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Abstract. Pluralistic homophily is an important phenomenon in social
network analysis as nodes tend to associate with others that share their
same communities. In this work, we present the concept of local plural-
istic homophily of a node in a network, along with a method to measure
it. It is based on the assortativity index proposed by other authors. We
analyze the distribution of local pluralistic homophily in different net-
works using publicly available datasets. We identify patterns of behavior
of the proposed measure that relate to various structural and semantic
characteristics of a network. These findings are significant because they
help better understand how pluralistic homophily affects communities.
Furthermore, our results suggest possible applications of local pluralistic
homophily in future research.

Keywords: Local Pluralistic Homophily · Networks · Communities.

1 Introduction

In the field of social network analysis, homophily is known as assortativity or
assortative mixing. Assortative mixing is the tendency of a node to link with
nodes similar to it. The similarity between nodes can be defined based on a
common characteristic, such as the node degree [1], but other features can also
be used. Social networks have shown a high assortativity, contrary to biological
and technological networks where a low assortativity is observed (i.e., disassor-
tativity) [2]. The study of homophily and communities is essential to understand
the structure and dynamics of social networks.

In network science, a community is a group of nodes that have a. higher
likelihood of connecting to each other than to nodes from other[3]. To detect
these groups, several techniques are used, such as differential equations, ran-
dom walks, spectral clustering, and modularity maximization. In some cases,
the network can be partitioned into disjoint communities, while in others, the
structure can be viewed as communities where some nodes belong to two or more
of them. In these cases, it’s said that the network has overlapping communities.
In a study conducted by Yang and Leskovec [4], it was found that overlapping
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community areas in networks exhibit a higher density of connections compared
to non-overlapping ones. Furthermore, the authors noted a noteworthy pattern
where nodes belonging to multiple communities tend to connect with similar
nodes based on their community memberships. This phenomenon, termed as
pluralistic homophily, highlights the tendency of nodes to exhibit preference to-
wards nodes with similar attributes across multiple communities.

In this article, we introduce the concept of local pluralistic homophily as the
tendency of a specific node to link with others with the same overlap. Our mea-
sures are based on the already-established concept of assortativity and provide
a more suitable way to measure the phenomenon of pluralistic homophily. We
define an extended measure of homophily based on the similarity of nodes that
share community memberships. Our measures reveal how much nodes from a
network with overlapping communities prefer to attach to others with similar
membership quantities. We validate the measure using six datasets from social
networks and collaboration networks. Our results suggest the likely application
of local pluralistic homophily in node attribute prediction and other tasks com-
mon in the network analytics field.

2 Theoretical Framework

In social networks, individuals often exhibit a strong tendency to associate with
others who share similar attributes, such as political beliefs and social status.
This phenomenon is referred to as assortativity. However, in certain networks,
such as dating networks, an opposite pattern can be observed, where the ma-
jority of links exist between nodes with dissimilar attributes. This is known as
disassortativity. An assortativity metric, as defined in [2], captures the inclina-
tion of nodes to form direct links with others who possess similar properties.
The properties of nodes can be categorized as enumerative or scalar. Enumer-
ative properties have a finite set of possible values, such as gender, nationality,
and profession in the context of a social network composed of individuals. On the
other hand, a common example of assortative mixing based on scalar properties
is mixing by degree, where nodes with high degrees tend to connect with other
highly connected nodes, while nodes with low degrees are primarily linked to
nodes with few connections.

Def. Let a graph be an ordered pair G = (VG, EG) where VG is the vertex
set whose elements are the vertices denoted by v (or nodes of the graph), and
EG is the edge set whose elements are the edges, denoted by e (or links between
vertices of the graph), such that V (G) ≡ VG = {v1, v2, . . . , vn}, and E(G) ≡
EG = {e = (vx, vy) | vx, vy ∈ V }

2.1 Pluralistic homophily

The concept of pluralistic homophily is introduced in [4]. Previous studies on
community detection have typically assumed that nodes within the same com-
munity share similar properties. However, the authors of this paper argue that
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nodes can also be considered similar based on the number of shared memberships
they have across multiple communities. This phenomenon is known as pluralistic
homophily.

