
NetworkDCQ: A Multi-platform Networking

Framework For Mobile Applications

Federico Cristina
1
, Sebastián Dapoto

1
, Fernando G. Tinetti

1,2
,

Pablo Thomas
1
, Patricia Pesado

1,2

1

 Instituto de Investigación en Informática LIDI - Facultad de Informática

Universidad Nacional de La Plata - Argentina
2

Comisión de Investigaciones Científicas de la Provincia de Buenos Aires - Argentina

{fcristina, sdapoto, fernando, pthomas, ppesado}@lidi.info.unlp.edu.ar

Abstract. Currently, the number of mobile applications that require (wireless)

connectivity is constantly increasing. The need for sharing information among

mobile devices exists in many applications, and almost every data exchange be-

tween these devices involve the same requirements: a means for discovering

other mobile devices in a wireless network, establishing logical connections,

communicating application data, and gathering information related to the

physical connection. This paper proposes an open source developer-oriented

framework that acts as a network support layer for host discovery, data

communication among devices, and quality of service characterization, which

can be used for developing several types of applications and is proposed for

different platforms, such as Android Java, J2SE, and J2ME.

Keywords: mobile devices, host discovery, communication, QoS, networking

1 Introduction

The middleware presented in this paper, called NetworkDCQ, is proposed bearing in

mind the evolution of mobile devices as well as specific network requirements of

mobile applications. The following subsections briefly explain three topics: trends in

mobile devices, mobile network applications, and the initial development platform

selected for (a proof-of-concept) implementation.

The remainder of this paper is organized as follows. The next section describes the

proposed Application Program Interface (API). Afterwards, an architectural overview

of the framework is given. The following section presents several applications which

use NetworkDCQ. Finally, we describe the results and benefits of using the proposed

framework and conclude with an outlook on future work.

1075

1.1 Trends in Mobile Devices

The worldwide internet mobile traffic is expected to overtake the desktop internet

traffic by 2014 [1], which means that more users will be accessing the Internet

through their mobile phones than through their PCs. This phenomena has already

been experienced in some countries, like China [2] or India [3, 4].

Currently, nearly 50% of recent device sales are mobile (smartphones, tablets) [5].

Mobile applications are tightly related with this trend. The increasing number of these

devices in the last years has led to a revolution in terms of mobile application

development and usage. Among all OS mobile systems, Android is by far the most

deployed platform [4, 6], with 136 million units shipped and 75% market share in Q3

2012 [7], seconded by iOS and BlackBerry OS with 14.9% and 7.7% market share

respectively. Additionally, Android has a large community of developers writing

applications that extend the standard functionality of the devices. Google play has hit

the 25 billion-download mark by September 2012 [8].

1.2 Mobile Network Applications

Although there is a large number of standalone mobile applications (which require no

connectivity at all), a currently increasing trend in mobile environments is the

development of applications in which several devices on a network share real time

information. These applications rely on some sort of connectivity support in order to

achieve the proper interaction among devices. This support can be grouped into three

main categories, or services: a) Host discovery, a mean for searching other reachable

devices ready to communicate in a network, b) Data communication, a service for

handling the specific exchange of information between devices, and c) Quality of

service, a monitoring service that provides QoS related information.

Since these services are application-independent, a framework can be implemented

in order to support specific aids, simplifying the network-related aspects to the

developer. The main purpose of the proposed infrastructure is to meet these service’s

requirements. The features provided by NetworkDCQ allow several types of

implementations with different network configurations, such as a typical client/server

architecture or a centralized/decentralized peer-to-peer solution.

Even though there are several mobile development frameworks [9, 10], none of

them proposes an open source, multi-platform solution that presents the features

proposed in this paper. Some of these frameworks refer to networking features as

simply retrieve wireless connection information, but no additional functionality is

supported. Other frameworks cover these features, but as a part of a complete paid

solution for mobile-apps development. The most representative examples are

PhoneGap [11], Unity3D [12], Titanium [13] and Corona [14].

1.3 Development Platform

The reason for choosing Android as the primary development target for the proposed

framework is based on its widespread use and popularity (as previously explained).

1076

However, two additional benefits should be mentioned. First, it is an open source

software released under the Apache License. This allowed several non-official

versions such as Android for x86, ARM, and MIPS architectures. Some examples

given in the present paper were tested on these versions running in a Virtual Machine,

without the need for real devices. Second, Android Java is functionally much richer

than J2ME. Actually, the similarities with J2SE API (Application Programming

Interface) led to the Oracle vs Google lawsuit [15]. As will be shown, this is a

considerable advantage due the compatibility between both languages in matters of

network communication. This means that the proposed API can be referenced from

both types of Java projects. Given that one of the purposes of the framework is to

achieve multi-platform compatibility, a J2ME version is also being developed,

allowing interoperability between the other platforms.

