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for a Digital Building Permit (DBP) - to be issued by a
county inspector - implies that a new building could be sub-
ject to new and more sophisticated validations and analyses.
Although there are valuable assets in printed plans or digital
vector/image files, the lack of a high-level model like BIM
presents limitations in their usage for sophisticated analysis
like retrofitting projects, City Information Model manage-
ment, big data analysis, machine learning applications based
on BIM and others.

Unfortunately, BIMs as-built for existing buildings are
not available because Digital Building Permit requirements
only apply to new projects including new buildings or
retrofitting.

BIM models are valuable data sources to establish the
City Information Model (CIM) [10]. The BIM adoption
could ease the CIM development by aggregating new build-
ings that are designed with the BIM process. However, when
dealing with existing buildings, generating models often
require on-site surveys or utilizing as-built documentation.
The proposal of Kippers et al. [11] presents a methodology
to integrate external information from models generated
from Light Detection And Ranging (LiDAR) flights over
Amsterdam, available on the 3D BAG platform [12], with
the internal information extracted from archived architec-
tural plans, using machine learning methods. Retrofitting a
building involves changing its systems or structure after its
construction and occupation. With advances in technology,
building retrofits can significantly improve sustainability.
For energy retrofitting methodologies that require as-built
BIM, new developments help to create the 3D building
model to assess as-built conditions by measuring and ac-
quiring on-site geometric data[13]. BIM As built are used as
input in novels workflows for optimizing envelope design,
energy efficiency, [14] and building retrofits [6] among
others. BIM models could also feed a Machine learning
solution that helps with the selection of the best retrofit
opportunities to improve the green building system [15] but
also with a design assistant implementation for AEC pro-
fessionals. The raising of artificial intelligence tools aiding
software developers like Co-pilot > can inspire approaches
to aid AEC project designs that rely on big data sourced on
building models. Translating legacy blueprint plans into an
object-oriented model like BIM is a key part of this sort of
solution.

The availability of BIM models at low cost for existing
buildings, generated automatically from archived architec-
tural plans, can provide valuable information to stakeholders
for decision-making regarding whether or not to proceed
with building retrofits, based on Data Science on BIM mod-
els dataset. Manual translation from plans to models is error-
prone and time-consuming if we consider what makes its
massive processing unfeasible in the case of municipalities
or cities. These existing as-built survey technologies, includ-
ing laser scanning, photogrammetry, 3D camera ranging,
topographic methods, and videogrammetry, share common

2https://copilot.github.ccm/

drawbacks: expensive and fragile equipment, the need for
trained operators, and potential time-consuming processes.

However, Machine Learning (ML) algorithms have the
potential to significantly improve this process by enabling
the translation of plans into models within seconds, bene-
fiting both the academia and industry by allowing for big-
data analysis, validation models, and more. The challenge
of creating models of actual buildings from 2D scanned
plans or CAD digital drawings has been approached with
various techniques. This research topic mostly focuses on
floor plans while other types of drawings are ignored [16].
The complexity of tasks involved in recognizing a build-
ing’s architectural features and its structural, mechanical,
electrical, and plumbing systems requires further research to
develop methods for modeling entire buildings from existing
building records.

Machine learning could be used to support as-built BIM
model generation automatically. Still, there are some barriers
in the building industry, for example, the lack of large-scale
labeled datasets to train and validate the model so that it can
be used on different on different types of buildings , rather
than being restricted to specific ones [15].The quality and
size of the dataset used for training directly impacts the qual-
ity of outcomes achieved by machine learning solutions.,
but there is a lack of datasets for real as-built constructions.
Available floor plan datasets [17] are mainly focused on ar-
chitectural features, which do not allow to get a full building
representation. Therefore, structural, mechanical, electrical,
and plumbing blueprints are required to generate a holistic
model for a building.

To make matters worse, there is no standard plan ele-
ment drawing style. Thus, there is a wide variety of ways
for representing elements in plans, which depend on local
styles -which are continuously updated- and designers’ (i.e.,
architects and engineers) visual preferences. As a conse-
quence, a trained algorithm based on blueprints honoring
local drawing standards may not have a good performance
when classifying plans compliant with a different drawing
style or standard. There is an opportunity to generate rich
documents for modeling buildings from building documen-
tation available at Municipal/County authorities who re-
quested the plans as part of required documentation when
issuing the building permits (BP). There are decades of
architecture, engineering, and construction (AEC) industry
plans archived and accumulated that meet the local quality
standards and can be used as a basis for creating datasets to
be processed by machine learning algorithms.

