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Abstract This paper addresses the estimation of the

specific production rate of intracellular products and the

modeling of the bioreactor volume dynamics in high cell

density fed-batch reactors. In particular, a new model for

the bioreactor volume is proposed, suitable to be used in

high cell density cultures where large amounts of intra-

cellular products are stored. Based on the proposed volume

model, two forms of a high-order sliding mode observer are

proposed. Each form corresponds to the cases with residual

biomass concentration or volume measurement, respec-

tively. The observers achieve finite time convergence and

robustness to process uncertainties as the kinetic model is

not required. Stability proofs for the proposed observer are

given. The observer algorithm is assessed numerically and

experimentally.

Keywords Observer � Sliding mode � High cell density �
Estimation � Volume model

Introduction

High cell density (HCD) processes constitute a class of

bioprocesses with many obstacles for the direct application

of standard control and estimation solutions. To begin with,

sensing variables in the bioreactor is more difficult than in

other process: the use of online optical density is nearly

impossible because of the opacity of the media. In many

cases, the amount of foam is excessive, which troubles

standard-level measurements used to compute the volume.

Also, substrate measurements are difficult in many waste

treatment processes, due to its variable composition and

impurities. Another issue present in HCD processes is that

the volumes of both the biotic and abiotic phases are sig-

nificant to the overall volume, especially if an intracellular

product is being produced. In these cases, integrating

media culture flow rates ceases to be an accurate method to

estimate the bioreactor volume. Better models are needed

to estimate the culture volume taking into account the

volume of the living components.

Bioprocesses for waste treatment and removal are well-

known high cell density processes. Moreover, many kinds

of fermentations can be performed to obtain high added

value products from residues mainly produced by the

industry, such as glycerol, sugarcane mash and wastewater.

For example, Polyhydroxybutyrate (PHB) is a biodegrad-

able polymer suitable for thermoprocessing applications

[21] that can be obtained from different carbon sources

such as glycerol coming from biodiesel industry, using for

instance the bacteria Cupriavidus necator [15, 16]. PHB is

an intracellular product and can be produced mainly in a

non-growth-associated manner and reach levels of 90% of

cell dry weight [21]. The non-growth-associated process

has two phases; in the growth phase, a vast quantity of cells

is produced while hardly any PHB is generated due to
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unfavorable medium conditions. In the production phase,

PHB generation is stimulated by stopping cell proliferation

and letting the nitrogen source deplete completely. To

obtain great quantities of product in short times, a high cell

concentration needs to be achieved in the growth phase.

Another example of HCD process is lipid production to be

later used for biodiesel production by transesterification.

Research has been done on the use of microalgae and

yeasts such as Rhodosporidium toruloides to produce lipids

[11, 18, 26], as before, high productivities require large cell

concentrations, and the production of the lipid can be done

in a non-growth-associated manner. These HCD processes

and others share some common characteristics like non-

growth-associated intracellular product storage and large

product to biomass ratios (large biotic volume). Also, high

productivities are always pursued. More examples of high

cell density processes are covered in [22].

As mentioned above, one of the main obstacles met

when using wastes as substrate for fermentations is the

presence of impurities combined with composition vari-

ability and uncertainty. For this reason, standard control

methods like exponential feeding may become ineffective

and far from optimal. In cases where the microorganism

growth or productivity is inhibited by the excess of some

substrate (Haldane like kinetics), suboptimal operation

and even instabilities can show up [2]. A method to solve

this shortcoming is the implementation of closed-loop

controllers to feed the reactor depending on the actual

state of the process. For example, if the objective was to

maximize the productivity of a certain product or to keep

a given production rate, the ideal solution would be to

define the substrate feeding rate based on the production

rate (feedback control or closed loop control). The same

concept applies for growth rate regulation [3, 5]. The

process rates hold important information about the pro-

cess state; their knowledge is not only important for

control but also for monitoring, i.e., fault detection,

physiological studies and operating point verification. The

most important restriction regarding closed-loop process

control and monitoring is that growth and production rates

cannot be measured directly by any sensor. Moreover,

their determination from the measurement of any process

concentration involves differentiation with respect to time

which typically amplifies the measurement noise.

The lack of reaction rate measurement can be overcome

with software sensors. In this field, state observers allow

estimating unknown variables of the process with an error

decreasing with time, using previous knowledge of the

process behavior (a model), inputs and measured outputs.

Depending on the case, exponential and asymptotic obser-

vers are the most widespread structures [6, 8]. One of the

main characteristics of these observers is the asymptotic

convergence of the error. In the case of the asymptotic

observers, the response is often slow and cannot be tuned by

design; thus a good initial estimate is needed. In the expo-

nential case, the speed can be adjusted by design; however,

high speeds may lead to bad noise or perturbation rejection.

