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A B S T R A C T
Over the last few decades, building development has been recorded using hand-made blueprints before
CAD tools appeared and later with digital building plans. As a consequence, there is a large amount of
information in millions of assets that are hard to process because of their analog nature. Since adopting
the Building Information Model (BIM) approach, any new building plan can be subject to sophisticated
validations and analysis. However, legacy analog plans can not profit from sophisticated BIM analysis,
and it is not feasible to manually generate BIM representations at low cost. There is a demand for
BIM models of existing buildings that are feasible to be integrated into a workflow for building
energy retrofitting. This paper presents a novel approach to generating BIM Models based on artificial
intelligence algorithms by parsing architectural and structural drawings. To identify elements from
blueprints and generate the model, we first trained the Mask R-CNN framework with our dataset of 9
concrete buildings composed of architectural and structural blueprints. The outcome of the process is
a BIM model corresponding to one of the multi-story buildings using the Industry Foundation Classes
(IFC) format. Building development has been recorded using hand-made blueprints before CAD tools
appeared and later with digital building plans.

ntroduction
uilding Information Modeling (BIM) is defined by

nternational Organization for Standardization (ISO) as
use of a shared digital representation of a built object
uding buildings, bridges, roads, process plants, etc.) to
tate design, construction and operation processes to
a reliable basis for decisions”[1]. The acronym BIM
stands for “the shared digital representation of the

ical and functional characteristics of any construction
s” [1]. In this work, we adhere to the second definition
use the final result of our work is an exchangeable
el between different BIM tools. Building Information
eling is a rising methodology in the construction in-
y. It is used for the creation and management of digital
mation assets (i.e. digital twins) throughout its entire
ycle, from planning and design to construction and

ations. It represents an opportunity to improve the user’s
being, energy efficiency, flexibility, and resilience of
ing buildings.
he Industry Foundation Classes (IFC) is a CAD data

ange data schema for BIM-based data exchange and
operability defined by buildingSMART International

1 as “a standardized, digital description of the built
onment, including building and civil infrastructure. It
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is an open, international standard [2], meant to be vendor-
neutral or agnostic, and usable across a wide range of hard-
ware devices, software platforms, and interfaces for many
different use cases”. IFC is an object-oriented schema that
codifies the identity and semantics of elements (i.e. beams
or slabs), attributes (i.e. material), and relationships of ob-
jects, abstract concepts, processes, and people. Because of
the high-level building model, it is replacing the previous
computer aid design (CAD) based on vector representation
where there is no semantic information about plan elements
(i.e. wall, door, beam, etc.) and their relationships (i.e. what
door is embedded in a wall).

Worldwide BIM adoption has been boosted due to its
benefits after implementation in new constructions [3] re-
ducing errors and cost savings. The Return On the Invest-
ment (ROI) on case studies varied greatly from 16% to
1.654%[4]. The cost in the engineering, construction, and
operation phases, due to implementing BIM in new building
processes, falls by 15% - 25% [5]. Even so, there is no
real need to create as-built BIM for existing buildings [6],
but there is a technical need for BIM in energy retrofiting
projects for the pre-energy modeling stage [7]. If BIM as-
built models of existing constructions are available, it can be
effectively incorporated into a workflow for building retrofit
[6]. An approach that reduces the cost of implementation
by using automation will increase the benefits of the BIM
approach.

In nearly every city, a public office is responsible for
issuing Building Permits (BP) and maintaining the building
file. Over time, the process of obtaining building permits has
evolved from traditional paper-based processes to 2D digital
data-based processes, and now to fully digitized settings
based on BIM and GIS [8, 9]. This BIM-model requirement
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Building Engineering

Digital Building Permit (DBP) - to be issued by a
ty inspector - implies that a new building could be sub-
o new and more sophisticated validations and analyses.
ough there are valuable assets in printed plans or digital
r/image files, the lack of a high-level model like BIM
nts limitations in their usage for sophisticated analysis

retrofitting projects, City Information Model manage-
, big data analysis, machine learning applications based
IM and others.
nfortunately, BIMs as-built for existing buildings are
vailable because Digital Building Permit requirements
apply to new projects including new buildings or

fitting.
IM models are valuable data sources to establish the
Information Model (CIM) [10]. The BIM adoption
ease the CIM development by aggregating new build-

that are designed with the BIM process. However, when
ng with existing buildings, generating models often
re on-site surveys or utilizing as-built documentation.
proposal of Kippers et al. [11] presents a methodology
tegrate external information from models generated
Light Detection And Ranging (LiDAR) flights over

terdam, available on the 3D BAG platform [12], with
nternal information extracted from archived architec-
plans, using machine learning methods. Retrofitting a
ing involves changing its systems or structure after its
truction and occupation. With advances in technology,
ing retrofits can significantly improve sustainability.
nergy retrofitting methodologies that require as-built

, new developments help to create the 3D building
el to assess as-built conditions by measuring and ac-
ng on-site geometric data[13]. BIM As built are used as
t in novels workflows for optimizing envelope design,
y efficiency, [14] and building retrofits [6] among
s. BIM models could also feed a Machine learning
ion that helps with the selection of the best retrofit
rtunities to improve the green building system [15] but
with a design assistant implementation for AEC pro-
onals. The raising of artificial intelligence tools aiding
are developers like Co-pilot 2 can inspire approaches
AEC project designs that rely on big data sourced on

ing models. Translating legacy blueprint plans into an
t-oriented model like BIM is a key part of this sort of
ion.
he availability of BIM models at low cost for existing
ings, generated automatically from archived architec-
plans, can provide valuable information to stakeholders
ecision-making regarding whether or not to proceed
building retrofits, based on Data Science on BIM mod-
ataset. Manual translation from plans to models is error-
e and time-consuming if we consider what makes its
ive processing unfeasible in the case of municipalities
ies. These existing as-built survey technologies, includ-
aser scanning, photogrammetry, 3D camera ranging,
graphic methods, and videogrammetry, share common
https://copilot.github.com/

drawbacks: expensive and fragile equipment, the need for
trained operators, and potential time-consuming processes.

However, Machine Learning (ML) algorithms have the
potential to significantly improve this process by enabling
the translation of plans into models within seconds, bene-
fiting both the academia and industry by allowing for big-
data analysis, validation models, and more. The challenge
of creating models of actual buildings from 2D scanned
plans or CAD digital drawings has been approached with
various techniques. This research topic mostly focuses on
floor plans while other types of drawings are ignored [16].
The complexity of tasks involved in recognizing a build-
ing’s architectural features and its structural, mechanical,
electrical, and plumbing systems requires further research to
develop methods for modeling entire buildings from existing
building records.