2 Proposed and developed API

The main goal is having a minimal (yet useful) communication-related software

infrastructure so that different mobile devices can be programmed. The focus is on the

Java language since it is (by definition) cross platform. Even when currently

development platforms tend to be very different, it is possible to use Java in almost all

of them. While the first problem to be solved is programmability, other issues such as

interoperation are left open for future release/development. This section will present

the main classes and interfaces of the framework from an application developer point

of view. Based on the previous analysis, and the types of interaction required among

hosts, the highest level of the API is directly focused on application data

communication (Application Support) and the lowest level is divided into three main

parts, as shown in Fig. 1:

 HostDiscovery, for handling the information related to hosts that are ready to

communicate to/from each device. As its name suggests, HostDiscovery

services/operations include searching for hosts and/or hosts status.

 NetworkCommunication, for handling the specific exchange of information

between applications. Basically, NetworkCommunication should include the

necessary send and receive services/operations for applications.

 QoSMonitor, for providing the user and/or programmer the necessary

information on signal quality as well as performance indexes such as startup time

(latency) and available network bandwidth.

The initial aim for each part is to achieve a very simple interface for the user,

simplifying the API usage as well device programmability. As a general concept, the

framework is designed to support different implementations for each of the services

(Discovery, Communication, and QoS). Through an Abstract factory pattern [16], the

user can specify which implementation should be used in each case. The details

explained in this section go beyond any implementation, covering the issues at a

higher level of abstraction.

1077

2.1 Application Data, Producer, Consumer

Generally, the framework will require a data producer, a data consumer, and the data

itself to be transferred among hosts. The three will be instances of user-developed

classes which extend/implement a specific class/interface. Based on Inversion of

Control [17, 18], these instances will be passed to the framework as arguments.

Specific methods of the instances will be called from the framework in order to

generate new data, process incoming data, handle a new host in the network, etc.

The base class for the application-level data is the abstract class

NetworkApplicationData. This class will be the superclass for any information to be

sent/received through the NetworkCommunication services. Currently, the only

information contained in this class is a reference to the source host (the one that

originates the message). Subclasses must augment the data structure as needed, and

any data type/object can be used as long as it implements the Serializable interface.

The producer class is in charge of generating the updated local information to be

sent to the other hosts. This class must implement the

NetworkApplicationDataProducer interface. This interface only requires the method

produceNetworkApplicationData to be implemented, which returns an instance of a

subclass of NetworkApplicationData with the actual data. This method will be called

periodically if the periodic Broadcast feature from the NetworkCommunication

service is active. The period is given by the user in milliseconds, also provided by the

API. If this feature is not desired, then there is no real need for this class to be

implemented. However, it is advisable to centralize the creation of data in a specific

class. In this case, calls to produceNetworkApplicationData method will have to be

done manually from some application-level class when required.

The consumer handles every type of incoming information, mainly related to

application data from other hosts as well as notifications of arrivals and departures of

hosts to/from the network. Every time a new message arrives, the framework will

invoke the newData method so that the application can act accordingly. A

NetworkApplicationData object is received as a parameter, containing the actual data.

The consumer will have to cast this object to the corresponding application-level data

type. When the HostDiscovery service identifies some network change related to

hosts, the corresponding method will be called. This allows applications to behave in

a specific way in this cases. Thus newHost or byeHost methods will be called when

there is a new host in the network or when a host leaves the network respectively.

2.2 Host Discovery

As mentioned above, this service is responsible of searching for new hosts in the

network as well as exchange host status periodically. The status of a host is simply an

online/offline flag in order to know if the host is ready to receive information at a

certain moment. The discovery service can be started simply by invoking the

startDiscovery method. This will make the framework to look/listen for/to new hosts,

calling a specific method each time a host joins or leaves the network. When the

service is not needed anymore, the stopDiscovery method can be invoked. This

implies neither sending local status nor receiving other hosts status anymore.

1078

The periodicity a host sends its status can be set depending on the application

requirements. Making available stopDiscovery as well as the periodicity value to the

programmer is necessary in order to have control on energy and communication

overhead/usage. The current list of hosts which are part of the network can be

accessed through the otherHosts collection so that at any time, the application would

be able to search for specific hosts available and the total number of hosts with which

could exchange information.