This paper presents a novel approach to generating BIM
Model based on artificial intelligence algorithms.

The contribution of this work is many-fold:

e An approach for identifying drawing elements from
plans using machine learning.

o Novel public ® dataset with structural and architectural
plans .

3Datasets and scripts
paper-struct-arg2bim/src/master/

https://bitbucket.org/plans2bim/
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e Building Model Information model generation com-
bining elements extracted from structural and archi-
tectural plans.

e The approach is extensible to include AEC specialties
like mechanical, electrical, and plumbing plans.

e We illustrate our approach on a building case study.

BIM model generation uses the Python library IfcOpenShell
4 producing interchangeable documents. From now on, we
will refer to BIM model and IFC file for representing the
output of our process.

Related work is presented in Section 2. In Section 3,
we introduce our approach. In Section 4, the approach is
illustrated with a case study. Pros, Cons and Limitations
of this work is presented in Section 5. And finally, the
conclusions and further work are presented in Section 6.

2. Related Work

For the research selection process of related works, we
reviewed articles from the Scopus database and Google
Scholar. The first one provides us with a solid academic
resource, and the second one provides more gray literature
results. We also investigated the references of the resulting
set of publications - a process known as snowballing. Our
main research questions during the related work review
were:

e RQI1: What is the state of the art regarding deep
learning in construction?

e RQ2: Are there any specialized datasets of construc-
tion blueprints published?

e RQ3: Is there any methodology for automatically gen-
erating BIM models from construction plans?

e RQ4: Which machine learning models have been used
for BIM model generation?

Our four research questions contain the following key-
words: "BIM model, Dataset, blueprints, machine learn-
ing".A list of synonyms was constructed for each of these
words, as in the example for research question 3 which con-
tains keywords ‘BIM models’, automatically’, ’generation’,
‘construction plans’:

((BIM model*) OR IFC OR (As-is BIM) OR (As-
is IFC)) AND (automatic* OR semix
automaticx) AND (generation* OR 3D
reconstruction* OR modelingx OR creation
) AND ((floor*plan*) OR blueprint* OR (2
D plans*) OR (scanned plans) OR (
architectural drawings) OR (structural
drawings) OR (existing buildings))

4http: //ifcopenshell.org/

Our list of search terms was adapted to match each
research question and the individual requirement of the
search engines on our source list. We include journal articles,
conference papers, and reviews. The search was applied to
the full text and we limit to the papers written in English.

2.1. Model generation from mapping 2D plans

The search for a methodology to generate construction
models from mapping plans is not new. Although there are
methodologies for 3D modeling, the emergence of BIM, re-
quires an object-oriented model with an interchangeable IFC
format. Gimenez et al. [18] developed a C++ prototype, for
generating IFC 3D model from 2D scanned plans, including
walls, openings, and spaces. The main drawback is the need
of reviewing the processing algorithm when implementing
the approach on a location having a different drawing style
as well as the need of programming a new algorithm for
any new blueprint like Mechanical, Electrical, and Plumbing
(MEP). An ML approach could avoid this issue by retraining
the network with the new dataset (having a custom drawing
style) and type of plan elements.

In the research presented by Zhu et al. [19] the authors
reconstruct 3D buildings from 2D vector plans. First, struc-
tural components are recognized (SC) with a shape-opening
graph (SOG) that describes the relationship in a hierarchy
tree which enables them to be used in Revit; however, the
height is set as default values for multi-floor reconstruction
and scope to walls or openings.

A novel deep learning method for floor plan parsing
was introduced by Liu et al. [20], in which a Convolutional
Neural Network (CNN) first transforms a rasterized image
into a set of junctions to represent low-level geometrics
(i.e. wall points). These are later aggregated using Integer
Programming (IP) into a set of primitives (i.e. wall lines).
The result produces a vectorized floor plan, which allows a
3D model representation. However, the approach parses only
architectural plans, ignoring wall thicknesses, limiting it to
vertical and horizontal walls, and the 3d generated popup is
not a BIM-IFC model.