Another issue present in these observers is that variations in

the estimated rate appear as perturbations that cannot be

rejected, i.e., the error converges to a bounded neighborhood

around zero. Another class of observer are the sliding-mode

(SM) observers, where a discontinuous signal is used as a

correction term for the model prediction. These observers do

not introduce additional dynamics to the estimation and have

a better performance with regard to convergence speed and

disturbance rejection than the exponential ones. Also, the

convergence is obtained in finite time, which is important

because the processes usually have a limited duration. A

distinction can be made between the first- and high-order

SM observers. Both share the previous advantages with the

difference that when used for growth or production rate

estimation, the estimated rate obtained by the first-order

observer is discontinuous. Then, it is necessary to filter it and

additional dynamics are nevertheless introduced [20]. High-

order SM observers aremore advanced algorithms and allow

obtaining a continuous estimation for the growth and pro-

duction rates [4, 17, 25]. An important strength of these

observers is that there is no tracking error against bounded

changes in the variable being estimated.

The construction of proper estimation algorithms for

HCD processes is complicated by the lack of proper vol-

ume models. Common practices like integrating the flow

rate to obtain the accumulated volume are invalid in this

case. Early proposals like [24] suggest that cell volume

should be accounted in HCD processes for broth volume

calculation. In [23], biomass estimations and a volume

model are proposed making use of gas analysis equipment

and a uniform density of the bioreactor broth is assumed. In

[7], biomass concentration estimations are also made by

means of dielectric spectroscopy and gas analysis. In [8], a

switched observer scheme is proposed for growth rate

estimation in high cell density PHB production processes

addressing biomass measurement issues.

In this article, a dynamical model for the bioreactor

volume in HCD processes is proposed, which accounts for

the volume of the cells and product in the bioreactor and

the densities of the liquids being mixed. Then, a high-

order sliding mode (HOSM) observer is proposed to

estimate the production rate in HCD processes exploiting

the information given by the volume changes in the

bioreactor. First, in Sect. 2, a model is proposed for the

volume variations in relation to the production rate. Then,

two versions of an HOSM observer are proposed in Sect.

3 to estimate the production rate along with stability

proofs. Simulation and experimental results are shown in

Sect. 4.
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Model development

Process model under unbalanced feeding

Unbalanced feeding conditions are used in many processes

to boost the production of a given product. For example,

PHB production using the bacteria C. necator is enhanced

under nitrogen starvation conditions that results in no

growth at all [15, 16]. The same technique has been used in

lipids production for second-generation biodiesel industry;

with yeast such as Rhodosporidium toruloides, nitrogen

starvation boosts production and again prevents growth

[11, 18, 26]. Keeping these examples in mind, the process

model can be stated for the cases where unbalanced feeding

is used during the production stages. Then, for the next

steps, it is considered that nitrogen starvation is used to

enhance production and that as a result there is no growth.

In this work, residual biomass is defined as the fraction of

total biomass that is not the product, namely cell structure,

organelles and cytoplasm. If nitrogen starvation is applied

and there is no growth, the amount of residual biomass

remains constant for the rest of the process:

Assumption 1 _X ¼ 0 and X ¼ Xðt0Þ is a known constant.

The simplified chemical reaction is:

s ! ypsp

and the dynamical model for this condition in terms of the

total masses of residual biomass, carbon source and pro-

duct is1:

_X ¼ 0 ð1Þ

_P ¼ lpsX ð2Þ

_S ¼ �
lpsX

yps
þ Fssf ; ð3Þ

where uppercase X, S and P are the total masses of

residual biomass, carbon source and product in the

bioreactor, lps is the non-growth-associated production

rate, yps is the carbon source to product yield, Fs is the

feeding flow rate and sf is the carbon source concentration

in the media reservoir.

Volume model

In this section, a novel approach is proposed for modeling

the bioreactor volume dynamics in high cell density fed-

batch processes. It is considered that in the process, a

carbon substrate is fed to the bioreactor to produce residual

biomass and an intracellular product. The volume

variations are considered as the result of the contribution of

three separate sources, the addition of substrate medium to

the bioreactor, the substrate consumption and the accu-

mulation of the product. Finally, a simplified model is

obtained under the assumption that carbon source con-

centration is kept constant with an appropriate control. The

simplest model for the volume dynamics of a fed-batch

process states that the volume change is equal to the flow

rate of liquids pumped into the bioreactor:

_V ¼ F: ð4Þ

Although this model is accurate enough for many applica-

tions, it is inexact for the cases studied in this work, mainly

because of the high cell density and the large amounts of

intracellular product. To begin with, the density of the pro-

duct is not equal to the density of the substrate consumed for

its production. Moreover, the fed substrate is consumed

quickly by the vast amount of cells; thus, it may be fed at a

concentration sf much higher than the desired concentration

sr inside the bioreactor to avoid large volume changes or

dilutions. This introduces another density change between

the fed media and the bioreactor media. Secondly, since a

large amount of intracellular product is stored, the size of the

cells must increase accordingly. For example, it has been

shown that C. necator increases its volume proportionally to

the intracellular PHB content [19]. Hence, the volume of the

cells may affect the volume changes of the process. Then, as

the product is contained inside the cells and is not dissolved

in the medium, the total volume is the sum of the medium

volume Vm and the cells volume Vc:

V ¼ Vm þ Vc; ð5Þ

and differentiates with respect to time

_V ¼ _Vm þ _Vc: ð6Þ

Since there is no cell proliferation, the change in the cell

volume is equal to the change in the product volume Vp,

which can be obtained as

_Vc ¼ _Vp ¼
_P

qp
; ð7Þ

where qp is the product density. Then, replacing (2) in (7),

_Vp ¼
lpsX

qp
: ð8Þ

This term is significant as long as the quantities of product

stored in the cells are large and comparable to the medium

volume change _Vm.

The second term of (6) is the medium volume change,

which can be obtained from the mass balance in (3).

Defining the carbon source concentration as the total car-

bon source mass over the medium volume1 The dot operator � indicates time differentiation.
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s ¼ S

Vm

ð9Þ

) _S ¼ _sVm þ s _Vm ð10Þ

and replacing (10) in (3),

_sVm þ s _Vm ¼ �
lpsX

yps
þ Fssf ð11Þ

) _Vm ¼ �
lpsX

syps
þ Fs

sf

s
� Vm

_s

s
: ð12Þ

Then, assuming that the carbon source concentration in the

media is being adequately regulated at a constant value, the

last term of (12) can be neglected, because _s ¼ 0 and the

carbon source concentration is constant and equal to the

reference value s ¼ sr:

_Vm ¼ �
lpsX

sryps
þ Fs

sf

sr
: ð13Þ

Finally, the volume dynamic model is obtained by

replacing (8) and (13) in (6)

_V ¼ Fs

sf

sr
�
lpsX

sryps
þ
lpsX

qp
; ð14Þ

where all the parameters involved are referenced in

Table 1. It can be noticed that the volume model (14)

accounts for the contribution of the media flow rate, the

carbon source consumption and the product formation

(first, second and third terms, respectively).

The following constants are defined:

c ¼ sf

sr
ð15Þ

m ¼ � 1

sryps
þ 1

qp
: ð16Þ

Then, the model (14) reduces to:

_V ¼ Fscþ lpsmX: ð17Þ

Remark 1 It is possible to obtain a model with the same

structure as (14) and (17) by calculating the volume of the

media in the bioreactor using the partial molar volumes of

water and the carbon source being used. This approach is

equally valid, but requires the knowledge of more param-

eters (densities and partial molar volumes).The assumption

that carbon source concentration is constant is also neces-

sary, since partial molar volumes are functions of that

concentration.

Model reduction

As the total residual biomass X is constant and known

throughout the production phase, it is convenient to

redefine the volume in terms of residual biomass concen-

tration or conversely depending on which one is measured

online. This reduces the number of variables in the model

and makes the observer formulation easier. The residual

biomass concentration is defined as:

x ¼ X=V: ð18Þ

Then, differentiating (18) and replacing (1),

_x ¼ �Dx ð19Þ

D ¼ _V=V: ð20Þ

Note that although the dilution rate D is usually defined as

the quotient of the flow rate over the volume, in this work a

more general definition (20) has been used.

Carbon source and product concentrations can be

obtained in the same way. The concentrations are defined

as

Table 1 Model parameters

Name Description Units

X Residual biomass mass (g)

S Carbon source mass (g)

P Product mass (g)

x Residual biomass concentration (g/l)

s Carbon source concentration (g/l)

p Product concentration (g/l)

Fs Carbon source flow rate (l/h)

sf Carbon source concentration in the reservoir (g/l)

sr Carbon source concentration regulated by control (g/l)

qp Density of the product (g/l)

lps Specific production rate (1/h)

yps Carbon source to product yield (g/g)

V Volume of the bioreactor content (l)

Vm Volume of media in the bioreactor (l)

Vc Volume occupied by cells (l)

Vp Volume occupied by product (l)

D Dilution rate (1/h)

c Parameter of the proposed volume model

m Parameter of the proposed volume model (l/g)

x̂ Estimated residual biomass concentration (g/l)

l̂ps Estimated specific production rate (1/h)

r Proposed sliding function

~x Residual biomass concentration estimation error (g/l)

~lps Specific production rate estimation error (1/h)

a Gain of the proposed observers

b Gain of the proposed observers

�q Bound for _lps

fphb Intracellular PHB content ratio (Sect. 4) (g/g)
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p ¼ P

V
ð21Þ

s ¼ S

Vm

; ð22Þ

and differentiating with respect to time

_p ¼ lpsx� Dp ð23Þ

_s ¼ �
lpsX

ypsVm

�
_Vm

Vm

sþ Fs

Vm

sf : ð24Þ

Finally, in the case that residual biomass concentration x is

measured, the volume and dilution are determined as

V ¼ X

x
ð25Þ

D ¼ Fscx
X

þ lpsxm; ð26Þ

which replaced in (19) give the residual biomass model:

_x ¼ � Fsc
X

þ lpsm

� �
x2: ð27Þ

In the scenario in which volume is the measured variable,

biomass concentration can be determined as in (18) and the

volume model is the one given in (17):

x ¼ X

V
ð28Þ

_V ¼ Fscþ lpsmX: ð29Þ

From these equations, the production rate observer can be

designed for each case.

