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Abstract. We investigate entanglement and coherence in an XXZ spin-s pair

immersed in a non-uniform transverse magnetic field. The ground state and thermal

entanglement phase diagrams are analyzed in detail in both the ferromagnetic and

antiferromagnetic cases. It is shown that a non-uniform field enables to control the

energy levels and the entanglement of the corresponding eigenstates, making it possible

to entangle the system for any value of the exchange couplings, both at zero and finite

temperatures. Moreover, the limit temperature for entanglement is shown to depend

only on the difference |h1 − h2| between the fields applied at each spin, leading for

T > 0 to a separability stripe in the (h1, h2) field plane such that the system becomes

entangled above a threshold value of |h1 − h2|. These results are demonstrated to be

rigorously valid for any spin s. On the other hand, the relative entropy of coherence

in the standard basis, which coincides with the ground state entanglement entropy at

T = 0 for any s, becomes non-zero for any value of the fields at T > 0, decreasing

uniformly for sufficiently high T . A special critical point arising at T = 0 for non-

uniform fields in the ferromagnetic case is also discussed.
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1. Introduction

The theory of quantum entanglement has provided a useful and novel perspective for

the analysis of correlations and quantum phase transitions in interacting many body

systems [1, 2, 3, 4, 5]. At the same time, it is essential for determining the capability of

such systems for performing different quantum information tasks [6, 7, 8]. More recently,

a general theory of quantum resources, similar to that of entanglement but based on the

degree of coherence of a quantum system with respect to a given reference basis, was

proposed [9, 10, 11, 12]. Thus, entanglement and coherence provide a means to capture

the degree of quantumness of a given quantum system.

In particular, spin systems constitute paradigmatic examples of strongly interacting

many body systems which enable to study in detail the previous issues, providing

at the same time a convenient scalable scenario for the implementation of quantum

information protocols. Interest on spin systems has been recently enhanced by the

significant advances in control techniques of quantum systems, which have permitted

the simulation of interacting spin models with different type of couplings by means of

trapped ions, Josephson junctions or cold atoms in optical lattices [13, 14, 15, 16, 17, 18].

Accordingly, interacting spin systems have been the object of several relevant

studies. Entanglement and discord-type correlations [19, 20, 21, 22] in spin pairs and

chains with Heisenberg couplings under uniform fields were intensively investigated,

specially for spin 1/2 systems [3, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. The

effects of non-uniform fields have also received attention, mostly for spin 1/2 systems

[35, 36, 37, 38, 39, 40, 41, 42], although some results for higher spins in non-uniform

fields are also available [43, 44, 45].

The aim of this work is to analyze in detail the effects of a non-uniform magnetic

field on the entanglement and coherence of a spin-s pair interacting through an XXZ

coupling, both at zero and finite temperature. We examine the interplay between

the non-uniform magnetic field and temperature and their role to control quantum

correlations. We also study the critical behaviour and the development of different

phases as the spin increases, when the field, temperature, and coupling anisotropy are

varied. Analytical rigorous results are also provided. In particular, the T = 0 phase

diagram will be characterized by ground states of definite magnetizationM , all reachable

through non-uniform fields for any value of the couplings, with entanglement decreasing

with increasing |M |. Special critical points will be discussed. On the other hand, the

limit temperature for entanglement will be shown to depend, for any value of s, only

on the difference between the fields applied at each spin, leading to a thermal phase

diagram characterized by a separability stripe in field space. Finally, we will analyze

the relative entropy of coherence [10] in the standard basis, which coincides here exactly

with the entanglement entropy at T = 0 but departs from entanglement as T increases.

The model and results are presented in sections II–IV, starting with the basic spin

1/2 case and considering then the s = 1 and the general spin-s cases. Conclusions are

finally given in section V.
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2. Model and the spin 1/2 case

We consider a spin s pair interacting through an XXZ-type coupling, immersed in a

transverse magnetic field h not necessarily uniform. The Hamiltonian can be written as

H = −h1s
z
1 − h2s

z
2 + J(sx1s

x
2 + sy1s

y
2) + Jzs

z
1s

z
2 , (1)

where sµi (µ = x, y, z) denote the (dimensionless) spin operators at site i and J , Jz

the exchange couplings, with Jz/J the anisotropy ratio. This Hamiltonian commutes

with the total spin along the z axis, Sz = sz1 + sz2, having then eigenstates with definite

magnetization M along z. Without loss of generality, we will set in what follows J > 0,

as its sign can be changed by a local rotation of angle π around the z axis of one of the

spins, which will not affect the energy spectrum nor the entanglement of its eigenstates.

The ferromagnetic (FM) case J < 0, Jz < 0 is then equivalent to J > 0, Jz < 0.

