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Abstract. A spatiotemporal point process model of rainfall
is fitted to data taken from three homogeneous regions in the
Basque Country, Spain. The model is the superposition of
two spatiotemporal Neyman–Scott processes, in which rain
cells are modelled as discs with radii that follow exponen-
tial distributions. In addition, the model includes a parameter
for the radius of storm discs, so that rain only occurs when
both a cell and a storm disc overlap a point. The model is
fitted to data for each month, taken from each of the three
homogeneous regions, using a modified method of moments
procedure that ensures a smooth seasonal variation in the pa-
rameter estimates.

Daily temperature data from 23 sites are used to fit a
stochastic temperature model. A principal component analy-
sis of the maximum daily temperatures across the sites indi-
cates that 92 % of the variance is explained by the first com-
ponent, implying that this component can be used to account
for spatial variation. A harmonic equation with autoregres-
sive error terms is fitted to the first principal component. The
temperature model is obtained by regressing the maximum
daily temperature on the first principal component, an indi-
cator variable for the region, and altitude. This, together with
scaling and a regression model of temperature range, enables
hourly temperatures to be predicted. Rainfall is included as
an explanatory variable but has only a marginal influence
when predicting temperatures.

A distributed model (TETIS; Francés et al., 2007) is cal-
ibrated for a selected catchment. Five hundred years of data
are simulated using the rainfall and temperature models
and used as input to the calibrated TETIS model to obtain
simulated discharges to compare with observed discharges.

Kolmogorov–Smirnov tests indicate that there is no signifi-
cant difference in the distributions of observed and simulated
maximum flows at the same sites, thus supporting the use of
the spatiotemporal models for the intended application.

1 Introduction

Rainfall and temperature data are required in the study of
hydrological systems – for example, in flood studies or in
the analysis of urban drainage networks. However, histori-
cal records of data are always limited; for example, record
lengths may be too short to predict high return period events,
or data may be unavailable at sites of interest or only avail-
able at time scales that are too coarse for the intended appli-
cation. Hence, stochastic models are used to simulate data to
supplement or extend existing historical records; see, for ex-
ample, Gyasi-Agyei (2005), Cowpertwait (2006), or Burton
et al. (2008).

There is extensive literature on stochastic rainfall mod-
els that includes models based on spatiotemporal point pro-
cesses similar to the model used here. One of the earlier mod-
els was based on a spatiotemporal Poisson process; see Cox
and Isham (1988). This model does not explicitly allow for
the clustering of rainfall events. Hence, most subsequent de-
velopments have allowed for the temporal clustering of rain
cells using a Neyman–Scott or Bartlett–Lewis point process
of cell arrival times. These build on the work of Rodriguez-
Iturbe et al. (1987), who developed a methodology for the
derivation of statistical properties that can be used in model
fitting. For example, Northrop (1998) developed a spatial
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extension in which elliptical cells have occurrence times that
follow a Bartlett–Lewis process, whilst Cowpertwait (1995)
developed a spatiotemporal model with cell arrival times oc-
curring in a Neyman–Scott process. Burton et al. (2010) ex-
tended the latter model to include a non-stationary mean
number of rain cells, which can approximate orographic ef-
fects. Cowpertwait (2010) developed a spatial generalisation
that allows a continuous distribution of storm types; this
model also allows storms to have a defined spatial extent,
to provide an improved fit to sample cross-correlations, and
subsequently also extends the model in Leonard et al. (2008).
The reader can find further information on the development
of spatiotemporal point process rainfall models in Wheater
et al. (2005), Cowpertwait (2010), Burton et al. (2010), and
the references therein.

The rainfall model described here is the superposed dis-
crete storm-type analogy to the continuous storm-type model
used in Cowpertwait (2010), and it is more mathematically
tractable and easier to implement. The model is a spatial
extension to the discrete superposed temporal point pro-
cess models discussed in Cowpertwait (2004) and Morris-
sey (2009). In the version used here, two independent super-
posed point processes are used to allow for different storm
types (e.g. convective and stratiform rain). The methodology
extends that used for the Thames study described in Cow-
pertwait (2006): to account for larger geographical regions
through the inclusion of a storm centre and radius for each of
the two superposed processes; a regionalisation procedure;
and a temperature model to allow for further conditions that
may give rise to flooding (e.g. snowmelt). A modified method
of moments fitting procedure ensures that the parameter es-
timates vary smoothly across seasons. The models are in-
tended for use in flood studies across the Basque Country,
including studies for large catchment areas that require spa-
tially representative series. In the last part of the paper, sim-
ulated rainfall and temperature data are input into the TETIS
distributed catchment model (Francés et al., 2007) and ob-
served and simulated annual maximum flows compared.

2 Superposed spatiotemporal rainfall model

2.1 Superposed point processes

Independent stochastic point processes may be superposed
(e.g. see Cox and Isham, 1988) to give additional model pa-
rameters and, therefore, increased flexibility in model fitting.
For example, n independent Poisson point processes with
rates λ1, λ2, ..., λn may be superposed to give a Poisson pro-
cess with overall rate λ = λ1 + λ2 + · · · + λn. Equivalently, a
Poisson process with rate λ may be the composition of n in-
dependent Poisson processes with rates λi (i = 1, ..., n), such
that a Poisson process selected at random has rate λi with

probability αi = λi/λ, where
nP

i=1
αi = 1. When the Poisson

processes each form the basis of an independent cluster pro-
cess, such as a Neyman–Scott or Bartlett–Lewis point pro-
cess, the additional parameters due to the clustering can be
indexed to give different parameter sets for the different su-
perposed cluster point processes (Cowpertwait, 2004; Mor-
rissey, 2009). This can be generalised to a continuous proba-
bility density function α(x) with corresponding Poisson rates
λ(x) (and other functions for any parameters used for clus-
tering). The first approach (“discrete superposition”) is the
superposition of a countable set of point processes, whilst
the second approach (“continuous superposition”) is the su-
perposition of an uncountable set of point processes. Con-
tinuous superposition lends itself to an analysis of the func-
tional relationships between different model parameters, and
it has been used to generalise a spatiotemporal point process
model of rainfall (Cowpertwait, 2010). Discrete superposi-
tion has been used to model the temporal rainfall process
(Cowpertwait, 2004; Morrissey, 2009) and is easier to im-
plement in practice because most of the model properties of
the independent processes can be summed to obtain those of
the superposed process. Discrete superposition is suitable if
storms are known to be of discrete distinct types. In this pa-
per, discrete superposition is applied to the spatiotemporal
Neyman–Scott model developed by Cowpertwait (1995) and
Leonard et al. (2008). The superposed model is defined as
follows.

2.2 Model definition

This is a straightforward extension of the previous model
(Cowpertwait, 1995; Leonard et al., 2008) that essentially in-
cludes indices to allow for different storm types.

Let storm origins occur in a spatiotemporal Poisson pro-
cess with rate ζs per unit time per unit area. Suppose storms
can be of n independent types and that each storm origin is
of type i with probability αi (i = 1, ..., n).

Associated with each type i storm origin is a disc of ran-
dom radius Rs,i , where Rs,i is an independent exponential
random variable with parameter φs,i . The arrival times {Tij }

of type i storm origins at an arbitrary point in the plane occur
in a temporal Poisson process with rate λi (per hour), where
λi = 2 πζs,i/φ

2
s,i and ζs,i is the spatiotemporal rate for a type

i storm (e.g. see Cowpertwait, 2010). As outlined above, this
process is equivalent to the superposition of n independent
Poisson processes, and so the overall process is Poisson with

rate λ =
nP

i=1
λi .

