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A B S T R A C T

Optical spectroscopy of CPD 2598 2635, one of the O-type stars in the open cluster Trumpler

16 in the Carina Nebula, reveals this star to be a double-lined binary system. We have

obtained the first radial velocity orbit for this system, consisting of a circular solution with a

period of 2.2999 d and semi-amplitudes of 208 and 273 km s21. This results in minimum

masses of 15 and 11 M( for the binary components of CPD 2598 2635, which we classified

as O8V and O9.5V, although spectral type variations of the order of 1 subclass, which we

identify as the Struve–Sahade effect, seem to be present in both components. From ROSAT

HRI observations of CPD 2598 2635 we determine a luminosity ratio logðLx/LbolÞ < 27,

which is similar to that observed for other O-type stars in the Carina Nebula region. No

evidence of light variations is present in the available optical or X-ray data sets.

Key words: binaries: general – stars: early-type – stars: individual: CPD 2598 2635 – open

clusters and associations: individual: Trumpler 16 – X-rays: stars.

1 I N T R O D U C T I O N

The very young Carina Nebula region contains several open

clusters with a rich population of O-type stars. Among them,

Trumpler 16 is one of the most conspicuous. One of its members,

CPD 2598 2635 ðV ¼ 9:27, a2000 ¼ 10845012:7800, d2000 ¼

259844046:600; Massey & Johnson 1993) has been observed in

the context of the international X-Mega campaign (Corcoran et al.

1999), which involves optical spectroscopy of OB stars showing

X-ray emission on ROSAT HRI images (Corcoran et al. 1999) CPD

2598 2635 is one of the OB stars in the neighborhood of h Carinae

also detected as a bright X-ray source. Fig. 1 shows an X-ray image

centred on CPD 2598 2635 obtained through combination of three

deep ROSAT HRI pointings (see below) along with the optical field

from the Digitized Sky Survey.

Because a massive binary system could influence its emergent

X-ray flux as a result of colliding stellar winds (e.g. Chlebowski &

Garmany 1991), it is important to verify the frequency of close

multiple systems among the Carina OB stars that are detected as

X-ray sources. We wonder, for example, if wind collision might be

the physical reason that makes CPD 2598 2635 brighter in X-rays

than its close neighbour HD 93343, which is very similar in both

visual brightness and spectral type (see Fig. 1).

CPD 2598 2635 has received different designations in the

literature. The IDS catalogue (Jeffers, van den Bos & Greeby 1963)

refers to it as IDS 10452 S 5946, possibly forming a visual binary

with HD 93343, of similar V magnitude, about 14 arcsec to the

South. Stephenson & Sanduleak (1971) gave to CPD 2598 2635

the number 1872 in their catalogue of Luminous Stars in the

Southern Milky Way (LSS), but misleadingly provided the cross-

identification as HD 93343? Feinstein, Marraco & Muzzio (1973)

assigned to CPD 2598 2635 the number 34, among the probable

members of the open cluster Trumpler 16.

2 O B S E RVAT I O N S

Our observations consist of optical spectrograms of CPD 2598

2635, obtained during 1984 at Cerro Tololo Interamerican

Observatory (CTIO), Chile, and between 1997 and 2000 at

Complejo Astronómico El Leoncito (CASLEO).

The first set of 11 observations was obtained in 1984 March at

CTIO using the Carnegie Image Tube Spectrograph (CTIS)

attached to the 1-m Yale telescope. These spectrograms, covering a

wavelength range from 3900 to 4900 Å at a reciprocal dispersion of
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43 Å mm21, were widened to 1 mm and secured on Kodak IIIa-J

baked emulsion. A He-A lamp was used as a comparison source.

These photographic spectrograms were digitized with a Grant

micro-densitometer at La Plata Observatory, and subsequently

analysed with IRAF
1 routines.

Spectral CCD images of CPD 2598 2635 were obtained at

Complejo Astronómico El Leoncito (CASLEO) observatory,

between 1997 January and 2000 June with the 2.15-m Jorge

Sahade telescope, mainly as part of the observations for the

X-Mega campaign. We used a Recherches et Études d’Optique et

de Science Connexes (REOSC) echelle Cassegrain spectrograph

and a Tek2 1024 � 1024 pixel CCD as detector to obtain 27

spectra in the wavelength range from 3500 to 6000 Å at a

reciprocal dispersion of 0.17 Å pixel21 at 4500 Å. The signal-to-

noise ratio (S/N) of these data is ,110 (although it changes, of

course, with position within each echelle order).