To illustrate this concept, consider a community of students who all play
football. In this case, the similarity between two individuals could be based on
their shared interest in football. However, if those same individuals also play
basketball, we might hypothesize that they share an even stronger similarity
than if they only had one shared activity. This is an example of pluralistic
homophily, where the similarity between two individuals is based on their shared
memberships across multiple communities.

While homophily has received significant attention in research, the concept of
pluralistic homophily remains under-explored. To address this research gap, we
propose a novel measure of assortativity that specifically considers overlapping
community memberships. In our measure, we extend the commonly used correla-
tion coefficient for quantifying homophily by incorporating the degree of overlap
in community memberships. This overlap refers to the number of communities
to which each node belongs in the network. By introducing this measure, we aim
to gain a deeper understanding of the role of pluralistic homophily in community
detection and other network analysis tasks.

Based on equation 3 in [1], we define a coefficient denoted by h that measure
the pluralistic homophily of a network as,

h =
1

σ2
q

X
xy

mxmy(emxmy − qmxqmy ) (1)

where mx,my are the number of membership of the nodes x and y in a link,
emxmy

is the joint probability for the memberships values x and y, and q is
the quantity membership distribution of the network. Note that equation 1 uses
the number of memberships of each node as the scalar value to calculate the
assortativity as defined in [2]. Under this equation, the assortativity value must
be interpreted according to the nearing of the result to zero. If the result is near
−1 means that, in general, nodes trends to link with others having a different
scalar number. On the contrary, if it nears 1, the nodes tend to link with others
with a similar scalar number. A result near zero means that nodes tend to link
randomly. To avoid subjectivity in the interpretation of the results on how much
h is nearest or farthest to zero, we define a ε-value to establish clear limits in
such appreciation. In general, a |h| < ε means a network non-assortative by node
membership, h < −ε is a disassortativity one, while h > ε exhibits assortativity
mixing, in other words, is pluralistic homophilically speaking.

2.2 Local Pluralistic homophily

It is common to find cases where some nodes tend to link differently than most
other nodes on the network. This is, despite a network that can exhibit an overall
positive or negative assortativity, some individual nodes could have an opposite
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tending. For these cases, [5] introduces the concept of local assortativity, making
a comparative analysis between the assortativity of a node and the network’s
assortativity. This distinction has allowed some works [6], [7] to understand the
composition of patterns found throughout the network structure, as well as to
observe the different assortative mixing throughout the hierarchical levels of the
networks. From this perspective, the local assortativity can then be seen as the
contribution that each node makes to the network’s assortativity or also a group
of them (for example, a partition, a community, etc.).

Local assortativity can also be observed when thinking in terms of pluralistic
homophily. This means that it is possible that a specific node with a high quan-
tity of memberships links to others with also high memberships, even when the
pluralistic homophily of the entire network is near −1. Based on this behavior,
the local pluralistic homophily can be defined as the tendency of a specific node
to link to other nodes with similar overlapping quantities.

We examine the works about local assortativity reviewed in [8], looking for
a reasonable way to compute the local pluralistic homophily. From these works,
we based on equation 4.10 on [9] to define the local pluralistic homophily h of a
node v as,

hv =

P
i∈N(v)

(mv − µq)(mi − µq)

2Mσ2
q

(2)

where i iterates over all the neighbors of node v, mv is the number of com-
munities to which node v belongs, while mi is the number of communities to
which node i belongs. M is the total number of nodes in the network, and µq

and σq are the mean and standard deviation of the probability distribution of
node memberships in the network. The resulting value of hv represents numeri-
cally the trend of a specific node v to link to other nodes with near memberships
number. The summation of hv values for all nodes is congruent with the results
obtained using equation 1 for the pluralistic homophily of the entire network.

Figure 1 shows an example of calculating the assortative mixing by the num-
ber of memberships of the network nodes, i.e. the pluralistic homophily h of the
entire network. Taking ε as 0.1, the value of h = −0.032 show a non-assortative
mixing due to |h| < ε. This is consistent with the result of hv for most of the
nodes (v1, v3, v4, v5, v7). However, a node is disassortative hv6 < −ε, and other
assortative hv2 > ε. This behavior can be explained, for instance, by node v2
being more assortative than the others because it connects more frequently with
nodes that have a similar number of memberships. Node v6, on the other hand,
is the most disassortative because it links to nodes with dissimilar numbers of
memberships. In the following sections, we will show this behavior in real net-
works with a different number of nodes, links, and communities.
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Fig. 1: Calculus of pluralistic homophily of a network and its nodes. a) A network
with 7 nodes (filled with different colors to differentiate the number of member-
ships of each node) and 3 detected communities in shaded colors (c1:green, c2:sky
blue, c3:brown). b) A table that calculates the pluralistic homophily hv for every
node vi in the network with its respective number of memberships mv. c) Cal-
culus of the pluralistic homophily for the entire network. We can see the result
is equal to the sum of all local pluralistic homophily hv from the table.