Each type i storm consists of a marked point process of
rain cells, denoted as {(Uijk , Vijk), Sijk , Lijk , Xijk , RCijk

}

for the j -th occurrence of a type i storm, where the marked
process satisfies the following:

a. {(Uijk , Vijk)} forms a 2-D Poisson process with rate ζc,i
(per unit area per storm);
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b. (Uijk , Vijk) and RCijk
form discs in 2-D space, where

(Uijk , Vijk) is the disc centre and RCijk
is the disc radius

that is taken to be an independent exponential random
variable with parameter φc,i ;

c. Sijk is the arrival time of the k-th cell in the j -th occur-
rence of a type i storm, where Sijk − Tij are indepen-
dent exponential random variables with parameter βi ;

d. Lijk is the lifetime of the k-th cell, which is taken to be
an independent exponential random variable with pa-
rameter ηi , so that the k-th cell in the j -th occurrence of
a type i storm terminates at a time Sijk + Lijk; and

e. Xijk is a random variable representing the rain intensity
(depth per unit time) of the k-th cell in the j -th occur-
rence of a type i storm, where Xijk has mean θi and
remains constant throughout the cell lifetime and over
the area of the cell disc defined by {(Uijk , Vijk), RCijk

}.

Rain occurs at a spatiotemporal point (t , x, y) if, and only
if, both a cell and storm disc overlap the point. The total in-
tensity at spatiotemporal point (t , x, y) is then the sum of the
intensities of all cells alive at time t that have discs overlap-
ping (x, y) ∈ R2. Note that (c) above implies the cell arrival
time point process {Sijk} is the superposition of n Neyman–
Scott point processes.

For the purpose of model fitting and simulation, the
cell intensities Xijk are taken to be independent ex-
ponential random variables each with survivor function
P(Xijk > x) = e−x/θi and moments given by E[Xr

ijk] = r!θ r
i

(r = 0, 1, 2, ...). For each type i storm the number of cells Ci

that overlap a point in 2-D space R2 is a Poisson random vari-
able with mean νi = 2 πζc,i/φ

2
c,i (Cowpertwait, 1995). Fur-

thermore, since the rate of storm arrivals is also related to the
spatiotemporal rate of storms ζs,i and the mean storm radius
1/φs,i by λi = 2 πζs,i/φ

2
s,i , it follows that both spatiotemporal

rates, ζs,i and ζc,i , are functions of other model parameters
and do not need to be fitted separately. Hence, the superposed
spatiotemporal model is summarised by the following set of
independent parameters: {λi , νi , βi , ηi , φc,i , φs,i , θi ; i = 1, ...,
n}.

Although there are many possible storm types that could
be envisaged, usually it is sufficient in practice to have just
two storm types (n = 2 in the above) to broadly correspond
to two distinct types of storms: convective and frontal sys-
tems. However, a further storm type can be associated with
a spatial region – for example, to account for a third type of
precipitation event caused by orography.

3 Model fitting

3.1 Properties used in model fitting

The statistical properties of the spatiotemporal rainfall model
are given in the Appendix (Eqs. A2–A6). These properties

are stationary, whilst the physical rainfall process is non-
stationary in space and time. Non-stationarity in the physical
process can be accounted for by fitting the model to discrete
spatiotemporal intervals that are sufficiently small to be ap-
proximately stationary. For example, the model can be fitted
to data taken over the period of a calendar month to account
for seasonal changes in rainfall. Analogously, the model can
be fitted to spatially homogeneous regions that are approxi-
mately stationary. We adopt this approach, using the homo-
geneous regions found in the earlier study of daily rainfall
data from the Basque Country (Cowpertwait, 2011).

Based on the available model functions – see the
Appendix for details – the following properties are
used to fit the model: the mean rainfall, µ(h); the
coefficient of variation, υ(h) = σ(h)/µ(h); the coeffi-
cient of skewness, κ(h) = ξ(h)/σ 3(h); the autocorre-
lation, ρ(l, h) = γ (l, h)/σ 2(h); the cross-correlation,
ρ(d, l, h) = γ (d, l, h)/σ 2(h); and the proportion of dry
intervals of width h, ϕ(h). These functions are used at the
hourly, six-hourly, and daily aggregation levels (h = 1, 6,
and 24) in Eqs. (A2)–(A5) and at the daily level for the pro-
portion dry Eq. (A6). The autocorrelation is used at lag l = 1
and the cross-correlation at lag l = 0. In summary, the set of
properties for model fitting isF = {µ(1), υ(h), κ(h), ρ(1, h),
ρ(d, 0, h), ϕ(24): h = 1, 6, 24}.

3.2 Historical data and sample estimates

The data for the project came from 357 sites: 123 records
of hourly data for the period 1985–2010, and 234 records
of daily data for the period 1914–2010 (Fig. 1). About 73 %
of the data were missing over this period, with most miss-
ing in the earlier part (1914–1985). (The fitted model can
be used to fill in the missing data and disaggregate the daily
data to hourly values; Cowpertwait, 2006.) Sample estimates
of the properties for model fitting were found for each ho-
mogeneous region and for each month by pooling all avail-
able data for the month and region. A weighted average,
based on the number of available observations, of the sample
properties at the daily level of aggregation was calculated by
combining the estimates from the daily data with those from
the hourly series. For sample properties at aggregation lev-
els smaller than 24 h (i.e. at the 1- and 6-h levels), estimates
from the hourly series were used. In summary, the following
set of sample estimates was found for each month and region:
F̂ = {µ̂(1), υ̂(h), κ̂(h), ρ̂(1, h), ρ̂(d, 0, h), ϕ̂(24): h = 1, 6,
24}.

3.3 Modified method of moments

For each homogeneous region, the model parameters are es-
timated using a modified method of moments procedure that
minimises the sum of squares:

www.hydrol-earth-syst-sci.net/17/479/2013/ Hydrol. Earth Syst. Sci., 17, 479–494, 2013
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Fig. 1. Locations of gauges used in the study (taken from the three
homogeneous regions (Cowpertwait, 2011)): hourly data (�), daily
data (lightly shaded), temperature data (•) and gauges used to cali-
brate the TETIS catchment model (
).
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where g is a model function and ĝ is the equivalent sam-
ple estimate taken from the historical data. The model pa-
rameters are estimated for each homogeneous region in three
stages.

Stage 1: estimation of temporal parameters based on
dimensionless properties

Initially, G is F minus the mean and cross-correlation
ρ(d, 0, h), so that dimensionless temporal properties are fit-
ted to estimate the parameters {λi , νi , βi , ηi : i = 1, 2} for 2
storm types. When minimising Eq. (1), it is likely that there
are a number of local minima so that two sets of parame-
ter estimates may give similar fits to the sample properties
(e.g. see Vanhaute et al., 2012). This can result in the esti-
mates not following a smooth variation over seasons, which
is particularly undesirable in a regionalisation where com-
parisons between the estimates from different regions (and
months) are required. Hence, the procedure below is a modi-
fication of the minimisation procedure used in previous work
(e.g. Cowpertwait, 2006), to ensure a smoother variation of
the parameter estimates over seasons whilst retaining a good
fit to the sample properties. Fitting to the dimensionless tem-
poral properties is carried out in a series of steps as follows.

a. At the very least the parameter estimates must all be
greater than zero, and so a constrained minimisation of
Eq. (1) is necessary. So the first step in fitting is to place
wide arbitrary bounds on the parameters and then min-
imise Eq. (1).

b. Step (a) is repeated for each month to gives twelve esti-
mates for each of λi , νi , βi , and ηi (i = 1, 2).

c. For each parameter, the estimate for the j -th month is
adjusted to be the mean of the equivalent estimate of
adjacent months (e.g. the January estimate of λ1 is the
mean of the February and December estimates of λ1).

d. The parameters are re-estimated using the adjusted es-
timates from (b) as starting values when minimising
Eq. (1). The minimisation is constrained with bounds
for each parameter set to α % above and below the start-
ing value of the parameter; e.g. λ1 is constrained by
(1 − α/100) λ̂1 < λ1 < (1 + α/100) λ̂1, where λ̂1 is the
estimate of λ1 obtained in step (b).

e. Steps (b)–(c) are iterated n times to give a sample of
estimates for each parameter.

f. For each parameter, the median of the n iterated esti-
mates from step (d) is used as the final estimate.

