
Modeling Complex Mobile Web Applications from UI

Components – Adding Different Roles and complex

Database Design

Pablo Vera1, Claudia Pons2, Carina González González3, Daniel Giulianelli1, Rocío

Rodríguez1

1 National University of La Matanza

Department of Engeniering and Technological Research

San Justo, Buenos Aires, Argentina

{pvera, dgiulian, rrodriguez }@ing.unlam.edu.ar
2 National University of La Plata

LIFIA – Research and Education Laboratory on Advance Computing

La Plata, Buenos Aires, Argentina

cpons@lifia.info.unlp.edu.ar
3 La Laguna University

Department of Systems Engineering and Automation,

Architecture and Computer Technology

La Laguna, España
cjgonza@ull.es

Abstract. Component Based Hypermedia Design Method (CBHDM) is a

modeling methodology that allows creating mobile web applications by

designing and configuring user interface components. Starting from models this

methodology performs two transformations to finally generate the application

source code using the MDA approach. In order to configure the user interface

components this methodology creates a custom language that´s powerful

enough for designing complex applications. This paper shows how to configure

components for allowing complex database design and also includes a new

feature on the model supporting different user roles assigning different screens

to operate the system.

Keywords: MDA, Mobile Web Applications, Mobile, UML, User Roles

1 Introduction

MDA (Model Driven Architecture) [1] is an approach for developing systems by

building models and generating the application source code automatically or semi

automatically by following some transformations steps. In order to be able to model

complex systems the modeling methodology must support advanced capabilities like

complex queries over the data model and assigning different views to different user

roles.

757

Several methodologies use MDA approach to model web applications starting from

the conceptual model and defining the navigational design. Some of them also include

the desire capabilities to support advance modeling such as:

─ Object Oriented Hypermedia Design Method (OOHDM) [2] allows querying

data by using a sql like syntax over the objects. This syntax is used in the class

definition to set related properties. For assigning different behavior for different

roles a navigational model must be done for each role, defining a view of the

conceptual model for each role.

─ Web Modeling Language (WEBML) [3] includes an Object Query Syntax for

accessing related data. It also includes support for users and groups allowing the

definition of pages that will be visible by defining a site view for each group.

─ Engineering Web Applications Using Roles [4] discuss role modeling in web

engineering and proposed a notation for assigning roles to conceptual and

navigation models of different methodologies.

─ A MDA Approach for Navigational and User Perspectives [5] models roles with

UML actors and hierarchy and then defines zones where those roles can operate.

For each zone a navigation diagram is created.

In this paper we present a modeling methodology named “Component Based

Hypermedia Design Method (CBHDM)” [6], with new features that allow creating

mobile web applications through user interface components. Thus, the paper is

organized as following: Section 2 will briefly introduce the methodology. Section 3

will explain the new features added to the methodology for supporting different user

roles modeling. Section 4 will explain how to use the configuration capabilities of the

methodology to support complex data design and query. Finally section 5 will show

the conclusions and future work.

2 Component Based Hypermedia Design Method (CBHDM)

CBHDM is a design methodology for designing mobile web application. It´s based

on a conservative extension of UML. It adds some necessary characteristics on class

and component diagrams allowing a detailed modeling. Those models will have all

necessary information for automatically deploying an application source code by

using the MDA approach.

The methodology starts from the UML Class diagram where the system entities are

defined using some stereotypes that will be used on the final transformation to

facilitate the process of generating the database script, and for identifying and

describing entities on the system. Later a transformation tool uses the class diagram to

automatically generate a Component Diagram that the designer will modify and

complete with the desire behavior of the interface. An additional UML State chart

diagram could be used to define object states sequences that later will be checked on

the system business logic.

The last step consists in using the transformation tool for a second time with all

models as input. The result will be a database script and a fully functional application

source code. Figure 1 shows the different stages of the methodology and also remarks

758

the steps that requires user participation. More details about the methodology can be

found in [6].

Fig. 1. CBHDM Methodology Stages

The power of CBHDM lies in the ability to configure pre-defined components.

The configuration is performed using tagged values with a detailed semantic for

each value. The semantics is declared on a BNF that defines the configuration

language.

This configuration language is powerful enough for customizing the components

and also for accessing the data present on the conceptual modeling. It includes several

functions that allow complex data resolution and query.

3 Roles

In order to allow defining different functionalities according to the role of the

logged user a new parameter was added to the link function, the RoleCondition.

The link function is used to show a link on the user interface to navigate to other

component; it’s the base of the navigation system and of the MainMenu component.

A secondary function called OptionalLink was present allowing modeling links

that are only visible if the condition is accomplished. In order to give more power to

the system and to separate concerns the new role condition parameter was added

instead of using the condition already present on the OptionalLink function

giving more configuration power and encouraging clarity. The new parameter was

added on both functions, Link and OptionalLink.

The role condition adds a rule that must be checked to determine the visibility of

the link. This allows showing some links only to specific user roles.