3 Methodology

We performed a series of experiments to analyze the behavior of pluralistic ho-
mophily in six datasets containing networks and communities related to them.
To calculate pluralistic homophily, we used the equation 1 presented above.
In addition, we calculated the local pluralistic homophily of each node in the
networks using the equation 2. We used these resulting measures to generate
complementary cumulative continuous distribution (CCDF) plots that allowed
us to analyze what distribution follows these data for each dataset. We also
compare the behavior of pluralistic homophily with what we have called simple
homophily, which is based on the degree of the nodes. This comparison is relevant
as it allows us to understand better the role of pluralistic homophily in network
structure and how it differs from other measures of homophily. In particular,
we expect to find that pluralistic homophily highlights clustering patterns in
communities that are not evident in simple homophily. We also expect evidence
of the behavior of local pluralistic homophily versus the node membership and
node degree. This is useful to understand how pluralistic homophily behaves in
some hubs (nodes with high degrees) and in peripherical nodes (nodes with low
degrees).

3.1 Datasets

For our study, we selected six data sets of real-world networks and their respec-
tive communities: Stackoverflow (SO), DBLP, Amazon Product, Livejournal,
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Youtube, and Orkut. SO is a collaborative network for questions and answers
on programming and related topics. The SO network is reconstructed by users
as nodes, and the edges are the questions that are asked or answered between
them. Communities in this network were generated using the HLC community
detection algorithm [10]. These communities reflect, through questions that have
been tagged with technology topics, common and correlated interests that are ad-
dressed in the interaction between the members of said communities. An overlap
between those communities occurs when a user belongs to several communities,
given their interest in multiple technologies. The other networks are Livejour-
nal, an online blogging community; Orkut, an online social network; Youtube, a
video-sharing website; All of them are considered social networks in which users
are represented as nodes, and the edges represent the explicit relationships es-
tablished between them. These networks allow users to form groups that other
members can then join. These groups are the communities, and overlapping hap-
pens when a user belongs to more than one group. The two last networks are
Amazon and DBLP. In the former, every product is a node, and the edges are
formed between them when they are bought together. Product categories de-
fine the communities. And latter is DBLP, where authors are the nodes, edges
mean coauthoring between them, and each magazine and conference where they
publish defines a community. All network datasets5, except SO, with their re-
spective ground-truth communities, are publicly available at [11]. The choice of
these datasets and their source provides high reliability in the data to be used
in our experiments as well as the possibility of comparing them with the works
of other authors who have also been using them extensively.

Table 1 shows basic characteristics and measures for the datasets. In sum-
mary, we include three networks considered collaborative and the other three
considered social networks, each with different characteristics in terms of size,
structure, and methods used to define their communities. This will help us gain
a better understanding of pluralistic homophily behavior across diverse contexts.

The table presents the characteristics of the networks. Generally, we observe
that these datasets differ in size, i.e. in the number of all nodes, links, and com-
munities they exhibit. Also, we present the values of pluralistic homophily h and
homophily by degree r (also known as degree assortativity) on which we will go
into more depth in the next section. According to the size of the networks, SO,
DBLP, and Amazon could be considered medium-sized. The rest are large-size.
Values of average degree ⟨d⟩ are consistent with the size of the networks, except
for the Youtube network where there is a low ⟨d⟩ compared with the others of
similar size. With respect to the properties of the communities, we can observe
three kinds of community sizes: Small ones such as DBLP and Youtube, medium
as SO and Amazon, and large ones such as Livejournal and Orkut. These com-
munity sizes are consistent with the size of the networks, except again for the
Youtube network where the community size is more like that of small networks.

