecture, without modification [6]. The Inception network’s filter’s
sizes were not modified in neither the transfer learning experiments nor the nor-
mal end-to-end training. Meanwhile, the LeNet architecture employed four con-
volutional layers with sizes (32, 64, 128, 256) and 3x3 filters, and a 512-dimensional
feedforward layer.

For all models, we found that adding Batch Normalization layers after each
max pooling layer and replacing ReLU activation functions for ELUs reduced
the training time while achieving the same accuracy. Finally, we used the pre-
segmented RGB version of the LSA16 dataset. The code for the experiments is
available at https://github.com/midusi/convolutional_handshape
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Results In Table 1, we can observe that all models have a lower accuracy on
the RWTH dataset, which is expected since it has more classes, unsegmented
hand images and class imbalances. The feedforward model has the lowest accu-
racy in general, also expected. The convolutional architectures all have similar
accuracies on each dataset. For the LSA16 dataset they achieve similar or better
accuracy than ProbSom, a hand engineered method [13]. The accuracy of the
DeepHand model [8] on the RWTH dataset is slightly bigger than for other mod-
els (85.50%). It must be noted that DeepHand used an Inception network pre-
trained on ILSVRC2014 data, along with a weakly supervised training scheme
that employed 1 million example images with noisy labels and then used the
RWTH dataset as testing set. No such scheme was applied with the other models.
Surprisingly, the simple LeNet architecture achieved relatively good recognition
rates, which perhaps is an effect of the reduced size of the datasets, which is
more important for bigger models such as VGG and Inception.

Method LSA16 RWTH
DeepHand* [8] - 85.50
Probsom* [13] 92.30 -
Feedforward 86.58 60.27
LeNet [10] 95.78 81.19
AllConvolutional [15] 94.56 80.29
VGG16 [14] 95.92 82.88
ResNet [6] 93.49 80.89
Inception [16] 91.98 75.33
Inception+SVM [16] 93.67 78.12
Inception+NN [16] 80.62 75.97

Table 1. Accuracy of various convolutional neural network models on two datasets:
LSA16 [13] and handshapes from RWTH-PHOENIX-Weather [8]. Results from meth-
ods annotated with * were taken from other papers.

3.3 Comparison of preprocessing alternatives

Methodology We also ran experiments with LeNet on LSA16 to determine
whether preprocessing the images provides a boost in accuracy. We chose the
LeNet because it gave good results in the previous experiments and also because
since it is the simplest convolutional architecture, the results should be more
representative of the general family of models. We employed the same method-
ology for the experiments as before. We tested the model with the raw images,
and also with several variants where the background has been segmented out
of the image leaving only the hand color pixels. We tested the model with the
segmented image (RGB), also converting it to a grayscale image, to a black and
white image, and finally calculating the contour mask of the hand.

Results Table 2 shows the accuracies obtained with the different preprocessing
schemes presented and the LeNet model. From the increase in accuracy when
switching from the raw RGB image to the segmented RGB image, it would
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Fig. 6. From left to right: raw image, segmented image, grayscale image, hand segmen-
tation mask, and contour.

appear that the model has trouble separating the background and the hand,
and that a segmentation step helps the network to distinguish the handshapes.
The Grayscale and Black and White variants seem to have a lower accuracy. This
may indicate that the texture information provided by the RGB pixels helps the
model (possibly because fingers can be detected more easily).

Preprocessing Accuracy
Raw (RGB) 83.54
Segmented hand

RGB 96.18
Grayscale 87.08
Black and White 91.38

Black and White, Contour only 80.64

Table 2. Accuracy of the LeNet model on the LSA16 dataset with different prepro-
cessing schemes.

4 Conclusion

We have performed experiments to evaluate the mean accuracy of various promi-
nent convolutional architectures on two handshape recognition datasets.

In the case of the LSA16 dataset, the models showed a performance on par
with the state of the art. For the dataset RWTH-PHOENIX-Weather, the best
architecture, VGG16, performed slightly worse than the best published method,
but it is difficult to perform a direct comparison since that method employed a
pretrained Inception network with a weakly-supervised learning algorithm with
1 million noisily labeled examples.

Taking that into consideration, it would appear that convolutional networks
in general perform reasonably well and on the order of hand-engineered methods
for the problem of handshape recognition. We also found evidence supporting
the hypothesis that a pre-segmentation step can help to improve the accuracy
of the recognition for these methods.

In future work, we will focus on architectures that include localization and
segmentation networks as previous steps and also allow end-to-end learning.
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