Machine learning could be used to support as-built BIM
model generation automatically. Still, there are some barriers
in the building industry, for example, the lack of large-scale
labeled datasets to train and validate the model so that it can
be used on different on different types of buildings , rather
than being restricted to specific ones [15].The quality and
size of the dataset used for training directly impacts the qual-
ity of outcomes achieved by machine learning solutions.,
but there is a lack of datasets for real as-built constructions.
Available floor plan datasets [17] are mainly focused on ar-
chitectural features, which do not allow to get a full building
representation. Therefore, structural, mechanical, electrical,
and plumbing blueprints are required to generate a holistic
model for a building.

To make matters worse, there is no standard plan ele-
ment drawing style. Thus, there is a wide variety of ways
for representing elements in plans, which depend on local
styles -which are continuously updated- and designers’ (i.e.,
architects and engineers) visual preferences. As a conse-
quence, a trained algorithm based on blueprints honoring
local drawing standards may not have a good performance
when classifying plans compliant with a different drawing
style or standard. There is an opportunity to generate rich
documents for modeling buildings from building documen-
tation available at Municipal/County authorities who re-
quested the plans as part of required documentation when
issuing the building permits (BP). There are decades of
architecture, engineering, and construction (AEC) industry
plans archived and accumulated that meet the local quality
standards and can be used as a basis for creating datasets to
be processed by machine learning algorithms.

This paper presents a novel approach to generating BIM
Model based on artificial intelligence algorithms.

The contribution of this work is many-fold:
• An approach for identifying drawing elements from

plans using machine learning.
• Novel public 3 dataset with structural and architectural

plans .
3Datasets and scripts https://bitbucket.org/plans2bim/

paper-struct-arq2bim/src/master/

ta et al.: Preprint submitted to Elsevier Page 2 of 18
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Building Engineering

Building Model Information model generation com-
bining elements extracted from structural and archi-
tectural plans.
The approach is extensible to include AEC specialties
like mechanical, electrical, and plumbing plans.
We illustrate our approach on a building case study.

model generation uses the Python library IfcOpenShell
ducing interchangeable documents. From now on, we
refer to BIM model and IFC file for representing the
ut of our process.
elated work is presented in Section 2. In Section 3,

ntroduce our approach. In Section 4, the approach is
rated with a case study. Pros, Cons and Limitations
is work is presented in Section 5. And finally, the
lusions and further work are presented in Section 6.

elated Work
or the research selection process of related works, we
wed articles from the Scopus database and Google
lar. The first one provides us with a solid academic
rce, and the second one provides more gray literature
ts. We also investigated the references of the resulting
f publications - a process known as snowballing. Our

research questions during the related work review
:

RQ1: What is the state of the art regarding deep
learning in construction?
RQ2: Are there any specialized datasets of construc-
tion blueprints published?
RQ3: Is there any methodology for automatically gen-
erating BIM models from construction plans?
RQ4: Which machine learning models have been used
for BIM model generation?

ur four research questions contain the following key-
s: "BIM model, Dataset, blueprints, machine learn-
A list of synonyms was constructed for each of these
s, as in the example for research question 3 which con-
keywords ‘BIM models’, ’automatically’, ’generation’,

struction plans’:
BIM model*) OR IFC OR (As-is BIM) OR (As-

is IFC)) AND (automatic* OR semi*

automatic *) AND (generation* OR 3D

reconstruction* OR modeling* OR creation

) AND ((floor*plan*) OR blueprint* OR (2

D plans *) OR (scanned plans) OR (

architectural drawings) OR (structural

drawings) OR (existing buildings))

http://ifcopenshell.org/

Our list of search terms was adapted to match each
research question and the individual requirement of the
search engines on our source list. We include journal articles,
conference papers, and reviews. The search was applied to
the full text and we limit to the papers written in English.
2.1. Model generation from mapping 2D plans

The search for a methodology to generate construction
models from mapping plans is not new. Although there are
methodologies for 3D modeling, the emergence of BIM, re-
quires an object-oriented model with an interchangeable IFC
format. Gimenez et al. [18] developed a C++ prototype, for
generating IFC 3D model from 2D scanned plans, including
walls, openings, and spaces. The main drawback is the need
of reviewing the processing algorithm when implementing
the approach on a location having a different drawing style
as well as the need of programming a new algorithm for
any new blueprint like Mechanical, Electrical, and Plumbing
(MEP). An ML approach could avoid this issue by retraining
the network with the new dataset (having a custom drawing
style) and type of plan elements.

In the research presented by Zhu et al. [19] the authors
reconstruct 3D buildings from 2D vector plans. First, struc-
tural components are recognized (SC) with a shape-opening
graph (SOG) that describes the relationship in a hierarchy
tree which enables them to be used in Revit; however, the
height is set as default values for multi-floor reconstruction
and scope to walls or openings.

A novel deep learning method for floor plan parsing
was introduced by Liu et al. [20], in which a Convolutional
Neural Network (CNN) first transforms a rasterized image
into a set of junctions to represent low-level geometrics
(i.e. wall points). These are later aggregated using Integer
Programming (IP) into a set of primitives (i.e. wall lines).
The result produces a vectorized floor plan, which allows a
3D model representation. However, the approach parses only
architectural plans, ignoring wall thicknesses, limiting it to
vertical and horizontal walls, and the 3d generated popup is
not a BIM-IFC model.
2.2. BIM model generated from CAD drawings

There are techniques to generate BIM models from ed-
itable CAD files, processing the vector elements. These
techniques are applicable to existing buildings that have
CAD documents. The approach proposed by Yang et al.
[21] relies on a Dynamo plug-in in Revit and it is applied
in two case studies: an eight-story concrete frame structure
from an office building, including one roof and a two-story
steel frame structure that contains a standard-floor and a
slope-roof-floor. The method requires processing the raw
CAD drawing to classify the information into layers, which
is carried out by a technician. As a result, the method
generates a 3D structural BIM model from structural CAD
plans with a semiautomatic method extracting elements in-
formation. In the same way, Bortoluzzi et al. [22] create
a Facility Management (FM) BIM model with Computer
Aid (CAFM) data, by pre-processing architectural DWG
drawings and the floor elevation for creating models with

ta et al.: Preprint submitted to Elsevier Page 3 of 18
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e, openings, rooms by using Dynamo and scripts in
iety of 17 building shapes with complex floor plans
elong to the Ryerson University Campus. The method
res intervention by a technician to reduce the raw CAD
ing up to three sets of data on a dedicated layer: room
daries, exterior building boundaries, and room number
in et al. work [23] also succeeded in reconstructing a