The new form of the link function is:

<Link>::='Link('<LinkText>','<BrowsableComponent>','

<OptionalLinkParameters>','<OptionalAccessKey>','

<OptionalRoleCondition> ')'

Derived Navigation

and UI Model (UML

Component diagram)

Conceptual Model
(UML Class diagram)

Transformation

Tool

1 2

Final Navigation
and UI Model (UML

Component diagram)

Valid States Model
(UML state chart

diagram)

4
3

5

Database

Application

Source Code

759

And the new form of the OptionalLink function is:

<OptionalLink>::='OptionalLink''('<LinkText>','

<BrowsableComponent>','<OptionalLinkParameters>','

<OptionalAccessKey>','<LinkCondition>','

<OptionalRoleCondition>')'

The condition will be automatically related with the logged user, so the starting

point must be the class representing the logged user. This approach adapts to different

ways of representing the role assignment security that are next explained.

3.1 Direct Role on user class.

When role assignment is directly given by a property on the user class with a

boolean property like in the example of the figure 2.

Fig. 2. Class with role assignment as property

A link that must be seen only by an administrator in the example of figure 2 will

have the following Role Condition:

User.Administrator = true

The link can also be assigned to more than one role aggregating conditions, for

example the following Role Condition will make the link visible either for

administrators or editors users:

User.Administrator = true OR User.Editor = true

3.2 Unique Role with related class.

If the user has a unique Role the more common approach will be a property on the

user class related to the role class. The Role class will establish the different roles on

the system by enumeration values. So the designer could refer to those values to

configure the access. An example of this approach can be seen in figure 3.

760

Fig. 3. Unique Role Assignment schema

A role condition restricting the visibility only to the administrator role will be:

User.Role = Role.Administrator

3.3 Several Roles with related class.

If the user can have more than one role and the roles are on a separate enum class.

The conceptual model will have a class to assign security like the example in figure 4.

Fig. 4. Separate class for role assignment

In this case the main class of the condition is not the user class, so we must explicitly

configure the field relating to the logged user like the code below:

UserRoles.User=LOGGEDUSER AND UserRoles.Role=Role.Editor

4 Complex Data Base Design

When modeling a system, a good database design is a key point for avoiding

redundancy and for obtaining a correct system performance when accessing data.

CBHMD automatically generates the database from the conceptual model, so each

class will be transformed on a database table. On each table a number of operations

will be carried out to improve performance:

─ The primary key will be set in the property marked as Identifier

─ An index will be created for each property related to another table, for

improving joins

761

─ An unique index will be created for the descriptor property to avoid duplicated

values

So the designer must create the class diagram thinking on the database design,

knowing that later, data could be accessed due to a powerful configuration language

for components. This will allow for example creating log records on a separate table

when updating a table and accessing data by complex querying.

In order to illustrate the possibilities of the configuration language some examples

will be shown next. All examples will be based on the conceptual model of the figure

5 related to a mobile system for registering trips in a taxi company. Note that

CBHDM models class relationships by adding a property with the type of the related

entity like in database design.

Fig. 5. Conceptual Model for registering trips on a taxi company

4.1 Complex Querying

CBHDM configuration language allows the use of object notation for accessing

data on related classes. But also includes several functions to access indirect

information present on the model. Those functions are Sum, Count, Exist, Not Exist,

Eval and Retrieve.

Sum.

This function allows obtaining the sum of some property on a related table. For

example getting the sum of the prices of trips finished of the logged driver:

Sum (Trip.Price, Trip.Driver = LOGGEDUSER AND

Trip.TripStatus = TripStatus.Finished)

The first parameter of the function is the property to be summed, the second are the

conditions applied prior performing the operation.

Count.

It allows obtaining the quantity of objects that fulfills the condition. For example

the following code gets the number of trips finished by the logged driver:

Count (Trip, Trip.Driver = LOGGEDUSER AND

Trip.TripStatus = TripStatus.Finished)

762

In this case the first parameter is the entity where the objects must be counted.

Exists and Not Exists.

These functions return a Boolean value to check if any object with a given

condition exists. For example the following code creates a link to start a previously

accepted trip only if a previous trip was not started before:

OptionalLink("Start", cpnStartTrip, "ObjectID =

TripID", TripStatus=TripStatus.Accepted AND not Exist

(TripStatus.Started));

The entity where to check the existence is not defined in this case because the link

is part a component where the main entity was configured as Trip, so all related

operations will be done on the Trip class. Otherwise the full syntax of the condition

will be:

Trip.TripStatus=TripStatus.Accepted AND not Exist

(Trip.TripStatus.Started)

Eval.

It is a function to evaluate a condition and returning a Boolean value. For example

in a table if we need to show inside a column that the trip price was 0 (bonus trip) we

can use the eval function to check it:

Eval(Trip.Price = 0)

If the trip price was 0 it will show the “true” word in a column that for example

could be labeled as “Bonus Trip”.

Retrieve.