Four additional observations were obtained at CASLEO with a

Boller & Chivens (B&C) spectrograph attached to the 2.15-m

telescope, using a PM3 516 � 516 pixel CCD as detector, and a

600 l mm21 diffraction grating, yielding a reciprocal dispersion

of 2.5 Å pixel21. These spectra cover the spectral range from

,3800 to 4900 Å, and their S/N is ,300. One more spectrum of

CPD 2598 2635 was obtained at CASLEO with the REOSC

spectrograph in its simple dispersion mode, using a 600 line

mm21 grating and the Tek 1024 � 1024 CCD as detector, at a

resulting reciprocal dispersion of 1.8 Å pixel21. The central

wavelength of this observation is 4700 Å and the corresponding

S/N is ,300.

The usual series of bias, flat field and dark exposures was also

secured during each observing night for every CCD data set. The

CCD images were processed and analysed with IRAF routines at La

Plata Observatory.

3 R E S U LT S A N D T H E I R D I S C U S S I O N

3.1 Radial velocity orbit of CPD 2598 2635

A first inspection of our high-resolution echelle spectrograms

revealed double lines present in some of them, indicating that CPD

2598 2635 was probably a double-lined spectroscopic binary.

Fig. 2 shows the behaviour of the He II 4686 Å line in echelle

spectra of CPD 2598 2635, obtained at different observing dates.

Figure 1. Optical field around CPD 2598 2635 (left) from the Digitized Sky Survey and ROSAT HRI image (right). The fields of view are 6 � 6 arcmin2.

Figure 2. He II 4686-Å absorption in the spectrum of CPD 2598 2635 at

different observing dates, showing the doubling of spectral lines.

1 Image Reduction and Analysis Facility, distributed by NOAO, operated by

AURA, Inc., under agreement with NSF.
2 Tektronix Inc. SITe, 10500 SW Nimbus Avenue, Trigard, Oregon 97223-

4310, USA.
3 Photometrics Ltd., 3440 East Britannia Drive, Tucson, AZ 85706, USA.
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Radial velocities were determined from our spectra of CPD

2598 2635, fitting Gaussian profiles to the absorption lines.

We used for radial velocity determination several lines of He I

along with He II 4686 Å, which appear as the least affected by pair

blending. The Pickering (4-n) series of He II absorptions of the two

binary components are not well resolved in our spectra, these lines

being broader than other He II and He I absorptions. We interpret

this fact as indicative of higher pressure broadening acting in the

region where these lines form, which must be deeper in the

atmosphere than the formation region of He I lines. As a

consequence, these (4-n) series lines are more seriously blended

than the other absorptions in the spectrum of CPD 2598 2635 and

we decided not to include them in the average radial velocities

presented in Table 1. We also derived radial velocities from our

lower resolution, but higher S/N CCD spectra and from our

digitized photographic plates. The radial velocities were computed

as unweighted mean values of individual velocities determined for

each spectral line.

The journal of our radial velocity observations is presented in

Table 1. In successive columns, we quote the Heliocentric Julian

Date (HJD), the corresponding orbital phase (as explained below),

the measured average radial velocities for the primary and

secondary components, and their standard deviations (s.d.). We

identified the primary component as the one having deeper

absorptions of He II lines.

From the radial velocities listed in Table 1, it was already

apparent that the orbital period of CPD 2598 2635 was of the order

of a few days. A period search routine based on the modified Lafler

& Kinman (1965) method (Cincotta, Méndez & Nuñez 1995)

applied to all the radial velocity observations of the primary

component of CPD 2598 2635 as listed in Table 1, yielded as the

most probable period P ¼ 2:29995 ^ 0:00002 d. Initial orbital

elements were estimated, leaving the period also as a free

parameter, resulting in an orbital solution of negligible eccentricity

ðe ¼ 0:005 ^ 0:008Þ with no significant change in the orbital

period. We therefore considered the orbit to be circular and the

above-mentioned value of the period to be the most probable, and

proceeded to find the best fit for the remaining orbital parameters.

In order to avoid pair blending effects as much as possible, we

computed the orbital elements of CPD 2598 2635 using only radial

velocities derived from our high-resolution observations of both

binary components, obtained at the orbital phase intervals 0.1 to

Table 1. Radial velocity measurements for CPD 2598 2635.