We also remark that a Hamiltonian with an additional Dzyaloshinskii-Moriya

coupling along z [46], H ′ = H+D
∑

i(s
x
i s

y
i+1−syi s

x
i+1), can be transformed back exactly

into a Hamiltonian (1) with J → J ′ =
√
J2 +D2, by means of a rotation of angle

φ = tan−1(D/J) around the z axis at the second spin [47]. Hence, its spectrum and

entanglement properties will also coincide exactly with those of Eq. (1) for J → J ′.

We first review the s = 1/2 case, providing a complete study with analytical results

and including coherence in the standard basis, which allows to understand more easily

the general spin s case, considered in the next subsections. Entanglement and discord-

type correlations under non homogeneous fields in a spin 1/2 pair were studied in [35, 39]

for an XX-type coupling, in [36] for an isotropic coupling, in [37, 40] for an XXZ

coupling and in [41] for an XY Z coupling.

2.1. The spin 1/2 pair

Using qubit notation, the eigenstates of the Hamiltonian (1) for s = 1/2 are the separable

aligned states |00〉 ≡ | ↑↑〉 and |11〉 ≡ | ↓↓〉, with magnetization M = ±1 and energies

E±1 = ∓1

2
(h1 + h2) +

1

4
Jz , (2)

and the entangled M = 0 states |Ψ±〉 = cosα±|01〉+ sinα±|10〉, with energies

E±
0 = ±1

2
∆− 1

4
Jz , ∆ =

√

(h1 − h2)2 + J2 , (3)

and tanα± = h1−h2±∆
J

. The concurrence [48] of these states is given by

C
(∣

∣Ψ±〉) = | sin 2α±| = J/∆ , (4)

and is a decreasing function of |h1 − h2|/J . Their entanglement entropy, S =

−Trρi log2 ρi with ρi the reduced state of one of the spins, can then be obtained as

S = −
∑

ν=± pν log2 pν , p± = 1±
√
1−C2

2
, (5)

and is an increasing function of C. In the uniform case h1 = h2, |Ψ±〉 become the Bell

states |01〉±|10〉√
2

and S(|Ψ±) = C(|Ψ±〉) = 1.
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Through a non-uniform field it is then possible to tune the entanglement of the

M = 0 eigenstates, decreasing it by applying a field difference. On the other hand,

such difference also decreases the energy E−
0 of |Ψ−〉 and increases that of |Ψ+〉, without

affecting that of the aligned eigenstates if the average field is kept constant, enabling to

have the entangled state |Ψ−〉 as a non-degenerate ground state (GS) for any value of J

or Jz. A similar effect can be obtained by increasing Jz, which increases the gap between

the entangled and the aligned states, in this case without affecting their concurrence.

Eqs. (2)–(3) then lead to the phase diagrams of Fig. 1. For clarity we have

considered the whole field plane, although the diagrams are obviously symmetric under

reflection from the h1 = h2 line (and spectrum and entanglement also from the h1 = −h2

line). The GS will be either the entangled state |Ψ−〉 (red sector) or one of the aligned

states (|00〉 if h1+h2 > 0 or |11〉 if h1+h2 < 0, white sectors), with |Ψ−〉 a non-degenerate
GS (E−

0 < E±1) if and only if

|h1 + h2| < Jz +
√

J2 + (h1 − h2)2. (6)

This equation is equivalent to the following conditions:

(h1 − Jz
2
)(h2 − Jz

2
) < J2

4
, (h1 + h2 ≥ 0, h1 >

Jz
2
) (7)

(h1 +
Jz
2
)(h2 +

Jz
2
) < J2

4
, (h1 + h2 ≤ 0, h1 <−Jz

2
) . (8)

which show that the borders of the entangled sector are displaced hyperbola branches.
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Figure 1. Ground state phase diagram for the spin 1/2 pair. Top: antiferromagnetic

(AFM) case Jz = J (left) and ferromagnetic (FM)-type case Jz = −J/2 (right).

Bottom: FM cases Jz = −J (left) and Jz = − 3

2
J (right).

In the AFM case Jz > 0, the diagram has the form of the top left panel. Here the

GS is entangled at zero field and if one of the fields is sufficiently weak (|h1| < Jz/2)

the GS remains entangled for any value of the other field. However, in the FM case

Jz < 0 two distinct diagrams can arise (top and bottom right panels), separated by the

limit diagram of the bottom left panel (Jz = −J). If −J < Jz < 0 (top right), the

system is still entangled at zero field but now if one of the fields is sufficiently weak

(|h1| < |Jz|/2, dashed vertical lines) entanglement is confined to a finite interval of the
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other field. Control of just one field then allows to switch entanglement on and off for

any value of the other field.

On the other hand, if Jz < −J , the GS is aligned for any uniform non-zero

field, and |Ψ−〉 becomes GS only above a threshold value of the field difference,

|h1 − h2| >
√

J2
z − J2 (Eq. (6)), within the limits determined by Eqs. (6)–(8). These

limits imply that the sign of the field at each site must be different, as seen in the

bottom right panel. Hence, GS entanglement is in this case switched on (rather than

destroyed) by field application, provided it has opposite signs at each spin. In addition,

a GS transition between the aligned states |11〉 and |00〉 takes place at the line h1 = −h2

for |h1 − h2| <
√

J2
z − J2, with the GS degenerate in this interval along this line.