2.2. BIM model generated from CAD drawings
There are techniques to generate BIM models from ed-
itable CAD files, processing the vector elements. These
techniques are applicable to existing buildings that have
CAD documents. The approach proposed by Yang et al.
[21] relies on a Dynamo plug-in in Revit and it is applied
in two case studies: an eight-story concrete frame structure
from an office building, including one roof and a two-story
steel frame structure that contains a standard-floor and a
slope-roof-floor. The method requires processing the raw
CAD drawing to classify the information into layers, which
is carried out by a technician. As a result, the method
generates a 3D structural BIM model from structural CAD
plans with a semiautomatic method extracting elements in-
formation. In the same way, Bortoluzzi et al. [22] create
a Facility Management (FM) BIM model with Computer
Aid (CAFM) data, by pre-processing architectural DWG
drawings and the floor elevation for creating models with

Urbieta et al.: Preprint submitted to Elsevier

Page 3 of 18



O Joy U WN

AT T UG UTOUUTE BB EDSNDLDEDENEWWWWWWWWWWWRONNRNRONNNNN R, PR
G WNRFROOVOANTAEWNROOOAdANUNAWNROODAIANTDWNRPOO®IANUDEWNRLOW®OUJOU R WNDR O W

Building Engineering

facade, openings, rooms by using Dynamo and scripts in
a variety of 17 building shapes with complex floor plans
that belong to the Ryerson University Campus. The method
requires intervention by a technician to reduce the raw CAD
drawing up to three sets of data on a dedicated layer: room
boundaries, exterior building boundaries, and room number
tag. Yin et al. work [23] also succeeded in reconstructing a
facade and interior walls into a 3D BIM model including
exterior openings and extracting height information from
elevation drawings. However, the approach cannot infer the
internal building components’ height which is a critical
attribute used for element modeling like walls. In the same
way, Lu et al. [24] propose a semi-automatic solution for
2D structural CAD drawings processing generating an IFC-
based structural BIM object. A tool built in Matlab is de-
scribed, including data extraction with Optical Character
Recognition (OCR). In the research presented by Wen et al.
[25], the authors describe an algorithm focused on walls,
implemented by Autodesk Revit customization. It includes
both geometrical and topological relations to provide a 3D
building model; however, the algorithm does only support
horizontal and vertical walls.

Unfortunately, CAD drawings files are not available pub-
licly and they are only accessible by their owners; it is
required to pre-process the file or set files, which normally
are unstructured, may contain deprecated information and
can require removing superfluous content. On the other
hand, CAD files have the advantage of being able to identify
the sizes of the represented elements, as long as they have
not been scaled or decorated for presentation. The semi-
automatic nature of these approaches requires human re-
sources to get a BIM document. This is a challenge to bulk-
process thousands of plans. Moreover, they require licenses
for BIM tools to design BIM models. Additionally, CAD
documents like DWG are not always available for existing
buildings.

2.3. Machine learning applied on 2D plans

Zhao et al.[26] proposed the convolutional neural net-
work called You Only Look Once (Yolo) [27] implemented
in 2D scanned CAD structural drawings for object recog-
nition of five classes of elements: grid, reference, column,
horizontal beam, vertical beam, and sloped beam. The clas-
sified object is located by a bounding box. An image pre-
processing that included gray processing, binarization and
color inversion, and morphological operation, was applied
before labeling and augmenting the images. The final output
was a TXT file containing the classification and locations
of the detected elements. The work does not discuss in
depth how to capture element attributes like length, width,
and height mandatory for creating any BIM models. The
same authors [28] presented an implementation of faster
region-based convolutional neural network [29, 30] (Faster
R-CNN), trained on a non-public dataset including 500
framing plans honoring the British Standard (BS 8110). The
work concluded that Faster R-CNN is slightly better than
YOLO after comparing their detection performance. The

method presented a transformation from Pixel Coordinate
System (PCS) to Drawing Coordinate System (DCS) and
achieved to generate a BIM IFC model. Zeng et al. [31]
presented a multi-task neural network recognizing room-
boundary, room-type elements in architectural floor plans,
introducing R2V and R3D datasets. In this case, there is no
3D or BIM model presented for a building case, just isolated
plans. Seo et al[32], due to the lack of a dataset, used Korea
Land and Housing Corporation’s House Floor Plans as the
dataset, and implemented Google DeeplabV3+ framework
for recognizing architectural floor plan elements and spaces
without producing a BIM model.