HJD phase Primary s.d. Secondary s.d.
240 00001 f km s21 km s21 km s21 km s21

45776.826† 0.86 193 34 2132 56
45777.783† 0.27 2214 56 1256 41
45778.731† 0.63 1179 22 2210 28
45779.715† 0.11 2138 25 1160 10
45780.748† 0.56 127 25 – –
45781.644† 0.95 137 28 – –
45782.730† 0.42 2116 46 198 28
45783.677† 0.84 1175 25 2223 61
45784.682† 0.27 2204 47 1219 68
45785.634† 0.62 1181 27 2210 30
45786.623† 0.12 2135 28 1180 34
50495.835 0.64 1163 23 2225 18
50498.826 0.92 1108 10 2131 18
50506.834 0.43 268 19 1132 13
50841.793 0.07 286 27 1152 28
50842.769 0.49 13 9 – –
50843.727 0.91 1132 18 2143 16
50844.718 0.34 2168 10 1236 29
50845.723 0.77 1205 11 2271 37
50846.828 0.26 2202 27 1270 21
50847.649 0.61 1150 10 2184 35
50848.779 0.10 2133 12 1189 24
50850.724 0.95 186 17 2101 18
50851.655 0.35 2162 17 1231 24
50852.828 0.89 1177 19 2191 18
50859.789‡ 0.61 1112 21 – –
50861.781‡ 0.76 1189 24 2248 25
50862.762‡ 0.18 2192 18 1243 33
50868.714‡ 0.77 1188 22 – –
51208.709 0.61 1134 17 2214 21
51209.714 0.04 249 27 – –
51210.727 0.47 236 18 – –
51211.715 0.90 1118 6 2179 24
51215.682 0.63 1137 17 2197 17
51216.653 0.05 282 20 180 12
51217.673 0.49 212 21 – –
51218.632 0.91 1109 32 2149 37
51712.448 0.62 1136 20 2193 30
51712.478 0.63 1179 56 – –
51715.463 0.93 184 16 2120 10
51716.483 0.37 2165 33 184 19
51716.521 0.39 2131 16 160 23
51718.555‡ 0.27 2220 59 220 31

Note: orbital phases have been calculated with the ephemeris of
Table 2. † indicates the lower resolution observations obtained with
the CITS and ‡ those obtained either with the B&C spectrograph or
the REOSC spectrograph in simple dispersion mode.

Table 2. Circular orbital elements of CPD
2598 2635.

P [days] 2.29995^ 2� 1025

K1 [km s21] 208^ 2
K2 [km s21] 273^ 2
g [km s21] 0^ 1
Tmax [HJD] 2450845.664^ 0.01
a1 sin i [R(] 9.4^ 0.1
a2 sin i [R(] 12.4^ 0.1
M1 sin3 i [M(] 15.0^ 0.5
M2 sin3 i [M(] 11.4^ 0.5
q(M2/M1) 0.76^ 0.01

Note: Tmax represents the time of maximum
radial velocity of the primary component.

Figure 3. Radial velocity orbit for CPD 2598 2635. The meaning of the

symbols is as follows: filled and open symbols refer to the primary and

secondary stars, respectively. Circles represent REOSC echelle spectra

(bigger symbols refer to data used in the calculation of the orbital solution);

squares stand for B&C and REOSC-DS spectra and triangles for CITS

spectra. Typical error bars for each data set are also indicated.
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0.4 and 0.6 to 0.9 of the binary period. The resulting orbital

elements are listed in Table 2.

Fig. 3 represents the complete set of observed radial velocities as

a function of the adopted orbital period, along with the circular

orbital solution from Table 2.

3.2 Spectral classification of the binary components of CPD

2598 2635

CPD 2598 2635 has been previously classified by Walborn (1982)

as O7Vnn; and by Levato & Malaroda (1982) as O8/9:V ‘1

companion ?’, already pointing out its probable binary nature.

Massey & Johnson (1993) classified CPD 2598 2635 as O8.5V. The

spectrum of CPD 2598 2635 (identified as star number 516) shown

in the last mentioned paper indeed displays double lines,

apparently not noticed by the authors.