The GS concurrence for the same cases of Fig. 1 is depicted on Fig. 2. As seen in

the top panels, the maximum C = 1 is reached for h1 = h2 = h provided Jz > −J and

|h| < J+Jz
2

. For Jz < −J , the maximum value is C = J/|Jz| < 1, attained at the edges

h1 = −h2 = ±1
2

√

J2
z − J2 of the entangled sector.

Figure 2. Concurrence of the GS as a function of the magnetic fields for the cases of

Fig. 1. Top: Jz = J (left) and −J/2 (right). Bottom: Jz = −J (left) and − 3

2
J (right).

2.1.1. Thermal entanglement Let us now consider a finite temperature T . As T

increases from 0, an entangled GS will become mixed with other excited states, leading to

a decrease of the entanglement which will vanish beyond a limit temperature. However,

if the GS is separable, the thermal state can become entangled for T > 0 (below some

limit temperature) due to the presence of entangled excited states, implying that the

entanglement phase diagram for T > 0 may differ from that at T = 0 even for low T .

In the present case the thermal state ρ12 = Z−1e−βH , with Z = Tr e−βH the

partition function and β = 1/kT , has in the standard basis the form

ρ12 =











p+ 0 0 0

0 q+ w 0

0 w q− 0

0 0 0 p−











, (9)
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where p± = Z−1e−βE±1 , q± = Z−1eβJz/4(cosh β∆
2

± h1−h2

∆
sinh β∆

2
) and w =

−Z−1eβJz/4 J
∆
sinh β∆

2
. Its concurrence [48] is then given by

C = 2Max[|w| − √
p+p−, 0] = 2Z−1Max[ J

∆
eβJz/4 sinh β∆

2
− e−βJz/4, 0] .(10)

Thus, for T > 0 ρ12 is entangled if and only if

J

∆
eβJz/2 sinh

β∆

2
> 1 . (11)

Eq. (11) implies a limit temperature for entanglement that will depend on Jz, J

and |h1−h2| only. It also implies a threshold value of Jz for entanglement at any T > 0,

Jz > 2kT ln
∆/J

sinh β∆
2

= −∆+ 4kT ln
∆/J

1− e−β∆
. (12)

Hence, it is always possible to entangle the thermal state by increasing Jz, since it will

effectively cool down the system to the state |Ψ−〉, as previously stated.

The same effect occurs if the field difference |h1 − h2| is increased. The left hand

side of Eq. (11) is an increasing function of ∆ and hence of |h1 − h2| for any T > 0 and

Jz, so that at any T > 0 there will also exist a threshold value hc of the field difference

|h1 − h2| above which the thermal state will become entangled:

|h1 − h2| > hc(T, J, Jz) . (13)

Eq. (13) gives rise to a separability stripe |h1−h2| ≤ hc(T, J, Jz), as depicted in Fig.

3. Here hc(T, J, Jz) =
√

∆2
c − J2, with ∆c = 2kTf−1(2kT

J
e−βJz/2) and f−1 the inverse

of the increasing function f(x) = sinh x/x (x > 0).
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Figure 3. Thermal entanglement phase diagram for the spin 1/2 pair at kT = J/2.

Left: AFM case Jz = J . Right: FM case Jz = −J/2. Red sectors indicate

entanglement. The whole plane remains entangled for 0 < kT < 0.91J if Jz = J

and 0 < kT < 0.335J if Jz = −J/2. Above these temperatures, a separability stripe

|h1−h2| ≤ hc(T, J, Jz) arises. For Jz < −J the separability stripe arises for any T > 0.

Eq. (13) implies that the thermal entanglement phase diagram in the field plane

differs from the T = 0 phase diagram even for small temperatures T > 0, as it is

determined just by the field difference |h1 − h2|. Entanglement will be turned on in

T = 0 separable sectors outside the stripe as soon as T becomes finite. In particular, for

Jz > −J , Eq. (12) shows that in contrast with the T = 0 case, the whole h1, h2 plane

becomes entangled for 0 < T < Tc, with Tc(J, Jz) determined by

eβcJz/2 sinh βcJ
2

= 1 , (14)
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such that hc(T, J, Jz) = 0 if T < Tc(J, Jz). The separability stripe arises then for

T > Tc(J, Jz). For Jz → −J , Tc → 0 while if Jz = 0, kTc =
1
2
J/arcsinh 1 ≈ 0.567J .

However, for Jz < −J a separability stripe will be present for all T > 0, with

hc(T, J, Jz) →
√

J2
z − J2 for T → 0+. The thermal phase diagram in the field plane is

then characterized, for any value of Jz, by a separability stripe whose width increases

with increasing T , and vanishes for Jz > −J if T < Tc(J, Jz).