Stage 2: estimation of spatial parameters

Using the estimates of {λi , νi , βi , ηi : i = 1, ..., 2} obtained
in Stage 1 above, the cell and storm radii parameters (φc,i
and φs,i) are estimated for each month by minimising Eq. (1)
with G = {ρ(d, 0, h) : h = 1, 6, 24; d ∈D}, by pooling data
from all available pairs of sites in the region when calculat-
ing the sample cross-correlations and set D of correspond-
ing distances. The estimates for the spatial parameters can be
taken to be the same in each region (so the estimates only
vary with season), in which case G =G1 ∪G2 ∪G3 in Eq. (1),
where Gj = {ρ(d, 0, h) : h = 1, 6, 24; d ∈ Dj } and Dj is the
set of distances for all pairs of sites in the j -th region (j = 1,
2, 3). The estimates of {λi , νi , βi , ηi : i = 1, ..., 2} for the j -th
region are used in the calculation of Gj = {ρ(d, 0, h) : h = 1,
6, 24; d ∈ Dj }.

Stage 3: estimation of the scale parameter

Finally, the scale parameter θ is taken to be the same for each
storm type and is estimated for each month from the sample
mean hourly rainfall µ̂(1) using the relation:

θ̂ = µ̂(1)/
�
λ̂1 ν̂1/η̂1 + λ̂2 ν̂2/η̂2

�
. (2)

This can vary for different sites or, when the regions are
clearly homogeneous, can be kept the same over a whole
region. Since θ̂ is a function of the mean rainfall, it can be
adjusted on a site-by-site basis when good estimates of the
site means are available.

3.4 Fitted rainfall model

Using the fitting procedure in Stage 1 above, a range of dif-
ferent parameter sets were used to fit two storm types to the
dimensionless sample properties from each region. It was
found that the mean number of cells per storm per site could
be kept the same for the different storm types (i.e. ν1 = ν2)
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Fig. 2. Parameter estimates plotted against iteration (January; cen-
tral region), illustrating Step (e) in the fitting procedure with n = 50
iterations. The median (red line) is the overall parameter estimate.

without a loss in overall goodness-of-fit to the sample prop-
erties. The fit to the dimensionless properties gave estimates
of λ1, β1, η1, λ2, β2, η2 and ν (= ν1 = ν2), for each month
and each region, which are shown in Fig. 3 and tabulated for
the central region in Table 2. To illustrate the iterations from
Step (d), plots are given for n = 50 iterations for the January
estimates in the central region, where correlation between
pairs of estimates, probably due to local minima, is evident
as the peaks tend to occur at the same iteration (Fig. 2). Fol-
lowing Stage 2 in Sect. 3.3, φc and φs were estimated and are
given in Table 2. The fitted and sample properties are given
in Figs. 4–6.

Initially, it seemed appropriate that the scale parameter θ ,
which is a function of the mean rainfall (Eq. 2), should de-
pend on altitude as found in previous studies (e.g. Cowpert-
wait, 2006). So the mean rainfall was found for each month
for each of the 357 sites (Fig. 1) and regressed on altitude
and indicator variables for the month and region. The regres-
sion models were fitted using weighted least squares with
weights corresponding to the number of observations used to
calculate the mean rainfall. The results indicated that altitude
was not needed as an explanatory variable when the region
and month were included in the model (Table 1). (Even a
regression model with 72 interacting terms only improved
R2 by 2 % when altitude was included.) This result provided
further support for the regionalisation procedure (Cowpert-
wait, 2011). The scale parameter was therefore treated as the
same within a homogeneous region and is shown plotted in
Fig. 3. However, as noted in Stage 3 of the fitting procedure,
this parameter can be estimated directly from the site mean
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Fig. 3. Temporal parameter estimates for the three regions: cen-
tral region (red), southern region (blue) and north-eastern region
(green).

Table 1. The percentage of explained variance (R2) for regres-
sion models of the mean rainfall. (Based on 4275 site-months of
observations.)

Variables in model R2/%

Altitude 8.0
Region 25.8
Month 44.9
Month, Region 70.8
Altitude, Month, Region 70.9

rainfall when this is available, which is the approach used in
Sect. 5.

The resulting parameter estimates reflect some expected
characteristics of the rainfall process. For example, over the
summer months, there is a general increase in both the cell
intensity parameter estimate (θ̂ ) and the cell duration param-
eters (η̂), whilst there is a general decrease in the number
of cells (ν̂) per storm (Fig. 3). This corresponds with the
expected increase in summer convective storms that tend to
have fewer, shorter duration (1/η̂) raincells, but of higher in-
tensity (Fig. 3).

Differences between the two fitted storm types can also be
discerned. For example, type 1 storms are less frequent than
type 2 storms because, in general, λ̂1 < λ̂2 (Fig. 3). In addi-
tion, type 1 storms have cells that are less clustered (β̂1 < β̂2)
and of longer duration (η̂1 < η̂2). Type 1 storms are there-
fore more representative of stratiform rain, which would tend
to be more persistent. It should, however, be mentioned that
these classifications of storm types are partially for additional

www.hydrol-earth-syst-sci.net/17/479/2013/ Hydrol. Earth Syst. Sci., 17, 479–494, 2013
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Table 2. Parameter estimates for the central region.

month λ̂1 ν̂ β̂1 η̂1 λ̂2 β̂2 η̂2 φ̂c φ̂s θ̂

1 0.000117 101 0.0114 2.26 0.0113 0.156 42.5 0.252 0.0165 5.60
2 0.000312 102 0.0312 3.30 0.0112 0.198 34.6 0.238 0.0168 3.76
3 0.00113 110 0.0440 2.13 0.0103 0.273 18.5 0.236 0.0144 1.28
4 0.00120 45.6 0.0635 3.17 0.0172 0.410 23.2 0.227 0.0132 3.37
5 0.00119 29.5 0.0540 2.10 0.0149 0.434 21.4 0.224 0.0137 3.89
6 0.000345 26.3 0.0587 2.13 0.00694 0.236 15.2 0.226 0.0143 6.66
7 0.000155 21.6 0.0234 4.21 0.00554 0.403 39.0 0.237 0.0197 20.8
8 0.000219 33.2 0.0337 3.56 0.00822 0.447 44.6 0.240 0.0210 12.0
9 0.000134 30.1 0.0481 2.33 0.00751 0.260 21.4 0.235 0.0224 9.65
10 0.000311 63.0 0.0301 3.05 0.0114 0.324 32.8 0.238 0.0218 5.71
11 0.000352 140 0.0313 2.73 0.0111 0.173 22.4 0.255 0.0179 2.44
12 0.000155 126 0.0136 1.28 0.0123 0.196 22.2 0.263 0.0160 2.24

flexibility in the model parameterisation, to obtain a good
fit to the data, and that properties similar to those observed
for convective storms could result, by chance, in simulations
for any storm type in the model (because all the variables
in the model are random). However, a general tendency for
storm characteristics of a particular type is ensured through
this classification and is supported by observing the clear dis-
tinction in the resulting estimates for the different storm types
(Fig. 3).