2.3 Network Communication

Network communication services (provided by NetworkCommunication) allow hosts

to exchange application-level data in different ways, depending on the specific needs

of the application being developed. Client/server, broadcast, and Producer/Consumer

communication models are available to the applications. In order to establish an

application-level communication with other hosts, the startService method must be

started. Once started, the service waits for incoming connections from other hosts. A

host can establish a connection to another host through the connectToServerHost

method. An established connection will be used for sending and receiving the

application-level data. When a message is received, a Consumer will be able to

process the incoming information.

Sending a message simply implies specifying the target host and the data to be sent

(using NetworkApplicationData, as mentioned above), through the sendMessage

method. Additionally, a host might need to send information to every online host in

the network calling the sendMessageToAllHosts method. When the service is not

needed anymore, the stopService should be called. This will close all currently

established connections.

Also, the framework is able to handle sending data to all hosts periodically. In this

case, NetworkDCQ will require in each sending the updated local information. A

Producer will have to generate this information. This feature is available by calling

the startBroadcast method and is useful in cases when a constant exchange of data

among hosts is needed at regular intervals, for instance in a network game. The

application-level periodic data broadcast can be stopped by simply invoking

stopBroadcast method. The periodicity a host sends data can be set depending on the

application requirements.

2.4 QoS Monitor

A useful set of services is currently being defined, so that each application will be

able to decide if it is possible to run under the current network bandwidth, signal

strength, etc. At the lowest level of abstraction, an application should be able to ask

for the current startup and available bandwidth, so that it will be possible to model the

time required to send a message of n data items.

Also, some of these performance indexes would depend on wi-fi signal strength, so

it would be useful to provide the application with the current signal strength as well as

some previous values so that the tendency would be able to be estimated. From a

1079

higher level of abstraction, a method such as calculateMPS for an estimation of the
number of application-data messages per second would be able to be exchanged, and
it would aggregate some low level information, along with the specific application
data to be communicated periodically. Although an initial API is proposed, this
service is currently under development and unavailable to user applications.

3 NetworkDCQ proposed architecture

This section will discuss in detail the implementation aspects of the proposed
architecture. As mentioned before, the framework supports different implementations
for each low level service. Currently, an UDPDiscovery and TCPCommunication was
developed for HostDiscovery and NetworkCommunication services respectively, and
QoSMonitor is under development. Fig. 1 shows the most relevant details on each
layer, which will be explained in the following subsections (excepting QoSMonitor).

Fig. 1. Detailed Architecture of the Framework

In Fig. 1, abstract classes are identified with dotted lines, and interfaces are those

in italic font. The current implementation of the project can be found at [19] hence the
description in this section will be far from explaining the code (or code details), which
can be downloaded, used, etc. Section 4 will explain in detail (via specific examples)
the step-by-step guide in order to configure and use every feature of the framework.

3.1 Application support

This layer involves additional classes which are referenced along several parts of the

1 0 8 0

framework. For instance, NetworkApplicationDataConsumer is related with

Discovery and Communication services. Host instances exist in Discovery, but they

are also used in Communication. A special class in this layer is NetworkDCQ, which

is explained in detail in the next subsection.

3.1.1 NetworkDCQ

This class is the framework main entry point, and has two main static methods.

Method configureStartup allows the developer to specify the Producer and Consumer

instances. Method doStartup is the one in charge of starting each service or feature

(discovery, communication, broadcast), since they can be started independently. It is

expected that configureStartup is called before any usage of the framework and

method doStartup identifies the point from which the application would start using

every framework service (discovering hosts, establishing communication/s, etc.).

3.2 UDPDiscovery

UDPDiscovery is the implementation of HostDiscovery, extending its abstract class.

As such, it implements startDiscovery and stopDiscovery methods. When the

discovery service is started, the UDPDiscovery spawns two threads: UDPListener and

UDPClient as shown in Fig. 2a. The former first joins the network group via a

MulticastSocket, and then waits for incoming host status updates from other hosts.

The latter periodically sends multicast packets with its local host status.

Fig. 2. a) UDPDiscovery Hierarchy, b) TCPCommunication Hierarchy

UDPDiscovery has an additional responsibility, which is to check for hosts that

leave the network without giving the proper signal. This is achieved by a connection

timeout validation, i.e. by checking - for each remote host - the timestamp of the last

received status update. If the lapse of time exceeds a predefined threshold, then the
host is removed from otherHosts list and byeHost method is invoked. This validation
is executed periodically.

1081

3.3 TCPCommunication

TCPCommunication is the implementation of NetworkCommunication, extending its

abstract class. This service will spawn several threads, depending on the framework

configuration. The following is a brief explanation of the methods discussed above

and taking into account the details shown in Fig. 2b.