Figure 4. Concurrence as a function of the magnetic fields h1 and h2 at finite

temperature. Top panels: AFM case Jz = J (left) and FM case Jz = −J/2 (right) at

temperature kT = J/2. Bottom panels: Same diagrams for the FM cases Jz = −J

(left) and Jz = − 3

2
J (right) at kT = 0.05J .

The thermal concurrence is shown in Fig. 4. It is verified that it is strictly zero just

within the separability stripe (13), becoming small but non-zero in the T = 0 separable

regions outside it (dark blue in Fig. 4). Nonetheless, such reentry of entanglement for

T > 0 can become quite noticeable in some cases, as seen in the top panel of Fig.

5. It is also verified that through non-uniform fields it becomes possible to preserve

entanglement up to temperatures higher than those in the uniform case (which lies at

the center of the separability stripe), as also seen in Fig. 5.

2.1.2. Coherence We now analyze the coherence of the thermal state (9) with respect

to the standard product basis {|00〉, |01〉, |10〉, |11〉}. This quantity can be measured

through the relative entropy of coherence [10], defined as

Ch(ρ12) = S(ρ12||ρdiag12 ) = S(ρdiag12 )− S(ρ12), (15)

where S(ρ) = −Trρ log2 ρ is the von Neumann entropy and ρdiag12 its diagonal part in the

previous basis. It is a measure of the strength of the off-diagonal elements in this basis,
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Figure 5. Left: Concurrence (upper panel) and relative entropy of coherence in the

standard basis (lower panel) as a function of temperature for Jz = −J/2 at h1 = h2 = 0

(a), h1 = h2 = 0.3J (b) and h1 = −h2 = J (c). The reentry of entanglement for T > 0

in case (b) is clearly seen, with the limit temperature for entanglement independent

of the field if h1 = h2 (cases a,b) and increasing with increasing values of |h1 − h2|
(case c), as follows from Eq. (11). In contrast, the coherence remains non-zero ∀ T ,

decreasing uniformly as (J/kT )2 for high T (Eq. 16) and approaching the entanglement

entropy (5) for T → 0. Right: Entanglement of formation S (solid lines) and relative

entropy of coherence (dashed lines) as a function of the field difference δh = |h1 − h2|
at fixed temperature kT = J/2 for Jz/J = 1 (a,e), −1/2 (b,f), −1 (c,g) and −3/2

(d,h), at h1 = −h2. As |δh| increases, all curves coalesce and become independent of

Jz, approaching the entanglement entropy of the GS |Ψ−〉 determined by Eq. (4).

and would obviously vanish if J = 0. It will be here driven just by the coefficient w in (9).

A series expansion of (15) for |w| ≪ q± in (9) leads in fact to Ch(ρ12) ≈ log2(q+/q−)
q+−q−

w2.

The exact expression is Ch(ρ12) = −∑

ν=±(qν log2 qν−p0ν log2 p
0
ν), where p

0
± = Z−1e−βE±

0 .

In the zero temperature limit, S(ρ12) vanishes while S(ρdiag12 ) and hence Ch(ρ12)

become the entanglement entropy S of the GS, Eq. (5), since the standard basis is here

the Schmidt basis for |Ψ−〉. However, for T > 0, Ch(ρ12) becomes everywhere non-zero

due to the non-vanishing weight of the entangled states |Ψ±〉, as seen in Figs. 5 and 6. In

fact, for kT ≫ max[J, Jz, h1, h2], a series expansion leads to the asymptotic expression

Ch(ρ12) ≈ 1
16 ln 2

(

J
kT

)2
[

1 + Jz
4kT

− 3[(h1+h2)2+J2]+(h1−h2)2

48(kT )2

]

, (16)

showing that it ultimately decreases uniformly as (J/kT )2 in this limit. It then exhibits

a reentry for T > 0 in all T = 0 separable sectors, as seen in Figs. 5 and 6.

As previously mentioned, by applying sufficiently strong opposite fields at each site

it is possible to effectively “cool down” the thermal state ρ12 at any T > 0, bringing

it as close as desired to the entangled state |Ψ−〉〈Ψ−|. This behaviour is shown in the

right panel of Fig. 5. It is seen that the entanglement of formation S, obtained from

the thermal concurrence C by the same expression (5) [48], and the relative entropy of

coherence, initially different and dependent on Jz, merge for increasing values of |h1−h2|,
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Figure 6. Relative entropy of coherence in the standard basis as a function of the

transverse non-uniform fields h1 and h2 at finite temperatures, for the same cases of

Fig. 4. Top panels: AFM case Jz = J (left) and FM case Jz = −J/2 (right) for

kT = J/2. Bottom panels: FM cases Jz = −J (left) and Jz = − 3

2
J (right) for

kT = 0.1J .

approaching a common Jz-independent limit which is the entanglement entropy S of the

pure state |Ψ−〉. The vanishing difference between S and Ch for high |h1−h2| is a clear

signature that ρ12 has become essentially pure.