Proposed observer

In this section, an HOSM observer is proposed to estimate

the specific production rate of the process. The proposed

observer is a reformulation of the super-twisting algorithm

[9] to account for the specific nonlinearities of the process

under study.

The observer is presented in two different forms

depending on which variable is measured online, residual

biomass or volume. The following assumptions are made:

Assumption 2 The coefficients m and c are known.

Assumption 3 The production rate derivative can be

bounded: j _lpsj\�q:

The first assumption depends on the modeling of the

process and knowledge of the densities and concentrations;

however, some errors are admissible and stability is never

compromised. The second assumption states that the

kinetic model is unnecessary for the observer, and it is only

required to know a bound of how fast the rate can change.

Observer for the case with residual biomass

measurement

The first form of the observer is for the scenario in which

residual biomass concentration can be measured indepen-

dently of the accumulated product; see for instance [10,

13].

First, Eq. (27) is rewritten as:

_x ¼ �mlps þ f ðx; tÞ
� �

x2; ð30Þ

where f ðx; tÞ ¼ � Fsc
X

is a function of the input.

The proposed observer equations are:

_̂x ¼ �ml̂ps þ f ðx; tÞ � �qmð Þ2bjrj
1
2 signðrÞ

� �
x̂2

_̂lps ¼ �qa signðrÞ
r ¼ �qmð Þ�1

x�1 � x̂�1ð Þ; ð31Þ

8>><
>>:
where x̂ and l̂ps are the estimated residual biomass and

production rate, respectively, a and b are design gains, �q is

the bound for the production rate derivative and r is the

sliding function. Usually, the sliding function is defined as

the estimation error in the measured variable x� x̂; how-

ever, in this work a different function is proposed to

account for the particular nonlinearities of the process and

ensure the stability of the estimate.

Stability analysis

The stability proof for this observer is performed in two

steps. First, a polytopic linear differential inclusion (PLDI)

that covers all the possible error trajectories is defined.

Second, the stability of the PLDI is obtained in the sense of

Lyapunov for a set of gains a and b.
The estimation errors are defined as ~x ¼ x� x̂ and

~lps ¼ lps � l̂ps; then by differentiation and replacing (27),

(31) the error equations are obtained:

_~x ¼� mðlx2 � l̂x̂2Þ � f ðx; tÞ x2 � x̂2
� �

þ �qmx̂2
� �

2bjrj
1
2 signðrÞ:

ð32Þ
_~lps ¼ _lps � �qa signðrÞ: ð33Þ

Proposition 1 If the change of coordinates

n ¼ �qjrj
1
2 signðrÞ
~lps

" #
ð34Þ

is applied to Eqs.(32) and (33), it can be concluded that

_n ¼ �q
jn1j

AðtÞn AðtÞ 2 A; ð35Þ
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where A is a polytopic linear differential inclusion (PLDI):

A ¼ convðA1;A2Þ

A1 ¼ �b 1=2
�aþ 1 0

� 	

A2 ¼ �b 1=2
�a� 1 0

� 	 : ð36Þ

Proof First, from Eq. (34), n1 is differentiated:

_n1 ¼ �q
1

2
jrj�

1
2 signðrÞ _r signðrÞ þ 0

� �
¼ �q

2jrj
1
2

_rð Þ:

Next, by differentiating r in (31) and replacing:

_n1 ¼
�q

2jrj
1
2

~l
�q
� 2bjrj

1
2 signðrÞ

� �
¼ 1

jrj
1
2

~l
2
� bn1

� �
:

Then, by replacing jn1j ¼ �qjrj
1
2:

_n1 ¼
�q

jn1j
~l
2
� bn1

� �
:

Second, n2 from Eq. (34) is differentiated:

_n2 ¼ _l� �q a signðrÞ ¼ �q signðrÞ _l
�q signðrÞ � a

� �
:

Since �q is the bound for _lps, the first term in the parenthesis

can be replaced by a parameter U 2 ½�1; 1�:

_n2 ¼
n1

jrj
1
2

U � að Þ ¼ �q
jn1j

U � að Þn1:

Finally, the following system is obtained:

_n ¼ �q
jn1j

�b 1=2

U � a 0

� 	
n:

h

A PLDI is said to be quadratic stable if there exists a

Lyapunov quadratic function VðnÞ ¼ nTPn, P � 0 that

decreases along every nonzero trajectory [1], i.e., _VðnÞ\0.