Two spectra of CPD 2598 2635 from our lower resolution CCD

images, corresponding to nearly opposite binary phases, are

illustrated in Fig. 4, where a difference in the relative intensities of

He I 4471 Å and He II 4542 Å is evident. In the upper spectrum

shown in Fig. 4, obtained at binary phase 0.76P, He I and He II

absorptions appear similar, indicating a spectral type O7; while in

the lower spectrum, obtained at the binary phase 0.18P, He I

absorption is clearly stronger than that of He II, corresponding to a

spectral type O8–9. Such spectral variations might explain the

slightly different classifications given to this star by different

authors.

Keeping in mind the known difficulties in classifying spectra of

close binaries, and the above illustrated spectral variations, we

have nevertheless tried to estimate the spectral types of the binary

components of CPD 2598 2635.

An inspection of our high- and intermediate-resolution

observations showed that both stars present absorption-line ratios

of He i/He ii $ 1, indicating spectral types probably later than O7.

From the spectra with maximum separation of the lines of the

binary components, and using the classification criteria described

by Walborn & Fitzpatrick (1990), we derived spectral types of

O8:V and O9.5:V for the primary and secondary components,

respectively.

In order to provide an additional estimate for the spectral types

of the binary components of CPD 2598 2635, we considered the

He I(4922)/He II(5411) ratio, following the classification criteria

proposed by Kerton, Ballantyne & Martin (1999). The equivalent

widths (W ) of the 5411-Å and 4922-Å lines were measured in

normalized spectra, by means of a Gaussian fit to the absorption

profiles, though He II 5411 Å looks somewhat blended even at

phases of maximum radial velocity separation (as discussed above)

which causes less confident W determinations. We found

equivalent width ratios RðW4922/W5411Þ of 0:54 ^ 0:03 and 1:18 ^

0:04 for the primary and secondary components, respectively,

corresponding to spectral types of O8V and O9.5V, with some

variations probably depending on binary phase.

Fig. 5 shows the spectral region comprising He I 4922 Å and

He II 5411 Å lines on echelle spectrograms of CPD 2598 2635 near

the phases of maximum separation of the components.

By inspection of the He I and He II spectral lines observed during

different phases of the binary motion, we found line-depth

variations that can be appreciated in Figs 2 and 5. We identify this

phenomenon as the Struve–Sahade effect (cf. Gies, Bagnuolo &

Penny 1997 and references therein) observed in massive close

binaries, which consists of the deepening of the spectral lines of the

secondary star when it approaches the observer. In our spectra,

variable line depths seem to be present in both binary components,

although stronger variations are observed in the secondary star.

Applying again the classification criteria proposed by Kerton

et al. (1999) we found variations of around one subclass in spectral

types for both binary components, going from O7 to O8 for the

primary and O8.5 to O9.5 for the secondary star. However, the

errors involved in the equivalent width (EW) measurements

(especially those affecting the He II 5411-Å line) are also con-

siderable and, as a consequence, we cannot address any conclusive

statement about the phase dependence of these variations until

higher resolution and S/N observations are available.

As the binary components of CPD 2598 2635 are probably in

Figure 4. Spectra of CPD 2598 2635 obtained at CASLEO with the B&C

spectrograph. Spectral features marked are: H Balmer lines, He I(1II)

4026 Å, He I 4143 Å, He II 4200 Å, He I 4388 Å, He I 4471 Å, He II 4541 Å,

C iii 1 O ii 4650- �A blend, He II 4686 Å, He I 4713 Å and He I 4921 Å. Note

the difference in relative intensities of He I 4471 Å and He II 4541 Å

between the spectra.

Figure 5. He I 4922-Å and He II 5411-Å lines in the spectrum of CPD 2598

2635 at phases 0.26 and 0.77.
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synchronous rotation with the orbital period, we believe that the

later spectral types (i.e. O8V and O9.5V respectively) are more

realistic in describing each star in this binary system, the earlier

ones probably being produced by photospheric heating on each star

from its companion and/or the colliding wind region between the

stars.