3. The spin-1 pair

We now consider the s = 1 case. The behaviour is essentially similar to that for s = 1/2,

the main difference being the appearing of an intermediate M = ±1 magnetization step

in the T = 0 diagrams, between the entangled M = 0 GS and the aligned separable

M = ±2 states. This effect leads to an entanglement step since the M = ±1 GS is less

entangled than the M = 0 GS.

Using now the notation |m1, m2〉 for the states of the standard basis, with mi the

eigenvalues of szi , the GS of the spin 1 XXZ pair can be one of the |M | = 2 aligned

states |Ψ±2〉 = | ± 1,±1〉, one of the |M | = 1 states, which will be of the form

|Ψ±1〉 = cosα±| ± 1, 0〉+ sinα±|0,±1〉 , (17)

with tanα± = ±η
2
−

√

1 + η2

4
and η = h1−h2

J
, and one of the M = 0 states, of the form

|Ψ0〉 = γ+|1,−1〉+ γ0|00〉+ γ−| − 1, 1〉 . (18)

‘ All coefficients are independent of h1 + h2, but those of |Ψ0〉 depend now on

Jz. For Jz = 0 they can be still written down concisely: γ0/γ+ = η −
√

2 + η2,

γ−/γ+ = 1 + ηγ0/γ+.
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Their energies are

E±2 = ∓ (h1 + h2) + Jz ,

E±1 = ∓h1+h2

2
−

√

J2 + (h1−h2

2
)2 , (19)

E0 = −
√

2J2 + (h1 − h2)2 (Jz = 0) . (20)

The border of the T = 0 entangled region, determined by that between the |M | = 2 and

|M | = 1 GS, E±2 = E±1, is then given again by Eqs. (6)–(8) with J → 2J , Jz → 2Jz.

The GS phase diagrams have then the same forms as those of Fig. 1 except for the

previous rescaling and the magnetization step. The Jz = 0 case is shown in Fig. 7.
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ÈY
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-4 -2 0 2 4
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h
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Figure 7. Top: Ground state phase diagram (left) and negativity (right) for the spin

1 pair with Jz = 0 as a function of the applied fields at each spin. Colored sectors on

the left indicate entanglement. Bottom: The negativity (left) and relative entropy of

coherence (right) of the thermal state of the spin 1 pair at temperature kT = J as a

function of the applied fields.

As entanglement measure valid for both zero and finite temperature, we will now

use the negativity [49, 50], a well-known entanglement monotone which is computable

in any mixed state, since an explicit expression for the concurrence or entanglement of

formation of a general mixed state of two qutrits (spin 1 pair) or in general two qudits

with d ≥ 3 is no longer available. The negativity is minus the sum of the negative

eigenvalues of the partial transpose [51, 52] ρt212 of ρ12:

N(ρ12) = (Tr|ρt212| − 1)/2 . (21)

A non-zero negativity implies entanglement, whereas for mixed states, the converse is

not necessarily true (except for two qubit states [51, 52] or special states), vanishing

for bound entangled states. Nonetheless it is normally used as an indicator of useful

entanglement.

For pure states it reduces to a special entanglement entropy [31], being a function

of the one-spin reduced state ρ1 (or ρ2, isospectral with ρ1 for a pure state): N =
1
2
[(Tr

√
ρ1)

2 − 1]. It is then non-zero if and only if the state is entangled. Its maximum
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value for a spin s pair is N = s. We then obtain N(|Ψ±2〉) = 0,

N(|Ψ±1〉) = 1
2
| sin(2α±)| = 1√

4+η2
, (22)

N(|Ψ0〉) = 1
2
[|γ+γ−|+ |γ0|(|γ+|+ |γ−|)] (23)

=
1+

√
2

∑

ν=±

√

1+η(η+ν
√

2+η2)

2(2+η2)
(Jz = 0) . (24)

They are decreasing functions of η = h1−h2

J
, reaching for η = 0 the value 1

2
for |M | = 1

(maximum value for Schmidt rank 2) and 1+2
√
2

4
≈ 0.958 for M = 0. The negativity of

the M = 0 GS depends now on Jz, reaching the maximum N = 1 for Jz = 1.

It is verified in Fig. 7 that the T = 0 phase diagram and entanglement for Jz = 0

is similar to that for s = 1/2 except for the M = ±1 magnetization and negativity

steps. Remarkably, the finite temperature negativity diagram is again characterized

by a separability stripe |h1 − h2| ≤ hc(T, J, Jz) for T > Tc, with the boundary of the

non-zero negativity sector independent of h1+h2 (as demonstrated in the next section).

At Jz = 0 the stripe emerges for kT > kTc ≈ 0.864J (root of the critical equation

3 + 2 cosh(2βcJ) = cosh(2
√
2βcJ)), with the whole field plane entangled for T < Tc.