e and interior walls into a 3D BIM model including
ior openings and extracting height information from
tion drawings. However, the approach cannot infer the
nal building components’ height which is a critical
ute used for element modeling like walls. In the same
Lu et al. [24] propose a semi-automatic solution for

tructural CAD drawings processing generating an IFC-
d structural BIM object. A tool built in Matlab is de-
ed, including data extraction with Optical Character
gnition (OCR). In the research presented by Wen et al.
the authors describe an algorithm focused on walls,

emented by Autodesk Revit customization. It includes
geometrical and topological relations to provide a 3D
ing model; however, the algorithm does only support
ontal and vertical walls.
nfortunately, CAD drawings files are not available pub-
and they are only accessible by their owners; it is
red to pre-process the file or set files, which normally
nstructured, may contain deprecated information and
require removing superfluous content. On the other
, CAD files have the advantage of being able to identify
izes of the represented elements, as long as they have
een scaled or decorated for presentation. The semi-
atic nature of these approaches requires human re-

es to get a BIM document. This is a challenge to bulk-
ess thousands of plans. Moreover, they require licenses
IM tools to design BIM models. Additionally, CAD
ments like DWG are not always available for existing
ings.
Machine learning applied on 2D plans
hao et al.[26] proposed the convolutional neural net-
called You Only Look Once (Yolo) [27] implemented
scanned CAD structural drawings for object recog-

n of five classes of elements: grid, reference, column,
ontal beam, vertical beam, and sloped beam. The clas-
object is located by a bounding box. An image pre-

essing that included gray processing, binarization and
inversion, and morphological operation, was applied

e labeling and augmenting the images. The final output
a TXT file containing the classification and locations
e detected elements. The work does not discuss in
how to capture element attributes like length, width,

height mandatory for creating any BIM models. The
authors [28] presented an implementation of faster

n-based convolutional neural network [29, 30] (Faster
N), trained on a non-public dataset including 500

ing plans honoring the British Standard (BS 8110). The
concluded that Faster R-CNN is slightly better than

O after comparing their detection performance. The

method presented a transformation from Pixel Coordinate
System (PCS) to Drawing Coordinate System (DCS) and
achieved to generate a BIM IFC model. Zeng et al. [31]
presented a multi-task neural network recognizing room-
boundary, room-type elements in architectural floor plans,
introducing R2V and R3D datasets. In this case, there is no
3D or BIM model presented for a building case, just isolated
plans. Seo et al[32], due to the lack of a dataset, used Korea
Land and Housing Corporation’s House Floor Plans as the
dataset, and implemented Google DeeplabV3+ framework
for recognizing architectural floor plan elements and spaces
without producing a BIM model.

Dodge et al. [33] introduced a new real estate floor plan
dataset named R-FP, and proposed a fully convolutional
network (FCN) with a stride of 2 for the recognition wall.
By implementing OCR and object detection, they estimated
the room sizes. The LIFULL HOME’s dataset[20], which
contains 5 million floor plan images, was selected for train-
ing though only 1,000 of them were randomly sampled.
There are other public datasets proposed for architectural
floorplans, such as Rent3D [34], CubiCasa5k [35], CVC-FP
[36].

The approach presented by Wu et al. [37] evaluates the
framework Mask R-CNN for indoor mapping and modeling
(IMM) parsing floor plans available on CVC-FP, simplifying
the boundary elements into rectangular shapes and opti-
mizing resolving topological conflicts between rectangles.
However, the approach excludes curved walls and no BIM
model is generated.

The Mask R-CNN framework presented by He et al. [38]
is based on the Fast/Faster R-CNN and a Fully Convolutional
Network (FCN) [39] framework enabling instance segmen-
tation, which combines object detection, for classifying indi-
vidual objects and localizes them using a bounding box, and
semantic segmentation, for classifying each pixel into a fixed
set of categories, differentiating objects instances. Instance
segmentation can recognize complex figure shapes to be
modeled in BIM. Mask R-CNN is an extension of Faster R-
CNN added with Region of Interest Align (RoIAlign) and
using the Feature Pyramid Network (FPN) proposed by Lin
et al. [40].
2.4. Machine learning on BIM models

There are experiences where machine learning is also
applied directly to BIM models, to cover modeling gaps, in
specific analyses. In this context, Bloch et al.[41] applied
machine learning for classifying room types in the context
of residential apartments by running an Artificial Neural
Network (ANN) on AZURE ML platform. Its training was
based on a dataset of 32 BIM apartment models as input.
In this case, the BIM models are enhanced with inferred
information using the neural network. The proposed method
was tested for semantic enrichment within the BIM model,
to reduce incompatibilities such as code compliance when
exporting the model to other software. Although this ma-
chine learning approach does not apply to the generation of
the model itself, it does contribute to its improvement, with

ta et al.: Preprint submitted to Elsevier Page 4 of 18
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otential to evaluate, for example, the impact of imple-
ing a change in the regulation where room classification
venes.

roposed Method
Goal and problem formulation
enerating enriched-data BIM models from 2D plans re-
s processing many different systems, documented using
g supports such as paper or 2D vectorized plans. The
mentation may also include methods statements, dia-
s, or even document revisions. The proposed method-

y receives as input (but is not limited to), architectural
structural blueprints that are available as images (i.e.
GIF) of the paper-based plans. These files can be used
fferent phases: first, digital assets are used for training
L model, and in the second phase, models are the input

btaining its BIM representation.
he steps to generate a single BIM model file from

mplete set of construction drawings rely on a neural
ork trained individually on each AEC specialty, with
im of extracting only the elements that belong to that
ory. As each specialty represents some specific system

e building, we understand that it must be mapped within
ll, i.e., extracting column information from a plumbing
rint could be an error, because the specialist is not

osed to design that element. This methodology requires
g pre-classified each plan in architecture, structure,
anics, plumbing, etc., to select the appropriate training
apping.
ur approach aims to establish steps that can be fully
ated to achieve bulk model generation throughout
ass plan processing. On the opposite side, there are

osals [21, 22, 24], with semi-automatic steps that limit
lete modeling automation.
e chose to use, (but the approach is not limited to), the
R-CNN algorithm for training the ML model because

ows identifying irregular elements as masks. Many
ings have non-rectangular elements that are impossible
pture using rectangles like semi-circle shaped bal-
s, or sloped beams (which are not aligned to the X and

is). Another key factor is the extraction of the polygon’s
e from the masks of the detected elements. Besides the
e simplification [37], this problem is also approached by
i et al. [42], implementing a fully convolutional network
) for corners detection.
ur literature review helped to confirm the diversity of

ing styles that makes it hard to design a solution that
be applied worldwide or even countrywide because

ll locations share the same standards. No approach
able to provide a solution to this problem. As AEC
ners’ drawing styles, plan idioms, and local standards
roduce a wide style diversity for representing elements
otations, this aspect should be considered to define the
ets for training and evaluation. Our approach faces this
by training the system using drawings that honor local
ards. Training only requires a technician to classify and
mages and then it can be triggered without any code

change. Any code change is expensive because development
tasks and different engineer roles are involved and it might
be error-prone.