Dodge et al. [33] introduced a new real estate floor plan
dataset named R-FP, and proposed a fully convolutional
network (FCN) with a stride of 2 for the recognition wall.
By implementing OCR and object detection, they estimated
the room sizes. The LIFULL HOME’s dataset[20], which
contains 5 million floor plan images, was selected for train-
ing though only 1,000 of them were randomly sampled.
There are other public datasets proposed for architectural
floorplans, such as Rent3D [34], CubiCasaSk [35], CVC-FP
[36].

The approach presented by Wu et al. [37] evaluates the
framework Mask R-CNN for indoor mapping and modeling
(IMM) parsing floor plans available on CVC-FP, simplifying
the boundary elements into rectangular shapes and opti-
mizing resolving topological conflicts between rectangles.
However, the approach excludes curved walls and no BIM
model is generated.

The Mask R-CNN framework presented by He et al. [38]
is based on the Fast/Faster R-CNN and a Fully Convolutional
Network (FCN) [39] framework enabling instance segmen-
tation, which combines object detection, for classifying indi-
vidual objects and localizes them using a bounding box, and
semantic segmentation, for classifying each pixel into a fixed
set of categories, differentiating objects instances. Instance
segmentation can recognize complex figure shapes to be
modeled in BIM. Mask R-CNN is an extension of Faster R-
CNN added with Region of Interest Align (RolAlign) and
using the Feature Pyramid Network (FPN) proposed by Lin
et al. [40].

2.4. Machine learning on BIM models

There are experiences where machine learning is also
applied directly to BIM models, to cover modeling gaps, in
specific analyses. In this context, Bloch et al.[41] applied
machine learning for classifying room types in the context
of residential apartments by running an Artificial Neural
Network (ANN) on AZURE ML platform. Its training was
based on a dataset of 32 BIM apartment models as input.
In this case, the BIM models are enhanced with inferred
information using the neural network. The proposed method
was tested for semantic enrichment within the BIM model,
to reduce incompatibilities such as code compliance when
exporting the model to other software. Although this ma-
chine learning approach does not apply to the generation of
the model itself, it does contribute to its improvement, with
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the potential to evaluate, for example, the impact of imple-
menting a change in the regulation where room classification
intervenes.

3. Proposed Method

3.1. Goal and problem formulation

Generating enriched-data BIM models from 2D plans re-
quires processing many different systems, documented using
analog supports such as paper or 2D vectorized plans. The
documentation may also include methods statements, dia-
grams, or even document revisions. The proposed method-
ology receives as input (but is not limited to), architectural
and structural blueprints that are available as images (i.e.
JPG/GIF) of the paper-based plans. These files can be used
in different phases: first, digital assets are used for training
the ML model, and in the second phase, models are the input
for obtaining its BIM representation.

The steps to generate a single BIM model file from
a complete set of construction drawings rely on a neural
network trained individually on each AEC specialty, with
the aim of extracting only the elements that belong to that
category. As each specialty represents some specific system
of the building, we understand that it must be mapped within
as well, i.e., extracting column information from a plumbing
blueprint could be an error, because the specialist is not
supposed to design that element. This methodology requires
having pre-classified each plan in architecture, structure,
mechanics, plumbing, etc., to select the appropriate training
for mapping.

Our approach aims to establish steps that can be fully
automated to achieve bulk model generation throughout
the mass plan processing. On the opposite side, there are
proposals [21, 22, 24], with semi-automatic steps that limit
complete modeling automation.

We chose to use, (but the approach is not limited to), the
Mask R-CNN algorithm for training the ML model because
it allows identifying irregular elements as masks. Many
buildings have non-rectangular elements that are impossible
to capture using rectangles like semi-circle shaped bal-
conies, or sloped beams (which are not aligned to the X and
Y axis). Another key factor is the extraction of the polygon’s
shape from the masks of the detected elements. Besides the
shape simplification [37], this problem is also approached by
Zorzi et al. [42], implementing a fully convolutional network
(FCN) for corners detection.