It should be also mentioned that the T = 0 negativity step gives rise to a negativity

“valley” for low finite T due to the convexity of N , as will be seen in the next section.

The relative entropy of coherence in the standard basis behaves in the same

way as before. It approaches the GS entanglement entropy for T → 0, while for

kT ≫ J, Jz, |h1|, |h2|, it decreases uniformly at leading order, becoming, for Jz = 0,

Ch(ρ12) ≈ 4
9 ln 2

( J
kT
)2[1− 55J2+15(h1+h2)2+9(h1−h2)2

(12kT )2
] . (25)

4. The spin s case

4.1. Ground state phase diagram and entanglement

Let us finally consider the main features of the general spin s XXZ pair in a non-

uniform field. The GS phase diagram remains similar to the previous cases, but now

with 2s magnetization steps, from M = 0 up to M = ±2s. These steps originate 2s

steps in the T = 0 entanglement and negativity, since they decrease with increasing

|M |. This behaviour can be seen in the top panels of Fig. 8 for an s = 2 pair.

The border of the entangled region in the field plane is determined by that between

the aligned GS with |M | = 2s and the entangled GS with |M | = 2s − 1. Remarkably,

it is the same as that for s = 1/2, Eq. (6), with the rescaling J → 2sJ , Jz → 2sJz:

|h1 + h2| < 2sJz +
√

4s2J2 + (h1 − h2)2 . (26)

The border are then the hyperbolas (7)–(8) with the previous scaling and give rise to

the same possibilities depicted in Fig. 1, with the additional inner magnetization steps.

Proof: Considering first h1 + h2 ≥ 0, the energies of the M = 2s aligned state |ss〉 and
the lowest M = 2s − 1 state, which is |Ψ2s−1〉 = cosα|s, s − 1〉 + sinα|s − 1, s〉, with
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Figure 8. Top: Ground state phase diagram (left) and negativity (right) for a spin

2 pair with Jz = 0 as a function of the applied fields at each spin. Colored sectors

on the left indicate entanglement, with the number denoting the magnetization of the

state. Bottom: The negativity of the spin 2 pair at temperature kT = 0.1J (left) and

kT = 1.6J (right).

tanα = η
2s

−
√

1 + η2

4s2
and η = h1−h2

J
, are

E2s = − s(h1 + h2) + s2Jz , (27)

E2s−1 = −(2s− 1)h1+h2

2
+ s(s− 1)Jz −

√

(h1−h2

2
)2 + s2J2 . (28)

The condition E2s−1 < E2s leads then to Eq. (26). If h1 + h2 ≤ 0, the result is similar

with h1 + h2 replaced by |h1 + h2| and EM by E−M .

In Fig. 9 we plot an example for s = 2 of the interesting FM case Jz < −J , where

the GS is fully aligned for any uniform field h1 = h2 = h, as in the s = 1/2 case, with

a transition M = −2s to M = 2s at h = 0. However, it can again be entangled with a

non-uniform field, by applying opposite fields at each spin. Eq. (26) implies that in this

case GS entanglement will arise for

|h1 − h2| > hc = 2s
√

J2
z − J2 (Jz < −J) , (29)

within the limits (hyperbolas) determined by Eq. (26), which entail that no entangled

GS will arise for fields of equal sign if Jz < −J , as in the s = 1/2 case. Moreover, the

edges of the T = 0 entangled sector,

h1 = −h2 = ±hc/2 , (30)

are actually critical points in which 4s + 1 distinct GS’s, corresponding to all

magnetizations M = −2s, . . . , 2s, coalesce and become degenerate, as verified in the

top left panel of Fig. 9. At these points, their common energy is

EM = s2Jz < 0 (h1 = −h2 = ±hc/2, Jz < −J, M = −2s, . . . , 2s), (31)
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Figure 9. Top: Ground state phase diagram (left) and negativity (right) for a spin

2 pair with Jz = −1.2J as a function of the applied fields at each spin. Colored

sectors indicate an entangled GS, with the color and number identifying the distinct

magnetizations. Bottom: The negativity (left) and relative entropy of coherence (right)

of the spin 2 pair for Jz = −1.2J at temperature kT = 0.5J .

independent of J and M . Their entanglement decreases, however, with |M |, as seen in

the top right panel through the negativity. Along the line h1 = −h2 a GS transition

from the lowest non-degenerate M = 0 state to the aligned states M = ±2s (degenerate

along this line) occurs at h1 = −h2 = ±hc/2, although precisely at these points the GS

becomes 4s + 1-fold degenerate. Actually the transition region with intermediate GS

magnetizations |M | = 1, . . . , 2s− 1 is rather narrow in the h1, h2 field plane, as seen in

the top left panel, collapsing at the critical points.