In Figure 1, we introduce our approach that is many-fold:
• In the first place, there is a tagging and training step

where local blueprint styles are captured and the main
outcome of this step is a set of models where each one
is focused on a specific specialty of AEC blueprints
(e.g. a model will be focused on capturing beam, slab,
and columns of the structure blueprint). A throughput
description of this step is provided in section 3.4.1.

• Some metadata information is extracted from the Title
block element in the plan set. This would be used for
identifying plans belonging to the same project when
performing bulk processing of several buildings.

• Before processing the blueprints, the image size and
scale are normalized across plans. Printed blueprints
are required to include the element scales; however,
during their digitization process, the blueprints might
be scanned using different image resolutions making
it hard to locale elements across blueprints in the same
position. This problem has been discussed in depth on
[16]. So, we apply feature alignment techniques [43]
to align and resize different blueprints using shared
elements, such as columns, spread on all blueprints.
In figure 2 we show an architecture plan (Fig. 2a)
and a structure plan (Fig. 2c). The architecture plan
is rotated in figure 2b and the final result after re-
scaling images is shown in Fig.2d where columns
are aligned. This is mandatory to work with element
location across maps to build a single BIM document.
We decided to adjust images by generating tempo-
ral image versions so that analysts can visually de-
bug any inconsistency with blueprints. After the BIM
document is generated, temporal-scaled images are
deleted. Another approach is to compute the offset and
scale ratio and use them to transform elements when
generating the BIM model. The main drawback is
that any inconsistency will be hard to analyze visually
because images will not be on the same scale.

• The next step is to classify blueprints and run the right
ML model on them.

• The AEC element classification process uses the
trained models to get the elements and position in-
formation. Additionally, explicit and implicit infor-
mation is extracted. On one hand, it considers the
application of OCR to extract textual information like
beam dimensions which is documented along with
the bean drawing or the door/window id. Moreover,
relationships between objects are identified such as
the "host" relationship between the wall and door. This
step will be described in Section 3.6.

ta et al.: Preprint submitted to Elsevier Page 5 of 18
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Figure 1: Overall approach schema

BIM generation is the final step where the elements
and metadata are woven to compose a BIM model.
This step will be described in Section 3.8.

s above mentioned, the proposed approach merges
tectural, and structural plans in one building BIM
el composed of many floors; they are obtained from
canned plans, postponing a future work integration
umbing, electricity, and mechanics plans. This can be
y extended to support more AEC specialties producing a
r BIM model. When BIM is used, technicians produce a
able single model for new buildings that other profes-
ls can incrementally enhance with additional details.

Before the BIM age, a project could be spread into many
individual plans which are views of the buildings without
an underlying model. There are many printed or hand-made
plans archived that can be targeted by our approach. In this
work, we aim at combining different plans as sources for
generating a single building model, which differs from the
approaches introduced in the Related work section, which
only focus on either Architectural or structural plans but not
both.
3.2. Blueprint collection

Buildings are often modeled using different drawing
plans that are specialized in specific topics. For example,

ta et al.: Preprint submitted to Elsevier Page 6 of 18
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(a) Original Architectural plan (b) Rotated Architectural plan

(c) Original Structure plan (d) Overlapped architecture and structure plans after rotating and
scaling plans

Figure 2: Plans transformation for aligning elements

ture plans depict the main elements that give stability
e building. Moreover, each type of drawing relies on a
ific set of valid elements that make sense in that context.
example, the structural plan combines beams, slabs,
columns among other elements. Finally, the elements
t have some sort of textual annotation that is used to

ide additional information like dimensions in the case of
s or to assign an identifier, which is used for referencing
lementary information often provided in an attached

document like doors and windows designs. In Table 1, we
list the building plans and the elements considered in this
work. For each element type, an element image, the required
attributes for its modeling, the source of each attribute,
and the IFC element used are provided. Finally, it is also
documented whether or not the element has a textual or
graphical annotation.

The raw blueprints had to be pre-processed and clas-
sified. First, they were grouped by building, from which

ta et al.: Preprint submitted to Elsevier Page 7 of 18
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tecture and a structure set were generated. The set was
nd separated by floor plan or section view, which were
labeled.
. Title blocks for metadata project processing and

classification.
he title blocks contain relevant metadata required in
models such as Facility Address, Project Name, De-

tion, Land title number, and address, among others.
bulk plans mapping must be able to identify project

mation for classifying and grouping plans that belong
e same project facility. In Figure 3, a standard ti-
lock is approved by the local Municipal authority for
ing Permits (BP). The title blocks may vary according

cal requirements; once defined, they become standard
pplying a BP. The label is divided into compartments
specific information can be extracted from each one.
ciating each keyword to objective metadata, through
techniques, the required information can be extracted.

Figure 3: Title block

3.2.2. Scope of elements to detect for modeling
This work studies how to process the most important Ar-

chitectural, Structural, and Section plans elements regarding
the same building. In order to capture all the information
available on plans, we combine object detection using ma-
chine learning, Optical Character Recognition, and scripting
to construct IFC elements. As described in Figure 1, we
consider, but are not limited to, the following main elements
in our approach.

Structural plans. Our structure plans database, as shown
in Fig.4b, presents foundation elements as bases or piles,
beams, columns, slabs, and stairs. Concrete steel bars rein-
forcement information are not included in these plans. For
the sake of simplicity, foundation and stairs elements are
kept out of scope. Stairs modeling is a challenge by itself;
Lin [44] considered 54 different stair types for evaluating
an automatic path generation on 3D building models in IFC
format.

We considered the following main blueprint elements:
• Columns. Our scope is restricted to concrete rect-

angular sections. Section shape is obtained by the
Cartesian’s points from mapping 2D structure floor
plans. The column’s height is sourced from section
view plans, but if they are not available, the user must
set it. The column is instantiated as IfcColumn class of
IFC. Additional information as column tags can also
be linked, after merging OCR results.