There are also regional differences in the parameter esti-
mates. For example, the north-eastern (green) region has a
consistently higher rate of storm arrivals (λ̂), whilst the cen-
tral (red) region has a higher number of cells per storm dur-
ing the winter months (lower left-hand plot in Fig. 3). Also,
whilst the north-eastern region has a tendency to experience
more storms, over the summer the cells are generally less in-
tense, as indicated by a lower value of θ̂ (lower right-hand
plot; Fig. 3). If λ1 is interpreted as a rate for stratiform storm
occurrence, then the north-eastern region receives the highest
rainfall of this type. The southern region has notably fewer
storms over the summer months, having the lowest value of
λ̂2 (upper right-hand plot; Fig. 3). These regional differences
are most likely to be due to the presence of both the ocean to
the north and the Cantabrian Mountains separating the north-
ern and southern regions.

In general, the fit to the sample properties is very good
(Figs. 4 and 5). Again, seasonal and regional difference are
evident in the figures. For example, there is a notable differ-
ence between the southern (blue) and north-eastern (green)
regions: the southern region has lower values of autocorre-
lation but notably higher values of skewness, the proportion
dry, and the coefficient of variation, especially over the sum-
mer months (Figs. 4 and 5). This corresponds to fewer more
intense events (lower λ2, ν, higher θ ; Fig. 3) characteristic
of summer convective storms. However, a clear correspon-
dence between any selected parameter estimate and the sam-
ple estimates is generally lacking, but this is essentially due
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Fig. 4. Fitted (x) and observed (lines) second order properties for
the central region (red), southern region (blue) and north-east region
(green).

(Figs. 4, 5), indicates that the fitted model may be suitable
for flood studies. In Section 5, the model is further validated
against properties, such as peak flow discharges, that are im-
portant in the intended application.455

4 Stochastic temperature model

4.1 Models for the first principal component

In weather generators, stochastic temperature models have
been related to rainfall (e.g. see Kilsby et al., 2007). Al-
though a rainfall variable is used in the following, our re-460

sults indicate that it is a poor predictor of temperature for
the Basque Country and so we consider an alternative ap-
proach, based on principal components, that can also be used
to generate multisite temperature series. Principal compo-
nents have been used in other studies of the spatial variation465

in temperature series, e.g. see Benzi et al. (1997). The ap-
proach described herein differs in that it provides a method
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Fig. 5. Fitted (x) and observed (lines) skewness and proportion of
dry days for the central region (red), southern region (blue) and
north-east region (green).

Table 3. Percentage of variance explained by the first five principal
components of maximum daily temperature and total rainfall.

PC1 PC2 PC3 PC4 PC5
Temperature 92 2.4 0.91 0.57 0.49
Rainfall 71 6.0 3.2 2.8 2.1

of constructing a full spatiotemporal temperature model that
can be used to simulate multisite hourly temperature series at
any location in a region.470

There were 23 sites with (near) complete records of daily
maximum temperatures, and total rainfall, for the period
1985–2010 (Fig. 1). This was used to form a matrix of 9490
rows and 23 columns of maximum daily temperatures, from
which the principal components of the daily temperature data475

were extracted (based on the correlations between the sites).
In addition, the principal components of the daily rainfall to-
tals were also found and the percentage of variance associ-
ated with each component extracted (Table 3).

The first principal component accounts for 92% of the480

variance in the temperature data, whilst the second compo-
nent only accounts for 2.4% of the variability (Table 3). This
high first value, followed by a subsequent low value, indi-
cates that the spatial variation of the temperatures is mainly
accounted for in a single component. In contrast, daily rain-485

fall has a lower first component of 71% followed by val-
ues that are higher than the corresponding values for tem-
perature (Table 3). This is due to the rainfall process hav-

Fig. 4. Fitted (x) and observed (lines) second order properties for
the central region (red), southern region (blue) and north-eastern
region (green).
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Fig. 4. Fitted (x) and observed (lines) second order properties for
the central region (red), southern region (blue) and north-east region
(green).

(Figs. 4, 5), indicates that the fitted model may be suitable
for flood studies. In Section 5, the model is further validated
against properties, such as peak flow discharges, that are im-
portant in the intended application.455

4 Stochastic temperature model

4.1 Models for the first principal component

In weather generators, stochastic temperature models have
been related to rainfall (e.g. see Kilsby et al., 2007). Al-
though a rainfall variable is used in the following, our re-460

sults indicate that it is a poor predictor of temperature for
the Basque Country and so we consider an alternative ap-
proach, based on principal components, that can also be used
to generate multisite temperature series. Principal compo-
nents have been used in other studies of the spatial variation465

in temperature series, e.g. see Benzi et al. (1997). The ap-
proach described herein differs in that it provides a method
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Fig. 5. Fitted (x) and observed (lines) skewness and proportion of
dry days for the central region (red), southern region (blue) and
north-east region (green).

Table 3. Percentage of variance explained by the first five principal
components of maximum daily temperature and total rainfall.

PC1 PC2 PC3 PC4 PC5
Temperature 92 2.4 0.91 0.57 0.49
Rainfall 71 6.0 3.2 2.8 2.1

of constructing a full spatiotemporal temperature model that
can be used to simulate multisite hourly temperature series at
any location in a region.470

There were 23 sites with (near) complete records of daily
maximum temperatures, and total rainfall, for the period
1985–2010 (Fig. 1). This was used to form a matrix of 9490
rows and 23 columns of maximum daily temperatures, from
which the principal components of the daily temperature data475

were extracted (based on the correlations between the sites).
In addition, the principal components of the daily rainfall to-
tals were also found and the percentage of variance associ-
ated with each component extracted (Table 3).

The first principal component accounts for 92% of the480

variance in the temperature data, whilst the second compo-
nent only accounts for 2.4% of the variability (Table 3). This
high first value, followed by a subsequent low value, indi-
cates that the spatial variation of the temperatures is mainly
accounted for in a single component. In contrast, daily rain-485

fall has a lower first component of 71% followed by val-
ues that are higher than the corresponding values for tem-
perature (Table 3). This is due to the rainfall process hav-

Fig. 5. Fitted (x) and observed (lines) skewness and proportion of
dry days for the central region (red), southern region (blue) and
north-eastern region (green).

to the model properties (Eqs. A2–A6) being functions of all
the model parameters.

The fit to the sample cross-correlations is given in Fig. 6,
where it can be seen that the curves decay with distance, as
expected. The spatial estimates (φ̂c and φ̂s) are the same for
all three regions, so the slight difference in the curves for the
different regions is due to the differences in the temporal pa-
rameter estimates obtained in Stage 1 of the fitting procedure
(and given in Fig. 3).

Some exceptions to the general goodness-of-fit may be ob-
served – the most notable being an over-estimation in the
proportion of dry days in the summer months for the cen-
tral and southern regions (lower right-hand plot in Fig. 5). A
dry period requires an arbitrary definition, since the model
may generate very small values (and gauges usually require
a small accumulation of rainfall before tipping). In this anal-
ysis, an observed daily rainfall of less than 0.1 mm is taken
to be dry – an amount that could easily be lost due to evapo-
ration. The distribution of daily rainfall is largely determined
by the first three sample moments. These are closely matched
by the model in the central region; hence, the lack-of-fit to the
proportion dry may be of small practical significance.