3.3 Physical parameters

In what follows we will estimate the physical parameters of the

binary components of CPD 2598 2635. We adopt for this star

the visual magnitude and distance modulus of Trumpler 16

published by Massey & Johnson (1993), namely V ¼ 9:27 and

Mv 2 V0 ¼ 12:55 ^ 0:08, close to the value of Mv 2 V0 ¼ 12:6

obtained by Feinstein et al. (1973). Also from Massey &

Johnson (1993), we take, for CPD 2598 2635,

EðB 2 VÞ ¼ 0:54, R ¼ 3:2 and thus V0 ¼ 7:54. In order to

obtain individual absolute magnitudes, we need an estimate of

the luminosity ratio of the binary components. We applied the

corrected integrated-absorption method of Petrie (1940) in the

way described by Niemela & Morrison (1988). We used

equivalent widths measured for He I 4387 and 4471 and He II

4686 Å absorptions in spectra where those features are better

resolved. We corrected for continuum overlapping using

equivalent widths of the same lines measured for individual

stars of similar spectral types, taken from Mathys (1988). Then

we calculated for each selected spectral line the quotient

½L2/L1 ¼ kðBKaÞ=ðAKbÞl�, where A is the equivalent width of the

line measured in the spectrum of the most intense component,

B is the equivalent width of the same line as observed in the

weaker component, and Ka,b are the equivalent widths measured

for single stars of spectral types O8 V and O9 V, respectively.

Performing these measurements in several spectra of CPD 2598

2635 observed near phases of maximum separation of the

components, we obtained an average value of L2/L1 ¼

0:45 ^ 0:14; which we have used in the following calculations.

With this luminosity ratio and the adopted distance modulus,

we obtained individual absolute magnitudes of MV ¼ 24:61 ^ 0:1

and 23:74 ^ 0:1 for the primary and secondary components,

respectively.

Our classification of the components of CPD 2598 2635 as

O8 V and O9.5 V corresponds to Teff ¼ 38450 K and BC ¼

23:68 for the primary, and Teff ¼ 34620 K and BC ¼ 23:36 for

the secondary, according to the calibration of effective

temperatures (Teff) and bolometric corrections (BC) proposed

by Vacca, Garmany & Shull (1996, hereafter VGS). However,

according to Schmidt-Kaler (1982), the corresponding effective

temperatures and bolometric corrections would be Teff ¼

35800 K and BC ¼ 23:54 for the primary, and Teff ¼ 31500 K

and BC ¼ 23:25 for the secondary. Therefore, depending on

which calibration we adopt, we would find somewhat different

values for the bolometric magnitudes, and thus luminosities, of

each binary component.

Knowing the luminosities and effective temperatures, we can

derive the radii of the stars that we want to compare with the radii

of the critical Roche lobes. Those were estimated using the

expression given by Paczynski (1971):

r1 sin i ¼ a sin i½0:38 1 0:2 logðM1/M2Þ�

for a ‘mean’ Roche radius of r1 and separation a. We obtained

individual Roche radii of r1 sin i ¼ 8:8 R( and r2 sin i ¼ 7:8 R(.

We need to know something about the inclination of the orbital

plane in order to compare these critical Roche radii with the

Stefan–Boltzmann radii of the stars.

The physical parameters derived for the binary components are

summarized in Table 3.

Under the assumption that the system is in synchronous rotation

(which seems reasonable in a massive binary of short period) we

derived probable rotational velocities for its components (quoted in

Table 3) that are higher than the observed rotational velocities of

single stars of similar spectral types (e.g. Slettebak et al. 1975;

Conti & Ebbets 1977).

We tried to estimate the projected rotational velocities (V sin i )

by comparing the observed absorption profiles of He I 4388 Å and

4471 Å with flux profiles from non-local thermodynamic

equilibrium model atmospheres by Auer & Mihalas (1972). We

chose models corresponding to Teff of 40 000, 35 000 and 30 000 K

and log g ¼ 4 to represent the binary components. The model

profiles were convolved with different rotational velocity profiles,

finding satisfactory agreement with observations for V sin i values

of 180 ^ 25 km s21 and 140 ^ 30 km s21 for the primary and

secondary components, respectively. Comparing these results with

the calculated rotational velocities, we obtain, for the inclination of

the orbital plane, values of 648 and 798 for the primary and

secondary respectively using the radii derived through the

calibration by VGS, or 568 and 598 for primary and secondary

respectively using the calibration by Schmidt-Kaler (1982).

However, the errors involved in the V sin i determination give

room for a large range of inclinations.