A final comment is that the maximum GS entanglement of a spin s XXZ pair is

reached at the M = 0 GS and depends on Jz for s > 1/2. For Jz < −J it is reached

at the previous critical points (Fig. 9), while for Jz > −J it is reached along the line

h1 = h2 (Fig. 8). In the uniform AFM case Jz = −J , the M = 0 eigenstate will be

maximally entangled for h1 = h2, leading to maximum negativity N = s, while for

−J < Jz < J , the M = 0 negativity will be smaller and proportional to
√
s for large

s, due to a gaussian profile of width ∝ √
s of the expansion coefficients in the standard

basis [53]. We also mention that some internal magnetization steps may disappear for

large Jz > J and small |h1 − h2|.

4.2. Finite temperatures

As T increases, the T = 0 negativity steps become initially negativity valleys, as clearly

seen in the bottom left panel of Fig. 8, since convexity of N implies that its value for
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the mixture of two entangled states will be smaller than the average negativity of the

states. These valleys are rapidly smoothed out as T increases further. On the other

hand, it is also seen in Figs. 8–9 that entanglement diffuses outside the T = 0 entangled

region as T increases, covering initially the whole field plane for Jz > −J and the whole

plane outside the stripe |h1 − h2| ≤ hc for Jz < −J , although the negativity will be

small in the T = 0 aligned sectors.

A striking feature for finite temperatures is the persistence of a separability stripe

|h1 − h2| ≤ hc(T, J, Jz) in the field plane when considering the thermal entanglement,

as seen in the bottom right panel of Fig. 8 for Jz = 0, where the stripe emerges for

T > Tc = 1.498J/k, and in the bottom left panel of Fig. 9 for Jz = −1.2J , where the

stripe is present ∀ T > 0. This result will now be shown to hold for arbitrary spin,

following the arguments of [31] for XXZ systems in uniform fields.

Lemma 1. The limit condition for entanglement and non-zero negativity of a spin

s pair with an XXZ coupling in a non-uniform transverse field at temperature T > 0,

depends only on the field difference h1 − h2. This result applies also to any coupling

independent of the field that commutes with the total spin along z ([H,Sz] = 0).

Proof: We first rewrite the Hamiltonian of a spin s pair in a non-uniform field as

H = − h1 + h2

2
(sz1 + sz2)−

h1 − h2

2
(sz1 − sz2) + V (32)

where V denotes the (field independent) interaction between the spins, assumed to

satisfy [V, Sz] = 0 (Sz = sz1 + sz2). The first term in (32) is the uniform field component

and commutes with the rest of the Hamiltonian. Consequently, the thermal state for

average field h = h1+h2

2
, ρ12(h) = Z−1

h e−βH , can be written as

ρ12(h) =
Z0

Zh

eβhSz/2ρ12(0)e
βhSz/2 , (33)

where ρ12(0) depends just on h1 − h2 and commutes with Sz.

Eq. (33) implies that ρ12(h) will be separable, i.e., a convex combination of product

states [54], if and only if ρ12(0) is separable: If ρ12(0) =
∑

α qαρ
α
1 ⊗ ρα2 , with qα > 0 and

ραi local mixed states, then ρ12(h) =
∑

α qαρ̃
α
1 ⊗ ρ̃α2 with ρ̃αi ∝ eβhs

z

i
/2ραi e

βhsz
i
/2 also local

mixed states, so that it is separable as well. Similarly, ρ12(h) separable implies ρ12(0)

separable (ραi ∝ e−βhsz
i
/2ρ̃αi e

−βhsz
i
/2). Hence, the limit condition for exact separability

depends only on h1 − h2.

Let us now consider the negativity. The non-zero matrix elements of ρ12(h) are

〈m,M−m|ρ12(h)|M−m′, m′〉 ∝ eβhM〈m,M−m|ρ12(0)|M−m′, m′〉. Its partial transpose
will then have matrix elements 〈m,m′|ρt212(h)|M−m′,M−m〉 ∝ eβhM〈m,m′|ρt212(0)|M−
m′,M −m〉, such that it can also be written as

ρt212(h) =
Z0

Zh

eβhSz/2ρt212(0)e
βhSz/2 . (34)

Although ρt212(0) will no longer commute with Sz, ρ
t2
12(h) will be positive definite (i.e.,

with positive eigenvalues) if and only if ρt212(0) is positive definite, since e
βhSz/2 is positive

definite and Zh, Z0 are positive. This result demonstrates the Lemma for the negativity.

More explicitly, the onset for non-zero negativity occurs when the lowest eigenvalue of

ρt212 becomes negative, implying a vanishing eigenvalue at the onset, i.e., det[ρt212] = 0.
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But Eq. (34) implies det[ρt212(h)] = (Z0

Zh

)(2s+1)2det[ρt212(0)] (as TrSz = 0), so that the

critical conditions at h 6= 0 and h = 0 are equivalent.