A necessary and sufficient condition for that is

P � 0; AT
i Pþ PAi � 0 8i ¼ 1; 2; ð37Þ

which is verified in:

_VðnÞ ¼ �q
jn1j

nT AðtÞTPþ PAðtÞ
� �

n\0: ð38Þ

Note that �q
jn1j is positive, then the Lyapunov function will

decrease as long as (37) holds.

The problem can be translated into a generalized

eigenvalue problem [1] by rewriting the PLDI matrices:

A1 ¼ bA0 þ A0
1; ð39Þ

A2 ¼ bA0 þ A0
2; ð40Þ

A0 ¼
�1 0

0 0

� 	

A0
1 ¼

0 1=2

ð1� aÞ 0

� 	
A0
2 ¼

0 1=2

ð�1� aÞ 0

� 	
:

ð41Þ

Then, for different values of a[ 1; the objective is to

search for the minimum b gain for which quadratic stability

is achieved:

P � 0

ðA0T
1 Pþ PA0

1Þ þ bðAT
0Pþ PA0Þ � 0

ðA0T
2 Pþ PA0

2Þ þ bðAT
0Pþ PA0Þ � 0:

8<
: ð42Þ

Problem (42) is quasi-convex and can be solved by

applying bisection on b and checking the feasibility of the

problem for every iteration. The numerical computations

were done with YALMIP software [12]. Figure 1 plots the

ða; bÞ pairs for which quadratic stability is guaranteed.

Remark 2 If the carbon source concentration is not well

regulated and changes throughout the process, an error is

introduced in the production rate estimation. In that case,

the error equation for the residual biomass can be obtained

from (6), (8), (12), (19) and (31):

_~x ¼
lpsx

2

ypss
�
l̂psx̂

2

ypssr
� x2

s
� x̂2

sr

� �
Fssf

X
þ Vm _sx

2

Xs

þ �qmx̂2
� �

2bjrj
1
2 signðrÞ:

ð43Þ

After convergence x ¼ x̂ and _~x ¼ 0, then it can be shown

that:

l̂ps ¼ lps
sr

s
þ 1� sr

s

� �Fssf yps

X
þ Vm _syps

X

sr

s
; ð44Þ

where it can be seen that the magnitude of the error

depends mostly on how different the carbon source con-

centration is from the desired value (sr
s
) and how fast the

carbon source changes.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

0.2

0.4

0.6

0.8

1

Fig. 1 Set of stable gains a and b
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Remark 3 Applying to (31) the map: rðx; x̂Þ;/ðlps; l̂psÞ
� �

with r defined as in (31) and /ðlps; l̂psÞ ¼ 1
�q ðlps � l̂psÞ,

the original super-twisting algorithm [9] can be obtained:

_r ¼ /� 2bjrj
1
2 signðrÞ

_/ ¼
_lps
�q

� a signðrÞ
:

8<
:
The stability of this system has been proven by a Lyapunov

approach in [14].

Observer for the case with volume measurement

A different structure for the observer is proposed in this

subsection for the scenario in which the volume is mea-

sured online. This case may be more appealing at an

industrial level, since there is a wide variety of level sen-

sors more frequently found in typical plants (capacitive,

conductivity, radar, IR, laser, mechanical sensors). The

stability analysis of the observer is similar to the previous

case and will be omitted.

Based on Eq. (29), the proposed observer equations are:

_̂
V ¼ Fsc� l̂psmX � �qmXð Þ2bjrj

1
2 signðrÞ

_̂lps ¼ �qa signðrÞ
r ¼ �qmXð Þ�1

V � V̂
� �

;

8><
>: ð45Þ

where V̂ and l̂ps are the estimated volume and production

rate, respectively, a and b are design gains, �q is the bound

for the production rate derivative and r is the sliding

function. As before, a map can be applied to obtain the

original super-twisting algorithm: rðV; V̂Þ;/ðlps; l̂psÞ
� �

where /ðlps; l̂psÞ ¼
lps�l̂ps

�q .

Remark 4 This observer behaves similarly to the one in

(31), particularly stability and finite time convergence still

apply. The difference is that the information is taken from a

volume measurement instead of the residual biomass con-

centration. This alternative can be advantageous in many

cases, because the biomass sensors required for the mea-

surement (capacitive probes) are very expensive and are

not always available, especially in the industry where

volume probes are very common.

Application example: PHB production

Polyhydroxybutyrate (PHB) is a bioplastic that can be

obtained by fermentation using the bacteria Cupriavidus

necator in a two-phase fed-batch reaction. It has been

shown that PHB production by this bacteria has a strong

non-growth-associated term and that nitrogen has a great

inhibiting effect on it [16]. For this reason, in the first phase

of the process, both nitrogen and carbon sources are fed to

the microorganism to stimulate growth without PHB pro-

duction. After reaching a large cell concentration, the

nitrogen source is let to deplete completely while keeping

the carbon source concentration at an optimal level.