• Beams. This element is also restricted to concrete
rectangular sections. On floor blueprints, the length
and width of the element can be extracted. The height
is normally indicated on the plan flow next to the ele-
ment tag, which can be obtained via OCR. The beam
description, which has normally "V-000 - WIDTH
x HEIGHT" format on our database, must be cor-
rectly parsed. Beams are instantiated as IfcBeam class.
Beams are supported by columns or concrete walls,
but this structural relationship is not set in the model.

• Slabs. Concrete slab’s width and length are obtained
from floor plans, but its thickness has to be sourced
by an OCR technique. The storey level has a uni-
fied height, and despite our dataset having more than
one case with slabs on bathrooms under level, they
were instanced on the same plane. Slabs are instanced
as IfcSlabs. Slabs are supported by beams, concrete
walls, columns, or concrete walls, but this structural
behavior is not set on the BIM model.

Architectural plans. In Fig.4a we show an example of a full
architectural layout plan. The architectural plan contains a
variety of elements and information, and therefore the detec-
tion of objects and semantic information extraction is more
complex compared to the structural plans. We focused on
walls, doors, and windows as the main elements. The doors
and windows require a host, like a void element on walls,
for modeling. Sanitary artifacts shall be considered in future
works when mapping the plumbing system. Sometimes,

ta et al.: Preprint submitted to Elsevier Page 8 of 18
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tectural floors provide column locations, but structural
override them avoiding inconsistencies.
Walls. This element can be represented with a variety
of line styles and hatches. It is recognized as a poly-
gon, which allows the modeling of shapes and paths
variety. The width and length, or its boundary can
be recognized from floor plans, but its height has to
be sourced from the sections view or defined by the
user in case it is not available. Walls are instantiated
as IfcWallStandardCase class. Wall materials are not
detailed in our architectural floor plan dataset.
Windows and Doors. These elements are recognized
as a rectangular box on the wall, where the width
and length are obtained from floor plans. With OCR
methods it is possible to extract semantic information,
such as the element type or classification, considering
that a carpentry detail sheet contains further design
details ( i.e. height and material) but the proposed
method is restricted to the floor plan. Windows are
instanced as IfcWindows but require modeling a wall
and void element on the host. That is to say, the
wall polygon is subtracted to get the wall opening.
Windows offset from the floor and height has to be es-
timated. For the door case, the elements are instanced
as IfcDoors with a simplified model without opening
side considerations.

3.3. Network Architecture
We used Mask R-CNN [38] algorithm for object de-

tection and segmentation based Mask R-CNN implemen-
tation developed by Matterport [45]. The project is open
source and released under a permissive license (i.e. MIT
License). The code was implemented on Python 3, Keras,
and TensorFlow. The model generates bounding boxes and
segmentation masks for each instance of an object in the
image. It’s based on Feature Pyramid Network (FPN) and
a ResNet101 backbone. We used transfer learning from
pre-trained weights for MS COCO 5 The same network
was adopted for performing three main tasks: predicting
structural elements with three labels( e.g. column, beam,
and slabs), predicting the architectural elements with three
labels ( e.g. wall, window, and door), and a third one to
predict levels height from sections view with one label for
each storey. For each plan type, we trained a neural network.
3.4. Dataset Setup
3.4.1. Labeling

This is a manual task performed by an engineer who
is able to understand drawing elements’ semantics. The
engineer used Wkentaro’s Labelme [46] tool, a software
that allows us to label key elements on the input image and
gets, as output, annotations ready to use with our selected
models. In Figure 5 a column (5a), a beam (5b), and (5c)
slab are tagged on the structural plan. This labeling process

5COCO Dataset - https://github.com/cocodataset/cocoapi.git

ta et al.: Preprint submitted to Elsevier Page 9 of 18



Journal Pre-proof

Figur
on da

Urbie

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

Building Engineering

(a) Architectural blueprint layout

(b) Structural blueprint layout

(c) Section view A-A
e 4: Architectural, structural, and section view blueprints
taset

was performed for Architectural and Section plans as well.
The labeling strategy aims to identify the elements and
their shapes. In [26], the labeling covers partially the target
element and includes the reference text (5d).

On the other side, [47, 31, 32] labeled elements by
following the element’s perimeter. This leads to an element
identification extracting also the morphological information
with high precision like location, length, and width, or even
a mask for non-rectangular shapes.

Other authors [26, 28] included textual annotations along
with the drawing elements and relied on the drawing grid
to infer the element length. This means that the approach
excludes plans without any grid from the scope. Moreover,
the method does not allow extracting morphological infor-
mation for non-rectangular shapes.

(a) Column labeling example

(b) Beam labeling example

(c) Slab labeling example

(d) Beam labeling not adopted
Figure 5: Structural elements labeling

ta et al.: Preprint submitted to Elsevier Page 10 of 18
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. Augmentation
he augmentation technique allows the creation of new
es from existing ones by performing transformations
e original image. It is possible, for example, to rotate,
zoom, change colors or lighting, add noise, etc. This
ique is really useful when we have few images or when
are difficult to label. Its importance lies in the fact

it allows for increasing the effectiveness of the model
a large number of extra images contemplate different

itions or situations that were indeed not contemplated in
riginal images. will be provided and it is also useful to
overfitting, that is, the memorization by the model of

aining images, which leads to low accuracy in detecting
images.
odifying an image means that we also have to update

apping file since the same transformation is applied
e label. Our augmentation process involves taking the
et and for each pair of (image, label) converting the
file to a .csv file for easier management of bounding

s and using a Python library called imgaug 6. The
me of the augmentation approach is a larger set of
es that are later used for training and testing purposes.
performed transformations were rotation, scale (up and
), crop, flip (horizontal and vertical), noise, and blur.
Dataset separation
fter labeling the images, they must be divided into

lders (training and test). The first will be used for
ing, and the second to periodically evaluate training
rmance, allowing the algorithm to make the necessary
tments to the network to improve predictions. The
ntage of distribution between both folders was 75%

raining and 25% for the test.For BLD-AR, 69 images
used for training, with 17 originals and 52 augmented.
he other hand, 22 images were assigned for testing,
osed of 8 originals and 14 augmented. The BLD-ST
et was split in the same way. As presented in Table 2,

in training and test images, the total elements labeled
73, and including augmented images is 3237 elements:
columns, 1621 beams, and 497 slabs. In the same

in Table 3, the total elements labeled are 867 where
elements are obtained after applying the augmentation

ess: 609 windows, 705 doors, and 2013 walls.
ithin training and test images,
Network configuration

n this article, our main interest lies in the methodology
enerating a BIM model. We have opted for the Mask R-
model as described in Section 3.3, but we will not focus
exhaustive analysis of the performance of the network,
ich in principle we have not made any contributions in
ublication.