It is useful to consider the fit to observed extreme values,
since these are not used in the fitting procedure and are im-
portant when simulating high flows. Using the estimates in
Table 2, one thousand years of hourly rainfall were simu-
lated for the daily sites in the central region. These were ag-
gregated to daily values and the annual maxima found for
each site. The median of the annual maxima across the sites
was then calculated; these were ordered in 20-year blocks
for simulated and observed (1951–2010) series and plotted
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Fig. 6. Fitted (lines) and observed hourly cross correlations for the
central region (red), the southern region (blue) and the north-east
region (green).

ing more between-site spatial variability than temperatures.
Consequently, a spatial temperature model need not contain490

the same level of complexity as the spatial-temporal rainfall
model of §2.2. The first principal component was therefore
used as the basis for a spatial-temporal temperature model.

Harmonic curves were fitted to the first principal com-
ponent to account for seasonality. The i-th harmonic
is given by: zt = sin(2iπt/365 + φ) = sisin(2iπt/365) +
cicos(2iπt/365), where t is time measured in days and zt

is the first principal component score of the maximum daily
temperatures. The first harmonic was fitted by least squares
and is given by:

zt = 2.1sin(2πt/365)+4.7cos(2πt/365)+at (3)

where at is the residual error series. (Two harmonic models
were fitted to the first component score of maximum daily495

temperature by least squares regression. The first, given
above, contained only the first harmonic whilst the second
contained the first 20 harmonics and was thus notably more
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Fig. 7. Median annual maxima of sites in the central region. The
observed (-) consists of three samples of 20 years. The simulated
(blue circles) are based on 50 samples of 20 years (1000 years of
simulated data).

complex. When compared to the simpler model, the more
complex harmonic model only improved the adjusted R2 by500

2% and so the simpler model above was selected in prefer-
ence.)

A plot of the first ten years of the fitted values against the
observed scores is shown in Figure 8, where it is evident that
the harmonic model successfully follows the seasonal vari-
ation in the first principal component. There is evidence of
random variation about the curve and so a stochastic compo-
nent is required for at. A best fitting autoregressive model,
based on maximum likelihood, was therefore found and is
given by:

at = 0.77at−1−0.13at−2 +0.074at−3 +0.039at−4 +wt

(4)
where wt is the residual error series.

The correlogram of the residuals of the fitted AR(4) model
indicates that the model successfully accounts for the au-505

tocorrelation in the residual series of the fitted harmonic
model (Fig. 9). Furthermore, there is no evidence of any
persistence or seasonal variation indicating that the harmonic
model combined with the AR(4) model provides a good fit to
the first principal component score of the data (Fig. 9). The510

sample variance of the AR(4) residuals, which is needed in
simulations, is 3.7.

Fig. 6. Fitted (lines) and observed hourly cross-correlations for the
central region (red), the southern region (blue) and the north-eastern
region (green).

against the standardised Gumbel variate. (Fig. 7). Although
some lack-of-fit can be seen in the very largest value, where
the observed value exceeds the simulated values, in gen-
eral the results indicate that the model performs satisfacto-
rily with respect to the extremes, because the observed val-
ues fall within the range of simulated values (Fig. 7). This,
together with the goodness-of-fit to properties up to third or-
der (Figs. 4 and 5), indicates that the fitted model may be
suitable for flood studies. In Sect. 5, the model is further val-
idated against properties, such as peak flow discharges, that
are important in the intended application.

4 Stochastic temperature model

4.1 Models for the first principal component

In weather generators, stochastic temperature models have
been related to rainfall (e.g. see Kilsby et al., 2007). Al-
though a rainfall variable is used in the following, our re-
sults indicate that it is a poor predictor of temperature for

www.hydrol-earth-syst-sci.net/17/479/2013/ Hydrol. Earth Syst. Sci., 17, 479–494, 2013
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Fig. 7. Median annual maxima of sites in the central region. The ob-
served (−) consists of three samples of 20 yr. The simulated (blue
circles) are based on 50 samples of 20 yr (1000 yr of simulated
data).

the Basque Country, and so we consider an alternative ap-
proach, based on principal components, that can also be used
to generate multisite temperature series. Principal compo-
nents have been used in other studies of the spatial variation
in temperature series, e.g. see Benzi et al. (1997). The ap-
proach described herein differs in that it provides a method
of constructing a full spatiotemporal temperature model that
can be used to simulate multisite hourly temperature series at
any location in a region.

There were 23 sites with (near-) complete records of daily
maximum temperatures, and total rainfall, for the period
1985–2010 (Fig. 1). This was used to form a matrix of
9490 rows and 23 columns of maximum daily temperatures,
from which the principal components of the daily tempera-
ture data were extracted (based on the correlations between
the sites). In addition, the principal components of the daily
rainfall totals were also found and the percentage of variance
associated with each component extracted (Table 3).

The first principal component accounts for 92 % of the
variance in the temperature data, whilst the second compo-
nent only accounts for 2.4 % of the variability (Table 3). This
high first value, followed by a subsequent low value, indi-
cates that the spatial variation of the temperatures is mainly
accounted for in a single component. In contrast, daily rain-
fall has a lower first component of 71 % followed by val-
ues that are higher than the corresponding values for tem-
perature (Table 3). This is due to the rainfall process having
more between-site spatial variability than temperatures. Con-
sequently, a spatial temperature model need not contain the
same level of complexity as the spatiotemporal rainfall model
of Sect. 2.2. The first principal component was therefore used
as the basis for a spatiotemporal temperature model.

Harmonic curves were fitted to the first principal com-
ponent to account for seasonality. The i-th harmonic
is given by zt = sin(2 i πt/365 + φ) = si sin(2 i πt/365)

Table 3. Percentage of variance explained by the first five principal
components of maximum daily temperature and total rainfall.

PC1 PC2 PC3 PC4 PC5

Temperature 92 2.4 0.91 0.57 0.49
Rainfall 71 6.0 3.2 2.8 2.1

Fig. 8. The first ten years of the first principal component score of
the maximum daily temperature. The line (in red) is the fitted value
given by the harmonic model (Eq. 3).

+ ci cos(2 i πt/365), where t is time measured in days and zt

is the first principal component score of the maximum daily
temperatures. The first harmonic was fitted by least squares
and is given by

zt = 2.1 sin(2πt/365) + 4.7 cos(2πt/365) + at , (3)

where at is the residual error series. (Two harmonic mod-
els were fitted to the first component score of maximum
daily temperature by least squares regression. The first, given
above, contained only the first harmonic, whilst the second
contained the first 20 harmonics and was thus notably more
complex. When compared to the simpler model, the more
complex harmonic model only improved the adjusted R2

by 2 %, and so the simpler model above was selected in
preference.)

A plot of the first ten years of the fitted values against the
observed scores is shown in Fig. 8, where it is evident that the
harmonic model successfully follows the seasonal variation
in the first principal component. There is evidence of random
variation about the curve, and so a stochastic component is
required for at . A best-fitting autoregressive model, based on
maximum likelihood, was therefore found and is given by

at = 0.77at−1 − 0.13at−2 + 0.074at−3 + 0.039at−4 + wt , (4)

where wt is the residual error series.
The correlogram of the residuals of the fitted AR(4) model

indicates that the model successfully accounts for the auto-
correlation in the residual series of the fitted harmonic model
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Fig. 9. Correlogram of the residuals of the fitted AR(4) model.

(Fig. 9). Furthermore, there is no evidence of any persistence
or seasonal variation, indicating that the harmonic model
combined with the AR(4) model provides a good fit to the
first principal component score of the data (Fig. 9). The sam-
ple variance of the AR(4) residuals, which is needed in sim-
ulations, is 3.7.

4.2 Spatial daily temperature model

The maximum daily temperature at each site was regressed
on the following variables: altitude, region (as an indica-
tor variable), the first principal component score (PC1; zt ),
and daily rainfall. The fitted regression model is shown in
Table 4.