Nitrogen starvation conditions favor PHB production and

at the same time halt cell proliferation; in this way, very

high product to residual biomass ratios can be obtained

[15]. In addition, there is evidence that cell volume

increases linearly with PHB content [19].These process

features make the proposed model and observer applicable

to this problem.

The process model for the PHB production phase is as

the one described in Eqs. (19)–(24), where x is the residual

biomass concentration, p is the PHB concentration and s is

the carbon source concentration (glucose in this example).

The model is obtained from the one described in [15, 16]

considering that there is no growth (lx ¼ 0) and feeding

the carbon source at an adequate flow rate to keep its

concentration nearly constant, and hence the production

rate. In [16], a model for the PHB productions specific rate

(lps) is given, which in this work is used to simulate the

process and to obtain the bound for _lps (j _lpsj � �q).

lps ¼ lmax
ps � s

ks þ sþ s2

kpis

� 1� fphb

fphbm

� �g� �
ð46Þ

fphb ¼
p

x
: ð47Þ

The variable fphb is called PHB content ratio and will be

later used in the experimental validation of the observer in

Sect. 4.2.

In both the simulation results and experimental valida-

tion, the observer (31) is used. Similar results are obtained

when using (45). Table 2 shows the values used in the

observer parameters.

Simulation results

In this section, simulation results using the models

described before are shown. Different process conditions

are simulated and shown in Fig. 2a, b, c and d. In each case,

the time evolution of the residual biomass x and its esti-

mation x̂ are shown in the top graph, the specific produc-

tion rate lps and its estimation l̂ps in the middle graph, and

the sliding function r in the bottom graph. Except for

Fig. 2b, real values of the variables (x and lps) are plotted

in dashed green lines and estimations in solid black lines.

In all cases, the carbon source was regulated at 12 g/l,

except for Fig. 2c where a bad regulation case is depicted.

The first simulation case is the observer response to

initial conditions without external disturbances and is

depicted in Fig. 2a. The initial conditions were
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x̂ð0Þ ¼ 46g=l, xð0Þ ¼ 47g=l, l̂psð0Þ ¼ 0h�1, lpsð0Þ ¼
0:086h�1. The most noticeable item is that both the

residual biomass and production rate estimations converge

in finite time to the real values (0.65 h, approximately), and

small boxes are included in the graphics to further detail

the convergence. As a consequence of the fact that no

additional dynamics are added to the system, the observer

keeps a perfect tracking after convergence and even while

the production rate is dropping (real and estimated curves

are overlapped when the tracking is good). The decay of

the production rate is due to the PHB auto-inhibition [16].

Also, from the bottom graph, it can be observed that once

the observer reaches the sliding surface (r ¼ 0) it never

leaves it, which also illustrates the already mentioned

tracking features. These are related to the fact that the

production rate model is treated as a disturbance, which is

completely rejected if the bound �q is correct.

Figure 2b shows the observer response when low-fre-

quency noise is added to the residual biomass measure-

ment. The noise concentrates most of the power in the band

between 2 h�1 and 10 h�1 (around 0.55 to 2:7� 10�3 Hz),

which results in variations of a few cycles per hour. The

initial conditions were x̂ð0Þ ¼ 47 g=l, xð0Þ ¼ 47 g=l,

l̂psð0Þ ¼ 0 h�1, lpsð0Þ ¼ 0:086 h�1. In the top graph, the

solid green line is the residual biomass measurement and

the dashed black line is the residual biomass estimation. In

the middle graph, the solid green line is the production rate

estimation and the dashed black line is the real production

rate. Although the measurement noise is inevitably present

in the estimation, particularly due to its low frequency, the

observer is still capable of tracking the real value under

these conditions. The noise rejection capabilities of the

observer are linked to the tuning of the gains a and b. In
this case, the gains are set so the residual biomass esti-

mation x̂ does not follow the variations produced by noise,

which are faster than the ones that are expected from the

microorganism. If a smoother estimation is needed, filter-

ing of the estimation or of the residual biomass measure-

ment can be used. Another alternative is to add a dead zone

to the signðrÞ function used in (31). Both alternatives gain

smoothness of the production rate estimate, but lose

tracking speed. Note that the noise in r is expected from

the fact that x̂ is purposely smoother than x, and the

amplitude increase at the end of the process is simply

because the noise amplitude remained constant while

residual biomass decreased significantly.

Figure 2c shows a case where carbon source concen-

tration s (blue dashed–dotted line in the top graph) is

fluctuating instead of being regulated at a constant value,

resulting in a variation on the production rate and a mis-

match between the real c and m parameters and the ones

used in the observer. The profile used to simulate the

variation is similar to many found in experimental cases,

but exaggerated to test the observer; see [15] for instance.