Imgaug - https://imgaug.readthedocs.io/en/latest/

Table 2
Detail of elements labeled in the structure blueprints data set

STRUCTURE DATASET
QTY ELEMENTS LABELED

Set column beam slab Sum

Train orig 201 270 91 562

Train aug 622 887 262 1771

Test orig 105 164 42 311
Test aug 191 300 102 593

Sum 1119 1621 497 3237

Table 3
Detail of elements labeled in the architectural blueprints data
set

ARCHITECTURAL DATASET
QTY ELEMENTS LABELED

Set window door wall Sum

Train orig 129 139 428 696
Train aug 399 456 1232 2087
Test orig 29 39 103 171
Test aug 52 71 250 373

Sum 609 705 2013 3327

3.7. Semantic information extraction
3.7.1. OCR recognition

Our approach requires the extraction of object annota-
tions using an OCR to enrich their semantic information.
Although there are world-class OCR services, we chose
Google’s Cloud Vision service to extract all the text pre-
sented in the image, because it has a good performance and
was easily integrated into our solution by means of API
requests. In [48], the OCR portion of the process was carried
out by detecting horizontal and vertical text separately and
generating spreadsheet files with the text data (text without
image position coordinates). We instead opted to process the
image and extract every text and its coordinates found on
the input image. For such a task, we designed an algorithm
able to match the detected blueprint elements with their
corresponding label extracted via OCR.

This way we obtain accurate labels to then enrich our
model with the necessary context.
3.7.2. Object’s description association

The script expects two lists of elements, in this case,
Labels and DetectedObjects. The script will iterate over the
list of pivot elements (i.e. DetectedObjects) and search for
the closest label in the list of available labels. This is done by
calculating the minimum distance between the nearest points
of each element. Once we have the nearest one detected,
we bind them create a pair and eliminate the label from the
available list. This process is repeated until there are no more
matches to be made.

ta et al.: Preprint submitted to Elsevier Page 11 of 18
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n Fig. 6, let’s consider the marked blue column as
ot. It would iterate over the labels ( 1 and 2 ) and
late the nearest distance between them, it will then pair
e column with label 1 since they are closest to each
.

Figure 6: Annotation processing

o minimize false positives, the algorithm just does not
ute the distance among all elements and all text labels,

ad, it filters each label to only match the ones that
spond to the object type. This is possible due to each
ent type having a standard nomenclature during label-
ie. beams are V-XXX and columns are C-XXX. This
allowed us to reduce the number of missed assignments

ore than acceptable-value.
. Elements associations
hen detecting objects in plans, there are elements that

re establishing semantic relationships with other ele-
s. For example, when a beam is supported by columns
transmit its loads. This relation has to be inferred from
bject disposition in the plan. To address this situation,
ipt was developed that proposes elements’ relationships
d on their placements.Conceptually, the approach does
iffer much from the one described in Section 3.7.2,
e the descriptive text of the element is associated with
lement.
or our use case, we needed to know what beams are

ed to a certain column. Nonetheless, the module it’s
le and was built with the option to be extended.
ince each element is already classified, by simply in-
ing what type of element the script should use as
ivot, the script can search and assemble the relation
een elements. The script considers objects to be related
lculating the distance between the nearest points each
. If it is within a threshold, 20 pixels to be precise,
bjects will be considered related and that relationship
be recorded. This process is repeated for each object of
pe selected as the pivot. Additionally, we considered a
n to have a maximum of 4 beams assigned, and beams

ve a maximum of 2 columns. This is done in order
event over-assignments and minimize the impact of

missing/duplicate detection that might possibly occur during
the object detection.
3.8. Building Information Model generation

As mentioned, the result obtained after identifying archi-
tectural and structural objects on blueprints, are TXT files
with the detected elements as a collection dictionary with
keys -values for defining the element class and the boundary
box pair points defined as X,Y pixels. The objects to be
recognized require volume definition in order to create them
on an IFC model.

The sets of files are the inputs for the BIM generation
model algorithm developed in Python. Each type of input is
kept in a specific folder. The input files must be organized in
such a way that there is a uniqueness between the position
of each storey in its respective folder, even if one of them
does not contain data. hlThe first step consists of parsing
the detected structure elements stored in a file, where each
file represents a storey. The storey height is set based on a
parameter in our script. But the approach could be enhanced
to process section view plans and pull the storey height from
it. For each storey level, the set of each element type as
columns, beams, and slabs are instantiated.

Given that blueprints are two dimensional documents,
we defined two possible strategies to set the columns’
heights. If a document scale is detected (pixels to meters),
we use a constant value for the column’s height (i.e. 2.60
meters). This can be improved by processing x-sections
plans to get the storey’s levels. If the scale is not detected,
we used a ratio coefficient as height = 13.2 times the minor
dimension of all detected columns. We have set this rela-
tionship considering that the local regulation defines 20 cm
as a minimum dimension for reinforced concrete columns;
it is 2.64 meters in this case. The architectural prediction
input is merged in a similar way, including in the array of
elements such as walls, doors, and windows. The next step
is to run the BIM Generation script with the input array as
a result of merging input files, which creates new instances
of each column, beam, slab, wall, door, and window, and
generates one IFC model file. For manipulating the IFC
file, we used an IfcOpenShell open-source (LGPL) software
library for python. At the moment, input files only contain
geometry data. The model can be enriched by identifying
other properties like material by combining the approach
where the material is extracted from indoor/outdoor building
pictures [49]. The IFC BIM structure model is created
by using IfcColumn, IfcBeam,IfcSlab. Architectural model
components were created by using IfcWallStandardCase,
IfcDoor,IfcWindow. The Doors and windows belong to a
family object that requires a host element. In this case, for
each instance of door or windows, the script creates a wall
and opening, as IfcOpeningElement, where the carpentry
is related. A standard template for an IfcProject is used
for setting up quickly project information, units system,
and directions. New entity instances will be related to the
IfcProject. IFC model implements the composition/decom-
position to represent the relationship among the building

ta et al.: Preprint submitted to Elsevier Page 12 of 18
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ents. The aggregation relationship IfcRelAggregates7 is
cial type of the general composition/decomposition (or
e/part) relationship.
igure 7 illustrates the steps to create the object instance
fcColumnStandardCase 8 that includes the OCR de-
tion association stage. After recognizing the object with
ained neural network 1 , the text extracted via OCR 2
ociated by proximity to the element 3 , as described in