Our literature review helped to confirm the diversity of
drawing styles that makes it hard to design a solution that
could be applied worldwide or even countrywide because
not all locations share the same standards. No approach
was able to provide a solution to this problem. As AEC
designers’ drawing styles, plan idioms, and local standards
can produce a wide style diversity for representing elements
and notations, this aspect should be considered to define the
datasets for training and evaluation. Our approach faces this
issue by training the system using drawings that honor local
standards. Training only requires a technician to classify and
tag images and then it can be triggered without any code

change. Any code change is expensive because development
tasks and different engineer roles are involved and it might
be error-prone.

In Figure 1, we introduce our approach that is many-fold:

o In the first place, there is a tagging and training step
where local blueprint styles are captured and the main
outcome of this step is a set of models where each one
is focused on a specific specialty of AEC blueprints
(e.g. amodel will be focused on capturing beam, slab,
and columns of the structure blueprint). A throughput
description of this step is provided in section 3.4.1.

e Some metadata information is extracted from the Title
block element in the plan set. This would be used for
identifying plans belonging to the same project when
performing bulk processing of several buildings.

e Before processing the blueprints, the image size and
scale are normalized across plans. Printed blueprints
are required to include the element scales; however,
during their digitization process, the blueprints might
be scanned using different image resolutions making
it hard to locale elements across blueprints in the same
position. This problem has been discussed in depth on
[16]. So, we apply feature alignment techniques [43]
to align and resize different blueprints using shared
elements, such as columns, spread on all blueprints.
In figure 2 we show an architecture plan (Fig. 2a)
and a structure plan (Fig. 2c). The architecture plan
is rotated in figure 2b and the final result after re-
scaling images is shown in Fig.2d where columns
are aligned. This is mandatory to work with element
location across maps to build a single BIM document.

We decided to adjust images by generating tempo-
ral image versions so that analysts can visually de-
bug any inconsistency with blueprints. After the BIM
document is generated, temporal-scaled images are
deleted. Another approach is to compute the offset and
scale ratio and use them to transform elements when
generating the BIM model. The main drawback is
that any inconsistency will be hard to analyze visually
because images will not be on the same scale.

e The next step is to classify blueprints and run the right
ML model on them.

e The AEC element classification process uses the
trained models to get the elements and position in-
formation. Additionally, explicit and implicit infor-
mation is extracted. On one hand, it considers the
application of OCR to extract textual information like
beam dimensions which is documented along with
the bean drawing or the door/window id. Moreover,
relationships between objects are identified such as
the "host" relationship between the wall and door. This
step will be described in Section 3.6.
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Figure 1: Overall approach schema

e BIM generation is the final step where the elements
and metadata are woven to compose a BIM model.
This step will be described in Section 3.8.

As above mentioned, the proposed approach merges
architectural, and structural plans in one building BIM
model composed of many floors; they are obtained from
2D scanned plans, postponing a future work integration
of plumbing, electricity, and mechanics plans. This can be
easily extended to support more AEC specialties producing a
richer BIM model. When BIM is used, technicians produce a
shareable single model for new buildings that other profes-
sionals can incrementally enhance with additional details.

Before the BIM age, a project could be spread into many
individual plans which are views of the buildings without
an underlying model. There are many printed or hand-made
plans archived that can be targeted by our approach. In this
work, we aim at combining different plans as sources for
generating a single building model, which differs from the
approaches introduced in the Related work section, which
only focus on either Architectural or structural plans but not
both.

3.2. Blueprint collection
Buildings are often modeled using different drawing
plans that are specialized in specific topics. For example,
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scaling plans

Figure 2: Plans transformation for aligning elements

structure plans depict the main elements that give stability
to the building. Moreover, each type of drawing relies on a
specific set of valid elements that make sense in that context.
For example, the structural plan combines beams, slabs,
and columns among other elements. Finally, the elements
might have some sort of textual annotation that is used to
provide additional information like dimensions in the case of
beams or to assign an identifier, which is used for referencing
complementary information often provided in an attached

document like doors and windows designs. In Table 1, we
list the building plans and the elements considered in this
work. For each element type, an element image, the required
attributes for its modeling, the source of each attribute,
and the IFC element used are provided. Finally, it is also
documented whether or not the element has a textual or
graphical annotation.