The initial conditions used are x̂ð0Þ ¼ 47 g=l,

xð0Þ ¼ 47 g=l, l̂psð0Þ ¼ 0 h�1, lpsð0Þ ¼ 0:089 h�1. It can

be seen that although the glucose concentration has a dif-

ferent value than the expected one, the error introduced in

the estimation is small, particularly for monitoring or

extremum-seeking control purposes. The magnitude of the

error in the production rate estimation is described in (44).

Finally, Fig. 2d depicts a case with sensor failures, to

show how the sliding function r is useful to detect such

events. The estimation made by an exponential observer

(l̂ps�exp) is additionally shown in blue dashed–dotted line

to compare with the one made by the proposed HOSM

observer (l̂ps�hosm). The initial conditions used are

x̂ð0Þ ¼ 47 g=l, xð0Þ ¼ 47 g=l, l̂ps�hosmð0Þ ¼ l̂ps�expð0Þ ¼
0 h�1, lpsð0Þ ¼ 0:086 h�1. Between 10 and 20 h, a constant

offset of 10 g/l appears in the residual biomass measure-

ment xm. From the top graph, it can be seen that both

observers track the measured biomass with similar speeds,

with the exponential observer estimation having some

overshoot (see small box). The production rate estimations

show similar perturbations when the offset starts and fin-

ishes; however, these are shorter in time in the case of the

HOSM observer. Also, some constant error is produced in

Table 2 Values of the parameters used in the simulations and

experimental validation

Name Description Value

yps Carbon source to PHB yield 0:3 g=g

lmax
ps Maximum PHB production rate 0:126 h�1

kps Kinetic parameter 16:5 g=l

kpis Kinetic parameter 80 g=l

g Kinetic parameter 7

fphbm Maximum PHB ratio 3.3 g /g

V(0) Initial volume 0.897 l

x(0) Initial residual biomass 47 g=l

Fs Carbon source flow rate 18:6ml=h

sf Carbon source concentration in the reservoir 650 g=l

sr Regulated carbon source concentration 12 g=l

qp Density of the product 1250 g=l

�q Bound for _lps 0.026

m Volume model parameter �277ml=g

c Volume model parameter 54.167

a Gain of the proposed observer 5.5

b Gain of the proposed observer 2.5
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the estimation while the offset exists; nevertheless, it is too

small to be noticed. At time 30 h, some spikes appear in the

biomass measurement xm with a peak of 20 g/l. The spikes

have a fast slew rate and could be caused by a sensor

malfunction or disconnection. In the case of the residual

biomass estimations, both observers present a smooth

oscillation; however, the HOSM observer estimation is

more damped. A stronger difference is seen in the

production rate estimation, while the exponential observer

produces a l̂ps�exp estimate with an excessively large

overshoot and slow response (see small box), the HOSM

observer produces an estimation l̂ps�hosm significantly

more damped and with faster convergence. While the offset

perturbation affects equally both observers, the perturba-

tion introduced by the spikes is much better rejected by the

HOSM observer. Last but not least, the sliding function in

(a) (b)

(c) (d)

Fig. 2 Simulation results: top graph, biomass. Middle graph, specific production rate. Bottom graph, commutation function
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the bottom graph can be used as a coordinate to detect

these kinds of failures. Each time one of the events hap-

pens, r escapes the surface (r 6¼ 0) and shows spikes as in

t ¼ 10h, t ¼ 20h and t ¼ 30h. The magnitude of the spikes

is not only an indicator of the failures, but also its duration

in time. By monitoring r; these abnormal effects can be

detected.

Experimental validation

In this section, experimental results are shown for the

observer when used with data measured in a real pro-

cess. In our experiments, the only variables measured

online are the carbon source flow rate and alkali solution

flow rate (for pH control) with a sample time of 1 min.

The residual biomass concentration was measured off-

line by taking samples every couple hours (the period

was between 1 and 5 h). To test the observer, a con-

tinuous residual biomass measurement is needed, at least

with a sampling time of a few minutes. Since this kind

of measurement was not available, to obtain a continu-

ous residual biomass signal, the off-line samples were

interpolated with first-order polynomials and sampled

with the same sampling time as the flow rates. The

observer algorithm was run with a frequency of 1 Hz.

The fed-carbon source was glucose at 650 g/l, and the

concentration in the bioreactor was regulated at a value

of 12 g/l. Each time a sample is taken from the biore-

actor, the total biomass weight decreases. This fact is

taken into account by adapting the X value at the cor-

responding time instant.