All variables are statistically significant (Table 4). How-
ever, some of the variables are statistically significant be-
cause of the large numbers of observations, but they are not
of practical significance. For example, if the rainfall vari-
able is removed, there is no change in R2 to four signifi-
cant figures, implying that the rainfall variable can be left
out when predicting maximum daily temperatures. (This is
also reflected in the very low coefficient for the rainfall vari-
able; Table 4.) Overall, the fitted model explains more than
90 % of the variance in the daily temperatures, which im-
plies the model provides a good fit to the data. In addition, as
expected, the model predicts lower temperatures at higher al-
titudes and higher temperatures in the south (and marginally
lower temperatures for higher rainfall).

Maximum daily temperatures can therefore be simulated
at any site by first simulating a series of autoregressive terms
(Eq. 4), adding these to the harmonic equation for the first
principal component (Eq. 3) and then using the simulated
first component (PC1) as a predictor in the regression model
(Table 4). Rainfall can probably be left out of this procedure
without any practical effect on the results.

Table 4. Regression model for maximum daily temperatures (◦C).

Variable Coefficient Standard error

Intercept 19.3 0.011
S Region 0.826 0.014
NE Region −0.646 0.015
PC1 Score −1.48 0.0010
Altitude −0.00519 0.000031
Rain −0.00283 0.00064

Residual SE: 2.21 on 218 265 degrees of freedom, adjusted
R2: 90.5 %.

4.3 Hourly temperature model

For this part of the study hourly temperatures were required.
From the available temperature data, most of the data were
at the daily level. Nevertheless, a total of 45 607 values of
hourly temperatures were available for model fitting.

Let Tmax be the maximum daily temperature. Hourly tem-
peratures can be related to this using the following equation:

Tt = Tmax − |A|ht , (5)

where Tt is the temperature at time t (in hours; t = 1, ..., 24),
A is the temperature range over the day and ht is the mean
scale factor at time t (0 ≤ ht ≤ 1). Note that the scale factor
ht ensures the maximum daily temperature is retained. The
scale factor ht is taken to be constant for different months and
sites and is estimated by taking the mean of (Tmax − Tt )/A

for each hour over all the records. This does result in the
maximum temperature occurring at the same time each day,
but this is unlikely to be of practical importance in the sim-
ulations. The estimates for ht are as follows: 0.906, 0.930,
0.953, 0.974, 0.993, 1.000, 0.966, 0.879, 0.724, 0.520, 0.318,
0.154, 0.0457, 0, 0.0195, 0.0932, 0.208, 0.352, 0.502, 0.633,
0.731, 0.797, 0.843, 0.878 (in order from the first hour,
00:00–01:00 UTC, after midnight).

The range A was regressed on the maximum daily tem-
perature, month (as an indicator variable), and the daily rain-
fall (Table 5). The regression model for predicting the tem-
perature range A has a lower R2 compared to the model
for predicting maximum daily temperature (Table 5). Nev-
ertheless, it provides a method for distributing the hourly
temperatures over a day, conditional on the predicted max-
imum temperatures, and may be adequate in practice. As ex-
pected, the model predicts a greater range of temperatures
when the maximum temperature is high, which would typ-
ically occur during the summer months (see the coefficient
for the maximum temperature in Table 5). Also, the predicted
range (when the explanatory variable for maximum temper-
ature takes the same value in both winter and summer) is
greater in winter, as would be expected for a maritime cli-
mate with higher temperature drops at night during winter
months. For example, the coefficient for February is 0.62,
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Table 5. Regression model for daily temperature range (◦C).

Variable Coefficient SE

Intercept 0.267 0.056
Max temperature 0.563 0.0028
rain −0.257 0.030
Feb 0.622 0.068
Mar 0.330 0.067
Apr −0.0728 0.068
May −1.39 0.070
Jun −3.10 0.073
Jul −4.03 0.075
Aug −4.45 0.076
Sep −3.08 0.073
Oct −2.84 0.070
Nov −1.24 0.067
Dec −0.399 0.066

Residual SE: 2.90 on 45 594 of freedom, adjusted R2:
53.6 %.

compared to −4.45 for August, indicating a lower range for
August and, hence, a higher temperature drop in February
(Table 5).

5 Case study and validation

5.1 Urola catchment

In forthcoming projects, the fitted rainfall and temperature
models will be coupled with a hydrological catchment model
to simulate long flow series for the purpose of evaluating
design discharges in flood studies. This approach removes
the need to explicitly assign antecedent conditions, such as
soil moisture, which are a significant source of uncertainty
(Michele and Salvadore, 2002; Boughton and Droop, 2003;
Camici et al., 2011). In the following case study, this ap-
proach is adopted using the spatiotemporal rainfall and tem-
perature models to simulate data for input to a distributed
catchment model.

A flood risk assessment is needed for the Urola basin,
which requires the establishment of different design dis-
charges. The catchment is located in the north of the Iberian
Peninsula. The region is characterised by an oceanic climate,
which is humid and temperate without a dry season. The
mean annual rainfall in the catchment ranges from 1200 to
1600 mm, while the mean annual temperature varies between
11.5 ◦C in the upper part of the valley and 13.5 ◦C in the
lower part. Usually rainfall occurs due to the advection of
North Atlantic fronts coming from the north-west and hit-
ting the slopes of the Cantabrian Mountains, located only 30–
60 km from the coast. This results in uniform and moderate
precipitation. However, persistent and very intensive convec-
tive phenomena can also take place due to the combination
of polar air and high sea surface temperatures, leading to

heavy rainfall and flooding. The catchment covers a surface
of 342 km2 running from south to north along 65 km of main
stream. Upstream, close to the Aitzkorri Sierra, the valley is
narrow and steep (average slope of 1.5 %). Downwards and
after receiving its main tributary, the Ibai-Eder River, the val-
ley widens and flattens before reaching the Atlantic (Fig. 10).
There are three gauges in the catchment that are known to
provide reliable data (Fig. 10). However, the available record
lengths, which range from 13 to 22 yr, are too short to confi-
dently extrapolate high return period events that are needed
to design protection measures against flood damage. Conse-
quently, the Urola basin is a good example for a case study.

5.2 Calibration of the distributed catchment model

The TETIS model was selected to simulate the hydrological
processes in the River Urola basin (Francés et al., 2007). The
model is a conceptual distributed catchment model that di-
vides the catchment into square cells, each characterised by
six tanks linked vertically. Each tank represents the different
water storages in the terrestrial phase of the hydrological cy-
cle. Water flows downstream from each cell until reaching
the river channel. A more detailed description of the model
is available in Francés et al. (2007) or Vélez et al. (2009).

Three main parameters are responsible for the model out-
put: (1) the static storage capacity, which controls the amount
of water lost due to evapotranspiration in the long-term and
the initial losses in the case of a flood; (2) the soil hydraulic
conductivity, which affects the amount of infiltration and the
velocity of interflow discharge; and (3) the subsoil hydraulic
conductivity, which determines the amount of percolation
and the velocity of the base flow discharge. These parameters
have been estimated for the region and the model shown to
successfully predict surface water runoff (Vélez et al., 2009).