Assuming the mass–spectral type relation for normal O-type

stars by VGS (1996), we can expect masses near 25 and 21 M( for

the individual binary components of CPD 2598 2635. These values

are similar to (or slightly larger than) those obtained from the

observation of eclipsing binary systems with O8V and O9V

components (e.g. EM Car, Andersen & Clausen 1989; Y Cyg,

Burkholder, Massey & Morrell 1997; CQ Cep, Kartascheva &

Svechnikov 1989). This also points to an orbital inclination

inclination of 568 ^ 68, similar to the values estimated from the

Table 3. Physical parameters of CPD 2598 2635.

Primary component Secondary component
Calibration VGS Schmidt-Kaler VGS Schmidt-Kaler

Teff [K] 38450 35800 34620 31500
Mbol 28.3^ 0.15 28.1^ 0.15 27.1^ 0.15 27.0^ 0.15
L [L(] 162000^ 20000 143000^ 20000 54000^ 11000 49000^ 11000
RS 2 B [R(] 9.1^ 0.4 9.8^ 0.4 6.5^ 0.5 7.4^ 0.5
RS 2 B/RRoche-lobe 0.8^ 0.1 0.9^ 0.1 0.7^ 0.1 0.8^ 0.1
Vrot [km s21] 200^ 10 215^ 10 142^ 15 164^ 15

Notes: RS 2 B means Stefan–Boltzmann radii; theoretical Roche-lobe radii were corrected by the
sin i factor using a probable average value for the inclination of the orbital plane, namely 608.
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linewidths. If these estimates are correct, the system is not likely to

present eclipses. However, some kind of light variations may occur

as a result of tidal deformation, considering that both components

are hot luminous stars in a close binary system. Also, if our guess

for the inclination is as supposed, the system would be detached,

with both components within their critical Roche lobes, as we

would expect for a young binary with non-evolved components.

4 X - R AY E M I S S I O N

CPD 2598 2635 was detected as a serendipitous X-ray source

during numerous pointing in the Carina Nebula by the ROSAT

X-ray satellite observatory with both the Position Sensitive

Proportional Counter (PSPC) and the High Resolution Imager

(HRI). In the PSPC images the star is unresolved from other nearby

X-ray sources (notably the O stars HD 93343 and Tr 16 #182)

because of the rather coarse spatial resolution of the PSPC

(,1 arcmin). The HRI has finer spatial resolution (,10 arcsec) and

so can better resolve CPD 2598 2635 from surrounding sources,

providing a more accurate measure of the uncontaminated X-ray

emission from the star. Table 4 lists three deep ROSAT HRI

pointings, which include CPD 2598 2635.

The source lies about 4.2 arcmin off-axis, and at this position the

50 per cent encircled energy radius is about 3 arcsec. We extracted

source counts from these three HRI sequences in an 8-arcsec region

centred on CPD 2598 2635. We extracted background counts from

a region of blank sky centred at a2000 ¼ 10h45m19:s6, d2000 ¼

2598440430: 2 using an extraction radius of 40 arcsec to reduce the

statistical uncertainty in the net rate.

Fig. 6 shows the extracted net light curve for the source. There is

no evidence for variability. We could not determine X-ray luminosity

by direct spectral fitting because the HRI has no spectral resolution.

Instead, to determine the X-ray luminosity we converted the total net

count rate to luminosity by assuming a Raymond–Smith thermal

source spectrum with a temperature kT ¼ 0:5 keV and an absorbing

column NH ¼ 2 � 1021 cm22, which should reasonably approximate

the X-ray emission from OB type stars in the Carina nebula. At

4 arcmin off-axis, the HRI vignetting correction is 1.01 (David et al.

1997); the total net count rate, corrected for vignetting, is 1:35 ^

0:14 � 1023 HRI count s21. With our assumed spectral parameters,

this corresponds to an X-ray luminosity Lx ¼ 3:8 � 1031 erg s21 in

the ROSAT band ð0:2–2:4 keVÞ; uncorrected for absorption, using

Mv 2 V0 ¼ 12:55: After correcting for absorption, the X-ray

luminosity at the source is approximately Lx;unabs ¼ 9 �

1031 erg s21 in the ROSAT band. With a total bolometric luminosity

Ltot , 200000 L( the ratio of the unabsorbed X-ray luminosity to

the total luminosity is log Lx/Ltot , 27, similar to the canonical

value of this ratio in the ROSAT band (Berghöffer et al. 1997).