Figure 3 shows the results for two different experi-

ments. Figure 3a, c correspond to experiment A and

Fig. 3b, d correspond to experiment B. Figure 3a, b show

the observer variables for each experiment. In the top

graph, the time evolution of the residual biomass x (in-

terpolated samples) and its estimation x̂ is plotted in

dashed green and solid black line, respectively. The

middle graph shows the specific production rate estima-

tion l̂ps in solid black line and two reference values for

lps. The dashed green line is the production rate constant

value lset�point expected from the feeding profile used in

[15]. The red squares are another reference obtained by

differentiating the PHB to biomass ratio fphb ¼ p
x
(47)

which is equivalent to the production rate lps; see ‘‘Ap-

pendix’’. Note however, that the later should not be

considered as the real value or as good as a direct mea-

surement, since the differentiation amplifies noise and is

sensitive to measurement errors; moreover, it is calculated

over a few samples. The bottom graph shows the com-

mutation function r; the noise in this variable is due to

the discretization of the algorithm and it can be reduced

by simply increasing the frequency of execution. Both

experiments give good residual biomass estimations and

production rate estimations close to the references, and

also the sliding function r stays in the surface all the

time.

To further verify the goodness of the production rate

estimation, two open-loop2 estimations are shown Fig. 3c,

d. In the top graph the PHB content ratio fPHB is com-

pared to the integral of the estimated production rate

(‘‘Appendix’’). The green squares are the PHB content

ratio calculated from the off-line samples as fphb ¼ p
x
and

the black solid line is the integral of the estimated pro-

duction rate. To avoid the error introduced by integrating

the initial transient of the production rate estimation, the

integral was restarted at the convergence time (5th h). In

the bottom graph, the bioreactor volume is compared to

the volume estimation by integration of the model given

in (14) using the estimated production rate. The bioreactor

volume is calculated from the off-line samples as X
x
and is

represented with green circles. The solid black line is the

volume estimation obtained by replacing l̂ps in Eq. (14)

and integrating it. Again, to avoid the error introduced by

the initial transient of l̂ps; the integral was restarted at the

convergence time. As can be seen, the fitting between the

estimations and real values is very good for both

experiments.

Discussion

The experimental results show that the proposed volume

model (17) makes good volume predictions as it can be

seen in Fig. 3c, d. The improved performance of this

model is due to the addition of the terms accounting for

the product volume and carbon source consumption.

Uncertainty in the model parameters c and m (see 15 and

16) can show up if the carbon source concentration is

different from the desired value. However, if the con-

centration in the bioreactor is not excessively different

from the desired one, the error in the parameters will be

small and will not affect the model predictions

significantly.

With regard to the proposed observer, the simulations

allowed to verify its performance under different scenar-

ios. For a start, the observer is able to track the produc-

tion rate of the process without the use of a kinetic model.

Finite time convergence is achieved in all cases, including

the experimental validation, which can be noticed when r
reaches the surface. After convergence, no delays or

dynamics are added to the estimation; that means, it

2 These are called open-loop because there is no feedback or

correction term applied to the calculation, and, there is no conver-

gence guarantee.
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perfectly tracks the production rate. The carbon source

concentration variations and c and m uncertainty had little

effect on the estimation (Fig. 2c). In fact, the stability of

the observer is not compromised, and the estimation

errors converge to a neighborhood of zero with bound

given by (44). The effect of noise is also small on the

estimation; while differentiation would have heavily

amplified the noise in the residual biomass measurement,

the observer is able to keep track of the rate showing only

a small level of noise which can be suppressed with a

low-pass filter.

Conclusions

In this work, a new model was obtained to describe volume

changes in high cell density fed-batch processes with

intracellular product accumulation. High-order sliding

mode observers were developed to estimate the production

rate in those processes, and stability proofs for the errors

were given. Both the volume and the observer were tested

in simulation and validated experimentally.

The proposed model is an improved description of the

volume changes in high cell density processes, as shown by

(a) (b)

(c) (d)

Fig. 3 Experimental results
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the experimental results. The model served as the basis for

design of the HOSM observer. The observer results also

showed a good performance under noise and substrate

changes. The fast and finite time convergence is an

advantage for its application in bioprocesses. The algo-

rithm is simple enough to be implemented in standard

laboratory or industrial equipment. It has the alternative to

use either a biomass sensor or a level sensor, which may be

of interest for industrial applications.

The results obtained in this work, together to the ones

obtained for growth rate estimation [8], open the possibility

to start working in the closed-loop control of PHB pro-

cesses. The estimated rates can be used to maximize the

productivities with extremum-seeking control.
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Appendix: Useful formulas

Given a process described by:

_x ¼ �Dx ð48Þ

_p ¼ lpsx� Dp; ð49Þ

It follows that:Z t

0

lps ¼
pðtÞ
xðtÞ �

pð0Þ
xð0Þ : ð50Þ

Proof

o

ot

p

x

� �
¼ _px� p _x

x2

¼
lpsx� Dp
� �

xþ Dxp

x2
¼

lpsx
2

x2
¼ lps

Then by integration (50) is obtained. h
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