There are five variables that define the initial conditions
for each simulation, corresponding to the initial level in
each tank. To avoid over-parameterising the model, follow-
ing Beven and Binley (1992), values are obtained for the ini-
tial conditions by simulating a sufficiently long antecedent
period; soil moisture conditions for long daily simulations
were used (in part to reduce computational times) as initial
states in the hourly simulations. In addition to these variables,
the model has nine further correction factors that are used to
adjust the way the three main parameters affect the hydro-
logical processes and the value of other variables needed in
simulations, such as the evapotranspiration and the overland
and channel flow velocities. These correction factors are cal-
ibrated using a set of recorded events. The Nash–Sutcliffe ef-
ficiency coefficient (or R2) is used to assess goodness-of-fit.
In general, an acceptable value of R2 is 0.6 and a value ex-
ceeding 0.8 is indicative of an excellent fit (Pappenberger and
Beven, 2004). A unique set of correction factors was sought
for 13 flood events (discussed in the next section). When
this is achieved, assuming high overall R2 values are main-
tained, the fitted model should be of practical value in flood
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Fig. 10. Location of the Urola catchment and gauges used to calibrate the distributed catchment model in the validation of the stochastic
models.

studies. Furthermore, as the model is distributed and relies on
three maps of parameters that have been estimated along the
whole basin, discharges can be estimated at ungauged loca-
tions (Beven, 1985). Calibrating the model to heavier events
helps ensure that a satisfactory fit is obtained to annual max-
imum discharges, which are important in the intended appli-
cation. Although this may result in some reduced goodness-
of-fit for smaller events, continuous daily simulations of 9
historical years gave R2 values of 0.75, 0.69, and 0.80 for
B1Z1, B1Z2, and B2Z1, respectively (similar to those ob-
tained by Vélez et al., 2009), indicating an overall satisfac-
tory fit (in particular, with respect to soil moisture conditions
which are important in the simulation of peak discharges).

5.3 Fitted TETIS model

From 2001, there were 13 flood events in the Urola catch-
ment, with data available from three gauges (Fig. 10). These
events form the basis of the calibration used here; their main
features, which are given in Table 6, cover a range of different
antecedent conditions and rainfall intensities. Maximum and
minimum temperatures are also available from those gauges,
enabling the estimation of potential evapotranspiration by
means of the Penman–Monteith equation and the simplifi-
cations suggested by the FAO (Allen et al., 1998).

Starting with a multiple-event automatic calibration pro-
cess based on the SCE-UA algorithm (Duan et al., 1994) and
mean R2 as an objective function, the nine correction factors

in TETIS were adjusted to match the flows at each of the
three sites, taking into account both R2 and the absolute peak
error (|sim − obs|/obs, where “sim” and “obs” are abbrevi-
ations for simulated and observed flows respectively). The
Aiztu (B1Z1) and Ibai-Eder (B1Z2) sites were calibrated first
and simulated series from these sites used to calibrate the
inter-watershed between them and the Aizarnazabal (B2Z1)
site. Based on the three optimum models, a regionalisation
procedure was used to obtain a unique set of correction fac-
tors that could be applied to the whole catchment and set of
observed events. An iterative process was used to reach op-
timum values of the correction factors for the whole basin
to ensure an overall goodness-of-fit, without a significant re-
duction in R2. Hence, the correction factors used in this study
differed from those in Vélez at al. (2009); for example, in
this study a single regionalised correction factor for overland
flow (0.06) was used for the whole basin, which differed from
the approach in Vélez et al. (2009) in which model calibra-
tion was for the most downstream station, thus leading to
poorer model performance at upstream sites. These differing
approaches are due, in part, to different objectives: the ob-
jective here is to produce models for flood studies, whilst the
objective in Vélez et al. (2009) is to produce models for water
resources.

The absolute peak errors and R2 values obtained in
the model calibration are given at the bottom of Table 6.
Although there are some events where the comparison is
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Table 6. Summary of event calibration data for the TETIS model.

Dec Feb Jan Nov Dec Mar Mar Jun Jan Sep Nov Jun Nov
2002 2003 2004 2004 2005 2006 2007 2008 2009 2009 2009 2010 2011

Start date 1 Dec 28 Jan 22 Jan 9 Nov 28 Dec 10 Mar 7 Mar 31 May 25 Jan 17 Sep 5 Nov 14 Jun 3 Nov
End date 7 Dec 6 Dec 26 Jan 13 Nov 31 Dec 14 Mar 10 Mar 3 Jun 30 Jan 20 Sep 12 Nov 18 Jun 7 Nov
Prev. 5-day 15.6 15.2 41.4 7.8 0.0 32.5 5.6 7.8 55.6 10.6 27.6 21.0 16.5
rainfall (mm)
Total 245.9 228.6 68.0 132.0 64.7 92.4 73.6 78.5 92.7 96.2 209.2 117.7 248.2
rainfall (mm)
Max 24 h 65.0 51.0 33.3 49.3 30.8 56.9 40.8 43.2 52.1 77.0 49.7 79.7 109.7
rain (mm)
B1Z1 max 43.8 54.3 26.2 29.1 45.3 38.9 32.1 62.0 46.4 12.8 54.4 55.1 51.2
flow (m3 s−1)
B2Z1 max 158.8 139.2 85.8 92.1 123.6 146.4 66.9 127.9 168.6 23.4 170.5 175.9 460.2
flow (m3 s−1)
B1Z2 max – – 22.0 22.1 27.8 30.7 18.9 37.3 30.6 4.8 26.9 22.4 51.5
flow (m3 s−1)
B1Z1 flow 11.96 11.93 4.18 3.16 2.17 5.04 3.37 2.9 6.22 0.70 10.53 3.45 5.12
vol. (h m3)
B2Z1 flow 45.38 51.92 16.21 12.49 8.5 20.74 8.49 9.55 24.73 2.53 28.4 13.26 39.22
vol. (h m3)
B1Z2 flow – – 4.12 2.96 2.29 4.72 2.65 2.15 3.98 0.54 5.08 1.90 6.07
vol. (h m3)

Goodness-of-fit calibration measures

B1Z1
R2 0.76 0.68 0.77 0.05 0.97 0.81 0.64 0.83 0.93 0.42 0.86 0.92 0.67
Abs. peak error 0.07 0.14 0.12 0.4 0.12 0.11 0.37 0.34 0 0.72 0.05 0.09 0.42
B2Z1
R2 0.87 0.71 0.65 0.77 0.96 0.93 −0.93 0.49 0.98 0.41 0.81 0.97 0.78
Abs. peak error 0.08 0.04 0.27 0.22 0.07 0.02 0.79 0.05 0.09 0.56 0.1 0.15 0.42
B1Z2
R2 – – 0.12 0.49 0.78 0.64 0.6 0.68 0.8 −1.02 0.51 0.85 0.84
Abs. peak error – – 0.55 0.21 0.24 0.15 0.36 0.19 0.12 0.94 0.03 0.01 0.05

Table 7. Summary statistics for annual maximum flows (m3 s−1).

Site obs/sim min lower median mean upper max No. of
quartile quartile values

B1Z1 observed 20.7 31.50 39.80 41.91 51.2 66.3 13
B1Z1 simulated 11.3 27.10 38.45 42.25 52.0 192.6 500
B2Z1 observed 62.8 87.32 129.00 141.70 160.1 460.2 16
B2Z1 simulated 22.1 79.95 126.00 143.70 185.1 778.5 500
B1Z2 observed 9.1 19.35 26.40 29.90 35.1 59.4 22
B1Z2 simulated 5.6 17.67 29.45 35.77 45.8 229.6 500

poor, probably due to a deficient rainfall representation, the
overall fit is good with a median R2 of 0.77, 0.78 and 0.64 at
sites B1Z1, B2Z1 and B1Z2, respectively, which are above
the acceptation threshold. The absolute peak errors are also
satisfactory. In general, taking into account that 13 events
have been used in calibration, the model can be regarded
as suitable for representing the hydrological response of the

catchment during major flood events (Brath et al., 2004).
As an example, Fig. 11 gives the simulated and observed
hydrographs for the six largest flood events recorded at the
Aizarnazabal (B2Z1) gauge.
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Table 8. Kolmogorov–Smirnov test statistic to compare distributions of the annual maximum flows (m3 s−1).