According to this, CPD 2598 2635 does not show excess in its

X-ray flux compared with other O-type stars, and the question

about why it looks brighter than its neighbour HD 93343 in the

ROSAT HRI image of Fig. 1 remains to be clarified when more

observations of both stars are available.

5 C O N C L U S I O N S

In the present study we demonstrate that CPD 2598 2635 is a close

binary system in a circular orbit. Both binary components are

O-type stars, and the short period of binary motion suggests strong

interactions between the stellar winds.

Variations of the order of one subclass in the spectral types of

both components are observed, probably related to the phenom-

enon known as Struve–Sahade effect. A possible explanation for

the Struve–Sahade effect, analysed by Gies et al. (1997), is that it

is present in systems expected to contain colliding winds with

X-ray generation from the bow shock between the stars. However,

the observed X-ray light curve does not show any significant

variations, and moreover, the ratio Lx/Lbol seems to be similar to

that observed for other O-type stars.

This star is a massive close binary, with hot, luminous

components ðO8V 1 O9:5VÞ and thus a good candidate for further

exploration of colliding wind effects.

With the estimated inclination ,608, we can conclude that the

stellar radii are smaller than the corresponding Roche lobes, the

system being detached, as one would expect from the evolutionary

status of a member in a cluster still containing unevolved O3 stars.

Though the system is not expected to present eclipses, future

photometric studies could reveal the presence of phase-locked light

variations produced by tidal deformation of the binary com-

ponents. This would provide the opportunity of making a better

estimate of the inclination of the orbital plane, and consequently

lead to the derivation of absolute individual masses for the

components of CPD 2598 2635. No need to recall that this is of

fundamental astrophysical interest concerning O-type stars.
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Cincotta P. M., Méndez M., Nuñez J. A., 1995, ApJ, 449, 231

Conti P. S., Ebbets D., 1977, ApJ, 213, 438

Corcoran et al., 1999, in van der Hucht K. A., Koenigsberger G., Eenens P.

R. J., eds, Proc. IAO Symp. 193, Wolf-Rayet Phenomena in Massive

Stars and Starburst Galaxies. Astron. Soc. Pac., Chelsea, p. 772

Corcoran M. F., 1999, Rev. Mex. Astron. Astrofis., Ser. Conf., 8, 131

David L. et al., 1997, ROSAT High Resolution Imager Calibration Report,

RSDC/SAO

David P., Goldwurm A., Murakami T., Paul J., Laurent P., Goldoni P., 1997,

A&A, 322, 229

Feinstein A., Marraco H. G., Muzzio J. C., 1973, A&AS, 12, 331

Gies D. R., Bagnuolo W. G., Jr, Penny L. R., 1997, AJ, 479, 408

Jeffers H. M., van den Bos W. H., Greeby F. M., 1963, Index Catalogue of

Visual Double Stars, Publ Lick Obs., Vol XXI. Univ. California

Kartascheva T. A., Svechnikov M. A., 1989, Astrofiz. Issled. Izv. Spets.

Astrofiz. Obs., 28, 3

Kerton C. R., Ballantyne D. R., Martin P. G., 1999, AJ, 117, 2493

Lafler J., Kinman T. D., 1965, ApJS, 11, 199

Levato H., Malaroda S., 1982, PASP, 94, 807

Massey P., Johnson J., 1993, AJ, 1053, 980

Mathys G., 1988, A&AS, 76, 427

Niemela V. S., Morrsion N. D., 1988, PASP, 100, 1436

Packzynski B., 1971, ARA&A, 9, 183

Petrie R. M., 1940, Publ. Dom. Astroph. Obs. Victoria, 7, 205

Schmidt-Kaler Th. in Schaifers K., Voigt H. H., eds, 1982, Landolt-

Börnstein, NS, Vol. 2. p. 455

Slettebak A., Collins G. W., Boyce P. B., White N. M., Parkinson T. D.,

1975, ApJS, 29, 137

Stephenson C. B., Sanduleak N., 1971, Publ. Warner & Swasey Obs., 1, 1

Vacca W. D., Garmany C. D., Shull J. M., 1996, ApJ, 460, 914 (VGS)

Walborn N., 1982, AJ, 87, 1300

Walborn N., Fitzpatrick E., 1990, PASP, 102, 379

This paper has been typeset from a TEX/LATEX file prepared by the author.

84 J. F. Albacete Colombo et al.

q 2001 RAS, MNRAS 326, 78–84