When working with log classes is usually more efficient retrieving information

from those classes instead of duplicating data on source class. So the retrieve function

will be used to go and get the related data. For example if we want to show the initial

request date of the trip in a grid we need to access the log table and find the initial

status of the trip:

Retrieve (min(EventDateTime),

TripLog.TripStatus=TripStatus.Pending);

The first parameter is the property to retrieve and the second the condition. This

function must be used in the context of a list where the id of the trip is taken from the

row being displayed and this is an implicit filter for the TripLog.Trip field.

4.2 Partially Updating records

In several systems an object class goes through different states, and on each state

not all its properties must be able to be updated. For that reason CBHDM adds the

UpdateView component that was specially created for allowing that partial update

763

of the object. For example, the driver has a list with available trips and he wants to

confirm that he will perform that trip. In that case all trip information is already set

and the driver will only change the trip status and eventually fill a text with some

remarks. The UpdateView component allows showing some properties in only read

mode and other in edition mode. In the example of table 1 the remarks are configured

to be editable only by the user and the status is automatically changed when updating

the object.

Table 1: Tagged values for "Accept Trips“ component of type UpdateView

Tag Value
Id cpnAcceptTrip

Navigation Link(“Main Menu”, cpnMainMenu,,0);

Link("Back", cpnPendingTrips,,9);

MainEntity Trip

DisplayProperties CustomerAddress;

DestinationAddress;

Retrieve(min(EventDateTime),TripLog,

TripStatus=TripStatus.Pending,"Request Date");

CustomerPhone

UpdateProperties TripLog.Remarks

DefaultValuesUpdate TripStatus = TripStatus.Accepted;

Driver = LOGGEDUSER;

4.3 Creating additional records

Usually when an object is created or updated a new record in a related table must

be created. This approach is very common for a log class that records the changes

made on some particular class. CBHDM includes a special tagged value called

CreateEntity that creates an object on the entity configured on the value of this

tag. For example, if the system must keep record of the change of the status of the trip

that was configured on table 1, the CreateEntity tag can be used. Table 2 shows

the complete component configuration adding a configuring log record creation. The

values of the newly created object are configured with object notation as can be seen

in the value of the DefaultValuesUpdate tag of table 2.

Table 2: Tagged values for "Accept Trips“ component of type UpdateView with log record

Tag Value
Id cpnAcceptTrip

Navigation Link(“Main Menu”, cpnMainMenu,,0);

Link("Back", cpnPendingTrips,,9);

MainEntity Trip

CreateEntity TripLog

DisplayProperties CustomerAddress;

DestinationAddress;

Retrieve(min(EventDateTime),TripLog,

TripStatus=TripStatus.Pending,"Request Date");

CustomerPhone

UpdateProperties TripLog.Remarks

DefaultValuesUpdate TripStatus = TripStatus.Accepted;

Driver = LOGGEDUSER;

764

TripLog.Driver = LOGGEDUSER;

TripLog.EventDateTime = NOW

For the same purpose two tagged values were added to the CRUD component that

allows creating and updating class objects: CreateEntityOnCreate and

CreateEntityOnUpdate. This allows adding related records when creating an

object or when updating if UpdateView component is not used.

5 Conclusions and Future Work

CBHDM allows modeling systems with all necessary information for automatic

code generation. The use of functions to retrieve data is powerful enough for

accessing related records and for complex querying as shown in the examples above.

The new role property on links allows the designer to assign tasks to each role for

increasing system security and to assign responsibilities without the need of creating a

separate model for each role like the methodologies explained in section 1.

Finally the ability to create related records when updating or creating a main class

is an essential characteristic that completes the model and allows for example keeping

track of modification in a separate log table.

CBHDM methodology and language configuration is now completely defined and

the transformation tool is being developed. Future work consists on finishing the

mentioned development and validating the results by performing modeling of

different complexity.

6 References

1. Kleppe A., Warmer J., Bast W. “MDA explained: the model driven architecture: practice

and promise”. Addison-Wesley Professional (2003)

2. Schwabe D. y Rossi G. “An object oriented approach to Web-based applications design”.

Theor. Pract. Object Syst. Volume 4, Issue 4 (1998), pp 207-225.

3. Ceri S., Fraternali P., Bongio. “Web Modeling Language (WebML): a modeling language

for designing Web sites”, Computer Networks, Volume 33, Issues 1–6, (2000), pp 137-157.

4. Rossi G. Nanard J., Nanard M and Koch Nora, “Engineering Web Applications Using

Roles“, Journal of Web Engineering, Vol. 6, No.1 (2006

5. Gonzales M, Casariego J., Bareir J., Cernuzzi L, Pastor O. “A MDA Approach for

Navigational and User Perspectives”, Special issue of best papers presented at CLEI 2010

(2011)

6. Vera P., Pons C. Gonzales C, Giulianelli D., Rodriguez R. “MDA based Hypermedia

Modeling Methodology using reusable components”, XVIII Congreso Argentino de

Ciencias de la Computación (2012)

765