5 Dates from datasets are shown on the SNAP web page except for SO which was
downloaded from the site https://archive.org/details/stackexchange and communi-
ties generated until 2021.
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Dataset Network Properties Community Properties Assortativity Measures
N E ⟨d⟩ K ⟨m⟩ h r

StackOverflow 790.458 1.872.715 4.76 115.969 1.85 0.0332 −0.0381
DBLP 317.080 1.049.866 6.62 13.477 2.27 0.2166 0.2665
Amazon 334.863 925.872 5.53 75.149 6.78 0.4887 −0.0588
LiveJournal 3.997.962 34.681.189 17.35 664.414 1.79 0.2132 0.0451
Youtube 1.134.890 2.987.624 5.26 16.386 0.11 0.0647 −0.0369
Orkut 3.072.441 117.185.083 76.28 6.288.363 34.85 0.2335 0.0158

Table 1: Comparison of network and community properties, as well as assorta-
tivity measures, for six different datasets. N : number of nodes, E: number of
edges, ⟨d⟩: average node degree, K: number of communities, ⟨m⟩: average num-
ber of community memberships per node, h: pluralistic homophily coefficient, r:
degree assortativity coefficient.

The average number of community memberships per node ⟨m⟩, a value intrin-
sically related to the pluralistic homophily seems not to be directly related to
network size. For example, while Amazon’s network has the second largest ⟨m⟩,
Livejournal network has one of the smallest, despite the latter having a network
size ten times the former. We then have different values of ⟨m⟩ independent of
the size of the network, which provide us with a solid base in the data sets to
explore the behavior of pluralistic homophily in the conducted experiments.

4 Results

We present the results of the local pluralistic homophily analysis conducted on
each of the six datasets described earlier. We calculated the entire pluralistic
homophily of each network and the local pluralistic homophily for all nodes
belonging to any related community. Notably, as we can see in table 1 pluralistic
homophily h displays positive values across all datasets, contrasting with the
mixing results of assortativity by the degree r that show some negative ones.
DBLP, Amazon, Livejournal, and Orkut show pluralistic homophily h > ε, while
the other networks, SO and Youtube do not, |h| < ε, having as ε the same value
defined for the toy example above. Relating to assortativity by degree r, only
the DBLP network shows assortative mixing, the others non-assortative. This
is the only network that shows assortative mixing in both h and r as we have
shown in the table 1. None shows disassortativity in both measures for the entire
network. These very varied results in the correlation between h and v, suggest
that overall at the level of the entire network, there may not be a uniform direct
relationship between the tendency of nodes to connect with nodes of the same
degree with the tendency of those nodes to connect with nodes that share the
same communities. Regarding that both the quantities related to the size of the
input data sets (N , E and K) and also to the average values (⟨d⟩ and ⟨m⟩)
influence the value of h and r respectively, we can see that there is no obvious
correlation either.
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Results at the entire network level contrast with the results at the local
level. To visualize the results of how is the tendency of nodes to link with others
with the same m we calculate the distribution of local pluralistic homophily.
Before interpretation of when a node exhibits pluralistic homophily or not, we
set ε = 0.1 · 10−5, a very small value. We must take into account as noted above
that h =

P
hv, so given the significant difference in the number of nodes v

between the toy example (shown above) and the real networks, it is necessary
to apply a scaling factoring to ε of −5 which is related to the size difference
between the networks. The rationale behind applying a scaling factor to ε of −5
is related to the difference in network size. As the magnitude of ε values varies
with the network size, we need to adjust ε to account for this difference and
ensure meaningful comparisons between networks. When scaling up or down the
network size by an order of magnitude of 10 (e.g., from a small network to a
large network), ε values need to scale proportionally to maintain consistency in
measuring pluralistic homophily. Applying a scaling factor of −5 means dividing
the original value of ε by 105, ensuring that the adjusted value of ε is suitable
for the scale of the network under consideration. This scaling procedure allows
us to compare the local pluralistic homophily values across different-sized net-
works effectively, enabling a fair assessment of the tendencies of nodes to exhibit
pluralistic homophily. By considering the scaling factor, we account for the size
discrepancy and ensure that the interpretation of pluralistic homophily remains
consistent across diverse network sizes