In addition, for an XXZ coupling as well as for any coupling invariant under

permutation of the spins, the limit condition will obviously depend only on the absolute

value |h1−h2| of the field difference, as those for (h1, h2) and (h2, h1) should be identical.

Therefore, even though the negativity for the XXZ pair does depend on the

average field h = h1+h2

2
(through the relative weights of the distinct eigenstates), as

was seen in previous figures, the limit temperature for non-zero negativity at fixed

exchange couplings, and the threshold values of Jz or J for non-zero negativity at fixed

temperature, will depend just on |h1 − h2|. In the h1, h2 field plane, the set of zero

negativity states will then be stripes, i.e., typically a stripe |h1 − h2| ≤ hc. Of course,

N can be exponentially small outside the stripe, but not strictly zero.

The previous features of the relative entropy of coherence remain also valid.

The standard basis of states |m1, m2〉 continues to be the Schmidt basis for definite

magnetization eigenstates, i.e. |ΨM〉 =
∑

m cm|m,M − m〉, entailing that for T → 0

the coherence will approach the GS entanglement entropy (for a non-degenerate GS)

adopting qualitatively the same form as the T = 0 negativity. Nevertheless, as T

increases the T = 0 steps will become rapidly smoothed out in the coherence, without

exhibiting minima or valleys. It will also rapidly occupy the T = 0 separable sectors,

becoming in particular prominent along the line h1 = −h2 for Jz < −J , as seen in the

bottom right panel of Fig. 9. On the other hand, for sufficiently high temperatures it will

approach a uniform decay pattern for all s. A series expansion for kT ≫ J, |Jz|, |h1|, |h2|
leads to

Ch(ρ12) ≈
β2Tr[H2 − (Hdiag)

2]

2d ln 2
=

1

9 ln 2

(

s(s+ 1)J

kT

)2

, (35)

where the first result holds in a system of finite dimension d and the last one is the

leading asymptotic expression for a spin s XXZ pair. It reproduces the leading term

of previous asymptotic results (16) and (25).

5. Conclusions

We have discussed in detail the entanglement and coherence of the XXZ spin s pair in

a transverse non-uniform field at both zero and finite temperatures. The general spin s

case exhibits interesting features which can already be seen in the basic s = 1/2 case.

In the latter, while the T = 0 diagram in the field plane is characterized by an M = 0

entangled region bounded by hyperbola branches, reachable through non-uniform fields

even in the FM case Jz < −J , the thermal state is characterized by a separability stripe

|h1−h2| ≤ hc(T, J, Jz) in the h1, h2 field plane for any T > 0, with the system becoming

pure and entangled for large values of |h1 − h2|. Analytic expressions were provided.

Remarkably, these features were shown to remain strictly valid for any value of the

spin s. The boundaries of the T = 0 entangled sector are given by the same expressions

with a simple rescaling, while the conditions for non-zero thermal entanglement and
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negativity were rigorously shown to depend just on the field difference |h1 − h2| for
any s, entailing that for T > 0 strict separability will still be restricted to a stripe

|h1 − h2| ≤ hc(T, J, Jz). The main difference with the spin 1/2 case is the emergence of

2s magnetization and entanglement steps at T = 0, which lead to deep valleys in the

negativity at low temperatures but which disappear as T increases. Another interesting

aspect emerging for non-uniform fields for increasing spin is the appearing of a critical

point along the line h1 = −h2, which determines the onset of GS entanglement for

Jz < −J and where all 4s+ 1 GS’s with magnetizations M = −2s, . . . , 2s coalesce.

The relative entropy of coherence in the standard basis approaches the entanglement

entropy for T → 0, although for T > 0 it stays non-zero for all fields. The exact

asymptotic expression for high T was derived, which shows that it ultimately decays

uniformly as (s(s+ 1)J/kT )2 for sufficiently high temperatures.

In summary, the present results show that the XXZ pair in a non-uniform field

is an attractive simple system with potential for quantum information applications.

Its entangled eigenstates, having definite magnetization, admit a variable degree of

entanglement which can be controlled by tuning the fields at each spin. Moreover such

tuning enables to select the magnetization of the GS at T = 0 for any anisotropy, while

at T > 0 it allows one to effectively cool down the system to an entangled state. At

T = 0 entanglement itself can be detected and approximately measured through the

magnetization, since it decreases with increasing |M | and vanishes just for maximum

|M |. The possibility of simulating XXZ systems with tunable couplings and fields by

different means enhances the interest in this type of models. It would then be interesting

to extend these results to spin s XXZ chains and explore in detail their entanglement

and coherence properties under non-uniform fields. Preliminary results indicate that

at least for small n, the general behavior of an n-spin-s chain in a general field does

resemble that of an effective spin pair with the same total maximum spin (i.e., a spin

ns/2 pair), although details depend on several features like boundary conditions, parity

of n, etc. (and in the case of entanglement and coherence, of course on the type of pair

or partition analyzed), which are currently under investigation.
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