Method startService will spawn a TCPListener, in charge of listening for new TCP

connections from other hosts. For each new connection, this class will spawn a new

TCPServer thread, which is in charge of receiving NetworkApplicationData objects

from a specific host.

Method startBroadcast will spawn a TCPCommunication thread, which will

periodically send a NetworkApplicationData object (relying on the configured

NetworkApplicationDataProducer that generates the data), using the

sendMessageToAllHosts method. This last method simply iterates the

HostDiscovery.otherHosts collection, and calls sendMessage method in each case.

TCPCommunication has a pool of TCPClient objects (the ones in charge of writing

data through a socket), one for each host. Method connectToServerHost instantiates a

new TCPClient when invoked and will keep it in the pool for later use. Every time a

message is sent to a host, TCPCommunication first retrieves the corresponding

connection with that host, avoiding having to reconnect continuously.

4 Examples

In this section three different examples will be discussed, in which the network

requirements for each application differs considerably. The first one is a competitive

multiplayer Asteroids-like game (referred to as Asteriods, from now on) and the

second one is a two players Tic-Tac-Toe game, both currently running in Android.

The third example is a simple chat application implemented both in Android and

J2ME in order to show multi-platform communication.

In each case, sample code will be given in order to highlight the most relevant

details related to networking. The complete code of the first two examples can be

found at [20] and [21] respectively. Also, these projects are completely built on top of

the NetworkDCQ project [19], i.e. there is no access to other Host Discovery and

Communication services beyond those provided by the NetworkDCQ framework. For

the third example, the J2ME version of the chat application is built on top of the

J2ME version of the NetworkDCQ project [22].

1082

Fig. 3. a) Asteroids running on three Android x86 v2.2 virtual machines, b) Tic-Tac-Toe

running on two Samsung Galaxy SII mobile devices with Android 4.0.3, c) Chat application

running on Android x86 (left) and J2ME Emulator (right).

4.1 Asteroids

Multiplayer Asteroids is a very simple game, in which a ship (controlled by a user)

must destroy enemy ships firing laser shots. Every ship corresponds to a user in a host

(i.e. mobile device, tablet, etc.) in the network, as shown in Fig. 3a. The local ship

will be rendered in green and remote ships will be rendered in blue. An example

video of the game can be found at [23], where it is also shown that the entire example

is run on virtual machines with Android.

Although very basic, the application is representative in terms of CPU and network

usage of a class of game applications: the game must continuously update its local

model, share local information among all hosts, receive and update remote hosts

information, and render the corresponding graphics. Considering an update rate

equivalent to 30 frames per second, the network consumption is considerably high

and grows proportionally to the number of players. Furthermore, the game uses the

Periodic Broadcast feature from the Communication service.

The data defined to be sent/received through the network includes ship position

and heading, as well as shots position and heading that the ship shoots when the user

triggers the fire action. The producer has a unique and reusable

AsteroidsNetworkApplicationData instance (in order to avoid continuous Garbage

Collector calls), which is filled in new data every time is needed with its current

1083

values according to the model changes. The Consumer is the place where remote

ships information is updated with the received data. A cast to

AsteroidsNetworkApplicationData is needed in order to retrieve the members in the

instance (ship heading, position, etc.). The last step simply requires setting the

corresponding application-level instances of Producer and Consumer of the

framework, and starting the Discovery, Communication and Broadcast services.

4.2 Tic-Tac-Toe

Tic-Tac-Toe has been selected as a representative example of a completely different

type of application, compared to the Asteriods game, since Tic-Tac-Toe is a two-

players game, turn-based and there is no need for a continuous sending of

information, specific events (players taking turns) trigger communications.

Fig. 3b shows a running example of the game on two Samsung Galaxy devices

with Android 4.0.3, and an example video of the game running on a virtual machine

and a Samsung Galaxy can be found at [24]. While the Tic-Tac-Toe game impose a

very different usage of the network during the game (turns, non-periodic messages,

etc.) as compared to the Asteroids game, other service requirement such as those

related to host Discovery remain the same.

The data structure for this application is very simple: an action value representing

the possible states of the game: a) resolve who will start the game, b) set a cell with an

X or an O - in this case a position value is also needed, or c) restart the game. Since

there is no need for a periodic update of local host information, no Producer has to be

implemented. The Consumer is the place where each remote action is replicated

locally (e.g.: the other player placed an X in cell 7). A cast to an application-level data

type is needed in order to retrieve the members in the instance (action and position if

needed). As explained previously, the sending of information is not performed

periodically. The application sends a message to the other host each time an action

event occurs (e.g. when the user clicks in one of the nine cells).