on 3.7.2. The step 4 consists of the application of the
ment and scale transformations, which allows mapping
the Pixel Coordinate System (PCS) to the Drawing

dinate System (DCS). The plant and the height of the
ent are considered in sequence when the IFC object
stantiated 5 . Continuing on 6 , the element profile is
ed by a sequence of points specified as Python tuples
ved from the input TXT file as a polyline IfcPolyline
h defines a closed profile IfcArbitraryClosedProfileDef
ept area. The solid volumes are defined as extruded area
(IfcExtudedAreaSolid) by sweeping a bounded planar
ce through a given direction (ExtrudedDirection) and
ength of the extrusion given by a Depth attribute.
position of the extruded area solid is defined by its
ion (IfcAxist2Placement3D object), for the columns the
sion direction has been defined as a vertical vector
irecton), and the extrusion depth is defined by the
n height. The position of the extruded area solid is

ed by its location (IfcAxist2Placement3D object), the
sion direction as a vertical vector (IfcDirecton object),
he extrusion depth by the column height.

body representation is related to the swept solid (Ifc-
eRepresentation) to get a product shape (IfcProduct-
itionShape). The product to be instanced as, for ex-
e, IfcColumn 8 , is associated with the product shape,
rial 7 (IfcMaterial), property set (IfcPropertySet), and
ent quantities (IfcElementQuantity) once the area is
ded (IfcProductDefinitionShape). For the sake of sim-

ty, the process of modeling the beam element indicated
is similar to that described for the column case ex-

ed in steps 1-8. The column and the beam are related
elDedineseByType) to each other in step 10 .
n the case of window or door, additionally has to be
nce a IfcOpeningElement and relate it to a wall host
e relating the product to the opening.

ase Study: From blueprints to BIM
Dataset
o train our network, we prepared two datasets, namely
-AR and BLD-ST for building architecture blueprints
uilding structure blueprints respectively. Both datasets
de real-life building projects with less than 10 levels
ided by the building constructor. Figure Fig.8 presents a
l of the composition of the dataset: 9 concrete buildings
https://standards.buildingsmart.org/IFC/DEV/IFC4_3/RC1/HTML/

/ifckernel/lexical/ifcrelaggregates.htm

https://standards.buildingsmart.org/IFC/DEV/IFC4_3/RC1/HTML/

/ifcsharedbldgelements/lexical/ifccolumnstandardcase.htm

with 72 structural (BLD-ST) and 38 floorplan images, 18
sections views, and 9 front/back views (BLD-AR). Floor
plans are mostly rectangular shapes. The set BLD-AR con-
sists of building architecture like floorplans, building sec-
tions, front view, and back view, gathered in the same plan
layout (Fig.4a), which was split into floor plans (Fig.2a), and
views (Fig.4c) before tagging. The set BLD-ST consists of
floor plans with structural elements such as columns, beams,
slabs, and foundations, and are required to be separated per
floor plan.(Fig.2c)
4.2. Training model configuration

We used Google Colab Pro service to train all models
involved in our approach. In order to analyze the perfor-
mance of the models, we tested different hyperparameters
settings comprising the Number of Training Steps per Epoch,
Number Epoch, and Batch Size parameters. We computed
the mean Average Precision (mAP) for each setting and the
time it took to train the model. The sessions shared some
parameters like the learning rate (0.0001), and validation
steps (10); the images were picked randomly in each step.

The Table 4 shows the batch size, training steps, valida-
tion steps, number of samples (𝑏𝑎𝑡𝑐ℎ ∗ 𝑒𝑝𝑜𝑐ℎ𝑠 ∗ 𝑠𝑡𝑒𝑝𝑠),
the time it took the training, and mAP for the six training
sessions. In the first scenario (batch size 1, 20 steps, 2500
epochs ), the mAP was 96.77% and required 7 hours of train-
ing. From Session 2 to Session 6, we increased the training
step from 20 to 50, batch size from 1 to 6, and resumed the
number of epochs from the last saved checkpoint in every
new training session. In this way, we were able to detect
where the mAP gets stable on session 6 where it was 96.32%.

Although it is recommended to set # of images/ batch
size as training steps to train all over the dataset samples,
we were not able to run such a number of steps on Google
Colab Pro and our sessions were closed without even one
checkpoint. That is to say, each epoch took more than 12
hrs. Consequently, we reduced the number of steps per
epoch to 50 which allowed completing the epoch safely. The
reader can notice that there is a huge difference between
Session 1 and the others because, unfortunately, the allocated
GPU (with high computational power) was not available in
subsequent sessions; this significantly increased the number
of training hours required for similar training.

The latest session required processing less number of
images ( #𝑠𝑎𝑚𝑝𝑙𝑒𝑠 column ) than the first scenario to get
a similar mAP.

Without a doubt, a topic for future work is to compare
the benchmarks obtained, with those resulting from the use
of other CNN models, without ruling out different configura-
tions that would improve the fine-tuning of the Mask R-CNN
model used in this research.
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Figure 7: IFC Column Standard Case implementation flow

4
ing sessions

# GPU Batch Training steps Validation steps Epoch # samples Time – hrs mAP
1 NVIDIA A100 1 20 10 2500 50000 7 0.967
2 NVIDIA T4 6 50 10 11 3300 12 0.876
3 NVIDIA T4 6 50 10 17 5100 24 0.927
4 NVIDIA T4 6 50 10 24 7200 36 0.944
5 NVIDIA T4 6 50 10 34 10200 48 0.958
6 NVIDIA T4 6 50 10 38 11400 60 0.963

Cloud Network training.
he network was trained using the Google Colab Pro

orm; although resources are not guaranteed, we were as-
d NVIDIA T4 and A1009 with priority access and high-
setting at this time. In general, notebooks can run for at

12 hours, depending on availability and usage patterns.
rocessing the classified element, we developed custom
ts based on Python 3.8.16 programming language. The
https://cloud.google.com/compute/docs/gpus

original resolution of the images for the input floor plan was
around 3000 x 7000. We resized the images before training
because that image size was not processable by the model
without overflowing the available resources.
4.4. Running example