The raw blueprints had to be pre-processed and clas-
sified. First, they were grouped by building, from which
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architecture and a structure set were generated. The set was
cut and separated by floor plan or section view, which were
later labeled.

3.2.1. Title blocks for metadata project processing and
classification.

The title blocks contain relevant metadata required in
BIM models such as Facility Address, Project Name, De-
scription, Land title number, and address, among others.

A bulk plans mapping must be able to identify project
information for classifying and grouping plans that belong
to the same project facility. In Figure 3, a standard ti-
tle block is approved by the local Municipal authority for
Building Permits (BP). The title blocks may vary according
to local requirements; once defined, they become standard
for applying a BP. The label is divided into compartments
and specific information can be extracted from each one.
Associating each keyword to objective metadata, through
OCR techniques, the required information can be extracted.

CADASTRAL FILE

WORK: TO BE DEMOLISHED [LETTeR N YEAR
AND BUILD recorn: 000.000

DESTINATION: SINGLE-FAMILY HOME
LOCATION: LA PLATA

DISTRICT: LA PLATA
OWNER:

NAME AND LAST NAME

STREET: xx b/ nn and mm SCALE: 1:100

OTHER REQUIREMENTS:  ros: o:01 REFERENCES:
ZONA: UR3 DENS.: 300 Hab /H ’ TOBUILD —
FoS: 09 ALTURA: Sres St TO DEMOLISH (722

' Antecedent. X - 000 - 00

FERIOD OF EXECUTION 12 MONTHS

LOCATION
_ L ®

WNER:
NAME AND LAST NAME

STREET xx

Address: Calle XX N° 0000 - La Plata.
DESIGNER:

ARQ. Name and Last Name

Mat. Prov. x00¢

Mat. Mun. xxxx (project)

STREET nn
STREET mm

STREET Yy Address. Calle XX N° 0000 - La Plata.

T r CONSTRUCTION MANAGER:

ARQ. Name and Last Name State
registration. 3000

TABLE OF AREAS (m2) Municipal registration. x00xx (project)

SUP. TERRENO: 252.00m2

SUP.CUBIERTA PB.A CONSTRUIR: 7200m2 Address: Calle XX N° 0000 - La Plata.

SUP. SEM. CUB. P.8. A CONSTRUIR: 2694 m2

SUP.SEM. CUB. P.5_ A CONSTRUIR F.L M. sosma | CONSTRUCTOR:

SUP CUBIERTA PA.A CONSTRUIR: 55.53m2 ARQ. Name and Last Name

SUP CUBIERTA PA.A CONSTRURF.LM Sosm2

SUP. TOTAL A CONSTRUIR: 158.57 m2 State registration. oo

‘SUP. A DEMOLER: 103.00m2 | Municipal registration. o0 (project)

SUP. LIBRE: 16506 m2
Address: Calle XX N° 0000 - La Plata.

Figure 3: Title block

3.2.2. Scope of elements to detect for modeling

This work studies how to process the most important Ar-
chitectural, Structural, and Section plans elements regarding
the same building. In order to capture all the information
available on plans, we combine object detection using ma-
chine learning, Optical Character Recognition, and scripting
to construct IFC elements. As described in Figure 1, we
consider, but are not limited to, the following main elements
in our approach.

Structural plans. Our structure plans database, as shown
in Fig.4b, presents foundation elements as bases or piles,
beams, columns, slabs, and stairs. Concrete steel bars rein-
forcement information are not included in these plans. For
the sake of simplicity, foundation and stairs elements are
kept out of scope. Stairs modeling is a challenge by itself;
Lin [44] considered 54 different stair types for evaluating
an automatic path generation on 3D building models in IFC
format.