The application access the Communication service through the static method

NetworkDCQ.getCommunication in order to use the sendMessage method. The other

host is retrieved by accessing the HostDiscovery static member otherHosts. The final

step is starting the required services. In this case, the Producer and the Broadcast

service will not be started.

4.3 Multi-platform chat application

A simple chat application has been selected in order to show multi-platform

networking capability, requiring only the NetworkDCQ communication features. By

simply specifying an IP address and a message, the chat-app sends the corresponding

text to the target host, the which shows its content on the display. Fig. 3c shows the

achieved interaction among two virtual devices, one running the application on

Android, and the other running on J2ME.

1084

The biggest problem in this case is the serialization-deserialization issue. Each

platform implements (if it does) a specific serialization method, which can or cannot

be compatible with the other platforms. In order to solve this problem, NetworkDCQ

defines a NetworkSerializable interface, containing the definition for the

networkSerialize and networkDeserialize methods. Applications must contain a class

which implements this interface in a consistent way on each platform. At run time,

NetworkDCQ then delegates the serialization-deserialization work to these classes.

5 Conclusions and Further Work

The paper presented a framework for handling network-related issues in the

development of applications running on mobile devices, such as host discovery, data

communication and broadcasting; designed to support different implementations for

each of these services, gaining flexibility, and versatility. Its main goal is to fill a gap

in the mobile development frameworks area, where currently there is no open source,

multi-platform solution with the features proposed in this paper.

The proposed API and reference implementation is actually useful for several types

of applications, network requirements, and configurations. The examples shown in

the previous section cover applications with a wide variety of network-related

requirements like continuous data broadcasting and event driven communication.

Using Android as a general development platform allowed an immediate

integration with J2SE applications. Additionally, specific interaction problems with

other platforms where solved by defining the corresponding interfaces and

development methodologies, allowing communication with platforms such as J2ME.

As explained previously, the QoS service is still in development. Completing this

feature is a short-term objective. Implementing the complete set of features for iOS,

Windows Mobile, and BlackBerry 10 are mid to long-term objectives.

References

1. Morgan Stanley. The Mobile Internet Report, 1st edition. (2009)

2. China Internet Network Information. China Internet Development Statistics Report. (2012).

3. Mobile vs Desktop Internet Traffic Report from Oct 2011 to Oct 2012.

 http://gs.statcounter.com/#mobile vs desktop-IN-monthly-201110-201210.

4. Meeker, M. D10 Conference. Internet Trends. (2012),

 http://www.kpcb.com/insights/2012-internet-trends.

5. Asymco. The Rise and Fall of Personal Computing (2012),

 http://www.asymco.com/2012/01/17/the-rise-and-fall-of-personal-computing/.

6. Gartner, Inc. Nov.2012 Press Release, http://www.gartner.com/it/page.jsp?id=2237315.

7. IDC. Nov.2012 Press Release, https://www.idc.com/getdoc.jsp?containerId=prUS23771812.

8. Google, Inc. Google Official Blog (2012),

 http://officialandroid.blogspot.com.ar/2012/09/google-play-hits-25-billion-downloads.html

9. Markus Falk. Mobile Frameworks Comparison Chart,

 http://www.markus-falk.com/mobile-frameworks-comparison-chart/

10.Digital Possibilities. Mobile Development Frameworks Overview

1085

 http://digital-possibilities.com/mobile-development-frameworks-overview/

11. PhoneGap, http://phonegap.com/

12. Unity3D, http://unity3d.com/

13.Titanium, http://www.appcelerator.com/platform/titanium-platform/

14.Corona, http://www.coronalabs.com/products/corona-sdk/

15. Reuters. Oracle sues Google over Android (2012),

 http://www.reuters.com/article/2010/08/13/us-google-oracle-android-lawsuit-

idUKTRE67B5G720100813

16. Gamma, E. Design Patterns: Elements of Reusable Object-Oriented Software (1994).

17.Martin, R. C. The Dependency Inversion Principle. (1996),

 http://www.objectmentor.com/resources/articles/dip.pdf

18. Fowler, M. Inversion of Control Containers and the Dependency Injection Pattern,

 http://martinfowler.com/articles/injection.html

19.NetworkDCQ for Android Project, https://code.google.com/p/networkdcq/

20. Asteroids for Android Project, http://code.google.com/p/asteroidsa/

21. Tic-Tac-Toe for Android Project, http://code.google.com/p/ticatacatoe/

22. NetworkDCQ for J2ME Project, https://code.google.com/p/networkdcq-j2me/

23. Asteroids for Android Example Video, http://www.youtube.com/watch?v=HiRTk8daqi4

24.Tic-Tac-Toe for Android example video, http://www.youtube.com/watch?v=mrf01putSec

1086