The building to be modeled has 9 levels for functional
units, and 4 additional levels that correspond to the machine
room and elevated tank. Level 0 (ground floor) corresponds
to the building access, levels 1 to 8 correspond to repeated

ta et al.: Preprint submitted to Elsevier Page 14 of 18
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Figure 8: Detail of blueprints data set

ard floor plans and each floor of the building matches
tangular shape, resulting in a quite simple volume with
ted levels. The output files obtained from both models

ed previously were 13 for structure and 12 for archi-
re. We ran our Code described in section 3.8 using the
penShell python library for instantiating elements. The
t processes in alphanumeric order each structure file and
the architectural ones. The alphanumerical ordering of
les coincided with the location of each floor from the
st to the highest level.
he model result is an IFC file that can be presented
lized with xBIM Xplorer10, a free open-source IFC
er. A screenshot of the complete model is presented in
e 9, already integrated with the architectural and struc-
elements. In figure 10 an x-view of the same building
own; the inner elements modeled as doors, windows,

ns, and walls can be appreciated. Figure 11 presents
esult of running our approach using only structural
where columns, beams, and slabs were instantiated.

highlighted that a key factor to modeling a building
rently turns out to be the consistency between vertical
ions and their appropriate scale between different levels
e element detected by each trained model that maps
tructure plane as architecture respectively. This key
r is considered in section 3.1 feature alignment and
. To generate the model, 1155 mapped elements were
ntiated: columns (181), slabs (110), beams (321), walls
), doors (103), and windows (49). It is worth mentioning
minor adjustments were made on some elements to get
ar model. For example, slab stretching connects all the
s.

iscussion
n this section, we discuss the benefits, challenges, and
ations of our approach.
Pros
ur approach to generating BIM from blueprints aims at

rating full BIM models from plans without any manual
. The digitalization of large datasets of building plans
d be faster (milliseconds) and cheaper than a manual
https://docs.xbim.net/downloads/xbimxplorer.html

Figure 9: Model Generated - 3D view

Figure 10: Floor x-view

Figure 11: Structure modeled

translation of existing designs by a specialist (minutes to
hours). In the context of a city hall that has decades of plans
and building permits, bulk processing is feasible but it is
not the case for the manual translation to BIM. Capturing
the experience and knowledge available in plans into models
allows performing big data analysis to train a neural network
that could aid the design of new buildings based on recom-
mendations.
5.2. Cons

In our approach, once the elements are identified, there
is a mapping script that generates the right IFC element.
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ave only covered a basic set of IFC elements to test
pproach. A building design is an art that continuously
res different element combinations to get the most

tional but creative solution. Our approach has not been
ested on different building types and locale-specific
n styles.
Limitation
here are some limitations of the current solution. First,

work showed the benefits of applying ML to generate
minary BIM models that help address some analysis
erns. There are works that address the code of practice
liance checking [50] in BIM based on local require-
s. The generated models for existing buildings may
he validation process if they were developed using a
ous code of practice that is incompatible.
econd, the lack of a larger blueprint dataset restricts
bility to process diverse building types. Our dataset

ists only of concrete buildings. The extended dataset
ld include, but not be limited to, houses, industries, and
houses built of concrete, steel, wood, and/or other ma-
l. For example, we have evaluated the proposed method
idering a basic subset of BIM elements however it is
pending to pull fine-grain details to increase the Level
tail (LoD) [51]. The level of detail is LOD 200 (walls,
s, and windows) and LOD 290[52] (slab, column, and
s), where the model element is graphically represented

generic system or object, with approximate quantities,
shape, and their exact positions subject to change (i.e.
ows height). Non-graphical information may also be in-
d in the modeled elements. From the generated model,

ement’s properties can be checked out such as geometric
nsions, area, and volume audited. Moreover, the struc-
model could be enhanced by integrating this approach
[53] where appendix tables that include reinforcement
ls information. These tables would be ingested and
ined with beams and slab elements, thereby increasing
OD and allowing for sophisticated analysis, such as
ing earthquake studies. One of the main goals of this

oach is to process the plans in bulk, in order to learn the
ral aspects of buildings. The generated model still lacks

details such as materials, HVAC systems, plumbing
ms, etc., although the approach can be extended to
ider those details. As discussed before, their extraction
nds on the local drawing/design style.
here is a natural limitation that requires building plans’
ability as digital assets. Municipal archives must imple-
digitization techniques within their internal processes

nerate these assets. Customizing the generation script
ch new type of element or class to be modeled is a task
equires qualified personnel.
raining a neural network for supporting all possible
n elements and adjusting the script for combining iden-
elements is complex. So we suggest prioritizing the
important elements to get a simple but mindful BIM

el. For example, modeling the layer composition of a
is more relevant than modeling the internal furnishings

if you want to perform a thermal balance analysis. The mod-
eled building has a simple and repetitive geometry in height.
Floors with curved or sloped beams and sloped ceilings
have not been tested. Within existing constructions, some
have been through a continuous reform process and may
have properly documented the building history. Therefore,
plans from different periods can be processed, but this is
beyond the scope of this work since they imply modeling the
different stages for the same construction, from a previous
model. It is important to clarify that the generated model
tries to reflect the processed documentation as it is. In this
work, we did no consider any Code of Practice for e-summit
applicable to the generated BIM model.

6. Conclusions and further work
The generation of building models from plans has been

widely studied. Recently, with the advancement of deep
learning models, different works have been presented that
seek to attack the same problem from the machine learn-
ing perspective. The proposed methodology uses different
sources to generate an object-oriented model at a low cost
and supports the BIM model generation in an IFC format
from floor plan blueprint images using machine learning.
The approach allows the plans to be processed in bulk
for obtaining BIM with room for increasing the LoD. The
methodology is novel as it introduces instance segmentation
by implementing Mask R-CNN model, trained on a novel
dataset BLD-AR and BLD-ST. The final result is an IFC
interchangeable file generated with open-source libraries.

In this work, we presented an approach to generate a
multi-level building model where beams, columns, slabs,
windows, walls, and doors are instantiated, in their standard
cases. We could show the preliminary results of an object
recognition algorithm to process structural and architectural
blueprints automatically.

The generation of BIM models from existing construc-
tion documentation undoubtedly will be targeted as an im-
portant subject by data science. Some of the benefits of this
approach are the possibility to:

• Aiding retrofit design tasks for an existing building
with recommendations based on BIM models and
massive building analysis to optimize energy con-
sumption is of great interest.

• Aiding design tasks with recommendations based on
BIM models and massive building analysis to opti-
mize energy consumption is of great interest.

We plan to gather blueprints honoring different drawing
styles and from different countries applying different stan-
dards. We are also planning to synthesize blueprints for the
training step from existing BIM models [41] using different
drawing styles. As this work was limited to structural and
architectural drawings, we are also planning to study how
to identify mechanical, electrical, and plumbing elements.
We plan to research how to automatically automate the
classification of plans and their content in bulk mode. In
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