We show then, the complementary cumulative probability distribution func-
tion (CCDF) of the local pluralistic homophily for each network (see figure 2).
The ”S” shaped curves present in all CCDF figures indicate a distribution with
a high probability of low values, followed by a decreasing probability as values
increase, and then a long tail to the right that indicates the presence of extreme
values. The initial part of the curve indicates that there are many nodes in the
network with low local pluralistic homophily, while the final part of the curve
indicates that there are a small number of nodes with high local pluralistic ho-
mophily. The abrupt decrease in probability close to zero indicates an inflection
point in the distribution, which coincides with the value determined for ε and
can be interpreted as a threshold from which local pluralistic homophily begins
to increase significantly. The presence of extreme values may be indicative of
nodes or groups of nodes in the network (hubs) that have extremely high or
low local pluralistic homophily, which may be important for understanding the
overlap of communities and their relationship with the structure of the network.
Note for instance that, in the case of DBLP and Amazon such a decrease at a
certain threshold is not so pronounced, maybe there are additional factors at
play that influence the distribution as the node degree. In order to approach a
better understanding of these patterns, we present the next figure.

We created scatter plots showing the relationship between a node’s degree d
and its local pluralistic homophily hv, as well as between d and the number of
communities it belongs to, denoted as mv. Each dot in the scatter plot represents
a node v in the network (see figure 3). We colored the dots according to whether
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Fig. 2: CCDF local pluralistic homophily for each dataset. The x-axis range in
each subplot is deliberately narrow, from −1 ·10−5 to 1 ·10−5, to provide a close-
up view of the hv values at that level. It is important to note that the narrow
x-axis range does not necessarily indicate a low tendency of nodes to be linked
but rather serves the purpose of zooming in on the figure for better visualization
of the localized hv values. The red vertical dotted lines denote the range value
of hv to be considered as non-assortative as |ε| < 0.1 · 10−5.

the mv value is low or high. At first glance, the figures show different patterns
but looking in detail there are similarities between some of them that can reveal
interesting findings. For instance, the dispersion of points looks much larger in
some networks as dv increases. This is most evident at DBLP and Amazon.
It can also be noted that this dispersion is marked by the value of hv taking
the zero value on the y-axis as the initial point of said dispersion, which is less
accelerated in Livejournal and Orkut, and a little less observable in SO.

We observed that, as the degree of the node dv increases, the points become
more dispersed. However, it is important to note that these observations are
based on a sample rather than the entire population. While we did not observe a
significant trend in the proportion of low and high values of mv across all figures,
suggesting that the distribution of mv may not be strongly correlated with the
degree of the node, further statistical analysis is needed to establish a conclusive
relationship. It is worth noting that in the DBLP dataset, there appears to be a
potential trend of more high values of mv beyond a certain value of dv, while in
the SO dataset, the opposite trend is observed, with lower values of mv after a
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certain point. For now, this is an initial analysis that requires going further to
determine the statistical significance of the relationships.

Fig. 3: A scatter plot of node degree dv versus pluralistic homophily h, with the
number of community memberships per node mv represented by dot colors. A
random sample of 100,000 nodes is plotted. In this representation, darker shades
of blue indicate higher values of mv, while brighter shades of red indicate lower
values of mv. Please note that the x-axis limits vary in each figure, with the
range set from 0 to σdv

+ 10 standard deviations of dv. The sample selection is
based on a random sampling approach, ensuring an unbiased representation of
nodes in the network.