B1Z1, obs B2Z1, obs B1Z2, obs B1Z1, sim B2Z1, sim B1Z2, sim

B1Z1, obs 0.00 (1.000) 0.94 (0.000) 0.45 (0.088) 0.18 (0.783) 0.86 (0.000) 0.37 (0.064)
B2Z1, obs – – 0.00 (1.000) 1.00 (0.000) 0.86 (0.000) 0.23 (.0367) 0.90 (0.000)
B1Z2, obs – – – – 0.00 (1.000) 0.34 (0.018) 0.89 (0.000) 0.17 (0.556)
B1Z1, sim – – – – – – 0.00 (1.000) 0.75 (0.000) 0.21 (0.000)
B2Z1, sim – – – – – – – – 0.00 (1.000) 0.78 (0.000)
B1Z2, sim – – – – – – – – – – 0.00 (1.000)

Values in bold type are for the simulated (sim) and observed (obs) distributions from the same site. The p values for the tests are given in brackets.

Fig. 11. Calibration plots for the distributed catchment model: com-
parisons between observed (solid line) and fitted (dashed red line)
hydrographs for the largest six events at the Aizarnazabal (B2Z1)
site.

5.4 Flow simulations and validation of spatiotemporal
models

The Urola catchment overlaps the central and north-eastern
homogeneous regions (Fig. 1). However, the majority of
the catchment, and the upper part of the catchment that
contributes the most to the flows, is contained in the cen-
tral region. Hence, the parameter estimates for the central

Fig. 12. Quantile plots for the distributions of annual maximum
flows: B1Z1 (◦), B2Z1 (+), B1Z2 (4). (The values plotted have
equal probabilities.)

region were selected (Table 2). The estimates of θ (Table 2;
Sect. 3.3, Stage 3) were multiplied by 1.08, 1.04 and 1.08 for
sites B1Z1, B2Z1 and B1Z2, respectively, to achieve exact
fits to the annual mean rainfalls at each site (this is equiva-
lent to just scaling simulated rainfall series at these sites by
these factors). Five hundred years of hourly multisite rainfall
and temperature data were simulated at the three sites. The
simulated rainfall and temperature series were then used as
input to the calibrated distributed catchment model to create
a series of simulated discharges for each of the three sites.
The annual maximum flows were extracted from the simu-
lated series and compared with the annual maximum flows
recorded at the gauges for each site. Summary statistics for
the distributions of the maximum flows are given in Table 7
and quantile plots in Fig. 12.

In general, the distributions of the simulated annual max-
imum flows compare favourably to distributions of the ob-
served maximum flows (Fig. 12). Some over-estimation in
the mean (and median) maximum flow for site B1Z2 is evi-
dent in Fig. 12 and in Table 7, and a t-test of the difference
in the mean values gave a possibly significant result with a
p value of 0.08. A Kolmogorov–Smirnov test statistic for the
differences in distributions of maximum flows was found for
each pair of distributions. This provides a more formal test of
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the differences seen in Table 7 and Fig. 12. The test statistic
and p values are given in Table 8.

Table 8 shows that there is no statistical evidence of a dif-
ference in the distributions of the annual maximum flows for
data at the same sites (shown in bold type). The table also
shows that the test is capable of discerning differences in the
distributions at different sites; e.g. compare the results for
the observed flows at B1Z1 and B2Z1. Some of the differ-
ences are possibly significant; e.g. the test statistic for the ob-
served flows at sites B1Z1 and B1Z2 had a p value of 0.088
(Table 8). This is probably because the sites are the clos-
est and have the same scale factor and, hence, the same en-
semble temporal rainfall properties. Whilst it is interesting to
note variations in the distributions at different sites, the most
important validation statistic is the measurement of the dif-
ference in simulated and observed distributions at the same
site, for which there is no statistical evidence of a difference
(Table 8).

6 Conclusions

In summary, spatiotemporal rainfall models were fitted to
data from three homogeneous regions in the Basque Coun-
try. In general, good fits were obtained to sample properties
of the observed rainfall series. The first principal component
explained 92 % of the variability in daily temperatures and
was hence used as predictor in the spatiotemporal tempera-
ture model. A distributed model was calibrated for the Urola
catchment. Using the spatiotemporal models, hourly rainfall
and temperature data were simulated for three sites in the
catchment and flows generated using the simulated data as
input for the catchment model. The distribution of observed
annual maximum flows, taken from the site gauges, com-
pared favourably to simulated maximum flows. The mod-
els are therefore validated for the catchment and can be used
with confidence in further studies; these will include obtain-
ing high return period discharges for river networks in the
Basque Country that will be used to predict flood risks within
the European Flood Directive framework.

Appendix A

Statistical properties of the rainfall model

In model fitting it is usually necessary to use equations
for aggregated properties, because rainfall data are usually
sampled over discrete time intervals (or aggregated to dis-
crete time intervals in the case of tipping bucket data). Let
{Y

(h)
ij (x)} be the aggregated time series of rainfall due to type

i storms at point x = (x, y) ∈ R2 in the j -th time interval of
width h, and let Y

(h)
j (x) be the total rainfall in the j -th inter-

val due to the superposition of the n storm types. Then,

Y
(h)
j (x) =

nX
i=1

jhZ
(j−1)h

Yi(x, t)dt, (A1)

where Yi(x, t) is the rainfall intensity at point x and time
t due to type i storms (i = 1, ..., n). Since the superposed
processes are independent, statistical properties of the aggre-
gated time series follow just by summing the various proper-
ties that were derived by Cowpertwait (1995, 1998), Leonard
et al. (2008), and Rodriguez-Iturbe et al. (1987), and are
given below (Cowpertwait, 1995, 1998).
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where Ai(h, 0) = (hηi + e−ηih − 1); Bi(h, 0) = (hβi +

e−βih − 1); for l > 0, Ai(h, l) = 1
2 (1 − e−ηih)2 e−ηih(l−1)

and Bi(h, l) = 1
2 (1 − e−βih)2 e−βih(l−1); P(φ, d) = 2

π

π/2R
0

{1 + φd/(2 cos y)} exp{−φd/(2 cos y)} dy; and d = kx −

yk is the spatial separation of the points x and y in the
plane. The variance is the special case l = 0, given by
σ 2(h) = Var{Y (h)

j (x)} = γ (0, 0, h). The P(φs,i,d) term ap-
pearing in Eq. (A3) above is due to the defined storm extent
and has the effect of reducing the cross-correlation at large
spatial distances (Leonard et al., 2008). The third central mo-
ment is as follows:
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(ηi − βi) (2βi + ηi) (βi + 2ηi)

��
, (A5)
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where Q1 and Q2 are high-order polynomials in ηi and βi

and are given in Cowpertwait (1998). For exponential cell
intensities, E(X2

ijk) and E(X3
ijk) are replaced by 2 θ2

i and
6 θ3

i respectively. The probability that an arbitrary time inter-
val [(j − 1)h, jh] is dry at a point is obtained by multiplying
the probabilities of the independent processes and is given by
the following:

ϕ(h) = exp

−

nX
i=1

λi


∞Z

0

{1 − pi(h, t)} dt

+

hZ
0

{1 − pi(t, 0)} dt


 , (A6)

where pi(h, t) = exp [−νi + νi e
−βi (t +h) + ωi(t)νi {1 −

e−βi t }], and ωi(t) = 1 − βi {e
−βi t −e−ηi t } /[{ηi − βi}{1 −

e−βi t }] (Cowpertwait, 1995; Eqs. 2.17 and 2.19).
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