In our analysis, we aim to examine the relationship between hv and mv and
identify patterns in the distribution of nodes across the scatter plots. Specifi-
cally, we investigate the concentration of nodes with high hv and low hv values
and how they relate to mv. We examine the behavior of average mv values in re-
lation to hv and how these values are represented in the scatter plots. To better
understand this relationship, we analyze different regions of the scatter plots.
We observe that, on average, mv values rise until reaching a certain point, which
corresponds to the average values of mv. This behavior occurs similarly at low
values of hv. However, in this case, an inverse behavior seems to emerge, indi-
cating a different relationship between hv and mv. By conducting a thorough
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analysis and examining the scatter plots, we aim to gain insights into the spe-
cific trends and relationships between hv, mv, and the distribution of nodes. This
analysis will provide a more comprehensive understanding of the interplay be-
tween these variables and their implications within the network. The patterns in
the figure show similarities between a group of networks comprising SO, DBLP,
and Amazon, versus a second group comprising the Livejournal, YouTube, and
Orkut networks. In the first group, the nodes with the highest pluralistic ho-
mophily start at the first values of dv, but as we move along their x-axis, these
values tend to decrease. However, at some point on the said axis, the high values
of hv begin to appear rapidly in nodes with low mv, and then surprisingly rise
again until reaching the average values of mv. This behavior occurs similarly
at low values of hv. However, in this case, it seems an inverse behavior, that is,
they start with low values of mv first and then increase as the degree of the node
increases. In the second group of networks, the patterns are different from the
networks in the first one. In this case, the high values of pluralistic homophily are
in nodes with low mv while the low ones are in higher proportion in nodes with
high values of mv. This is maintained along the x-axis however with a greater
spread of points as dv increases, forming a kind of ”comet” going left to right on
such axis. In general, the networks in the first packet exhibit a great dispersion
on the pluralistic homophily of the nodes with a relatively low degree dv, while
the second one show that the dispersion along moves all the node degrees. Also,
it could be said that the areas with a high density of values of hv under the ε
range indicate that the nodes have a greater diversity in terms of connections
with nodes of a different number of community membership, i.e. they link to
other nodes indistinctly if share the same number of community memberships.
On the other side, nodes with higher or lower values of ε indicate a greater ho-
mogeneity in the connections. We follow to discuss these findings according to
the type and characteristics of the networks analyzed.

5 Discussion

Our findings reveal interesting patterns in the behavior of local pluralistic ho-
mophily values across the analyzed networks. The distribution of these values
exhibits a bimodal shape, with two modes representing assortative and non-
assortative connections between nodes. However, in the Amazon and DBLP
networks, we observe a slightly higher number of nodes connecting with oth-
ers who share a similar number of community memberships. This suggests that
areas with the highest and lowest overlapping of communities exhibit a compa-
rable density of nodes. This behavior may be influenced by the network type,
as both Amazon and DBLP networks are informational in nature. In contrast,
social networks display different behavior. The most connected nodes, or hubs,
in these networks, exhibit high and low levels of overlap, belonging to multiple
or few communities. Interestingly, this does not seem to significantly affect the
proportion of nodes belonging to many or few communities.
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The shape of the local pluralistic homophily distribution provides insights
into the presence or absence of specific homophily patterns in the network. In
information or collaboration networks, nodes are more likely to connect with
others who share their interests or work areas, resulting in a greater similarity in
the number of communities they belong to. In social networks, on the other hand,
the diversity of interests and connections tends to be higher, explaining the con-
centration of the cumulative distribution around zero. The greater heterogeneity
in the number of community memberships in social networks leads to a wider
dispersion of local pluralistic homophily values. Surprisingly, we did not find a
clear relationship between network size and the local pluralistic homophily ex-
hibited by its nodes. Instead, our results indicate that this relationship depends
more on the network type and its structural characteristics. Different patterns
emerge, indicating a varying tendency for nodes to connect with others having
the same level of overlap. We also observed distinct patterns between the number
of connections and memberships of nodes in specific areas of the networks.

These observations highlight the unique behavior of pluralistic homophily
and its potential applications in network analysis. It is evident that the behavior
of pluralistic homophily carries significant value in understanding network dy-
namics and uncovering underlying social phenomena. However, further research
is needed to delve deeper into the specific mechanisms driving these observations
and explore their implications in different contexts.

6 Conclusions and Future Work

We have presented a measure that serves to estimate the tendency of nodes
to connect with others that share a similar level of overlap, that is when they
are members in similar numbers of various communities. Our experiments have
shown what is the relationship between the said level of overlap with the degree
of the nodes in the network. Likewise, despite the fact that networks can exhibit
a general behavior in this sense, this is different from what is presented at the
level of each node, and this varies depending on where such node is located in
the network structure. A measure is then presented which allows us to consis-
tently estimate the pluralistic homophily of an entire network and at the level
of each node present in it. We consider this as an important contribution to the
discussion of assortativity in general since assortativity based on the overlapping
of communities allows for analysis different from the widely explored assortativ-
ity based on the degree of nodes. This leads us to think about possible future
works, such as the use of the local pluralistic homophily measure in methods for
various applications, such as the prediction of the properties of a given node or
the prediction of links between nodes in a network. These methods range from
the use of distance-based algorithms as a weight in the similarity between nodes
and links, as well as the construction of feature representation vectors to be used
in machine-learning models to make such predictions.
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