‘We considered the following main blueprint elements:

e Columns. Our scope is restricted to concrete rect-
angular sections. Section shape is obtained by the
Cartesian’s points from mapping 2D structure floor
plans. The column’s height is sourced from section
view plans, but if they are not available, the user must
set it. The column is instantiated as IfcColumn class of
IFC. Additional information as column tags can also
be linked, after merging OCR results.

e Beams. This element is also restricted to concrete
rectangular sections. On floor blueprints, the length
and width of the element can be extracted. The height
is normally indicated on the plan flow next to the ele-
ment tag, which can be obtained via OCR. The beam
description, which has normally "V-000 - WIDTH
x HEIGHT" format on our database, must be cor-
rectly parsed. Beams are instantiated as IfcBeam class.
Beams are supported by columns or concrete walls,
but this structural relationship is not set in the model.

e Slabs. Concrete slab’s width and length are obtained
from floor plans, but its thickness has to be sourced
by an OCR technique. The storey level has a uni-
fied height, and despite our dataset having more than
one case with slabs on bathrooms under level, they
were instanced on the same plane. Slabs are instanced
as IfcSlabs. Slabs are supported by beams, concrete
walls, columns, or concrete walls, but this structural
behavior is not set on the BIM model.

Architectural plans. In Fig.4a we show an example of a full
architectural layout plan. The architectural plan contains a
variety of elements and information, and therefore the detec-
tion of objects and semantic information extraction is more
complex compared to the structural plans. We focused on
walls, doors, and windows as the main elements. The doors
and windows require a host, like a void element on walls,
for modeling. Sanitary artifacts shall be considered in future
works when mapping the plumbing system. Sometimes,
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Table 1
Plan elements
. . Textual
AEC Plan Object Image .Geometrlc Attribute Hosted . Graphica/l
information source by element .
Annotations
, | length Architecure
Architecure Wall &7 witdh floor plan IfcWallStandartCase
. height Se:ction
view*
B length Architecure Door
Architecure Door - witdh floor plan Wall IfcDoor type reference
JAAN) height Carpentry
— detail*
< length Architecture Window
Architecure  Window (050, witdh floor plan Wall IfcWindow type reference
; . Carpentry
H_B height detail*
length Structure .
Structure Column G witdh Plan IfcColumn Column id
@: height Section view*
length Structure Beam ID,
Structure Beam ‘1\ V—301: 15X35 L witdh Plan IfcBeam dimension annotation
height Section V|.ew* (i.e. height x width)
or annotation
+Z length Structure
Structure Slab witdh Plan IfcSlab
height Section View
- or annotation*
*QOptional

architectural floors provide column locations, but structural
plans override them avoiding inconsistencies.

e Walls. This element can be represented with a variety
of line styles and hatches. It is recognized as a poly-
gon, which allows the modeling of shapes and paths
variety. The width and length, or its boundary can
be recognized from floor plans, but its height has to
be sourced from the sections view or defined by the
user in case it is not available. Walls are instantiated
as IfcWallStandardCase class. Wall materials are not
detailed in our architectural floor plan dataset.

o Windows and Doors. These elements are recognized
as a rectangular box on the wall, where the width
and length are obtained from floor plans. With OCR
methods it is possible to extract semantic information,
such as the element type or classification, considering
that a carpentry detail sheet contains further design
details ( i.e. height and material) but the proposed
method is restricted to the floor plan. Windows are
instanced as IfcWindows but require modeling a wall
and void element on the host. That is to say, the
wall polygon is subtracted to get the wall opening.
Windows offset from the floor and height has to be es-
timated. For the door case, the elements are instanced
as IfcDoors with a simplified model without opening
side considerations.

3.3. Network Architecture

We used Mask R-CNN [38] algorithm for object de-
tection and segmentation based Mask R-CNN implemen-
tation developed by Matterport [45]. The project is open
source and released under a permissive license (i.e. MIT
License). The code was implemented on Python 3, Keras,
and TensorFlow. The model generates bounding boxes and
segmentation masks for each instance of an object in the
image. It’s based on Feature Pyramid Network (FPN) and
a ResNetl01 backbone. We used transfer learning from
pre-trained weights for MS COCO > The same network
was adopted for performing three main tasks: predicting
structural elements with three labels( e.g. column, beam,
and slabs), predicting the architectural elements with three
labels ( e.g. wall, window, and door), and a third one to
predict levels height from sections view with one label for
each storey. For each plan type, we trained a neural network.

3.4. Dataset Setup
3.4.1. Labeling

This is a manual task performed by an engineer who
is able to understand drawing elements’ semantics. The
engineer used Wkentaro’s Labelme [46] tool, a software
that allows us to label key elements on the input image and
gets, as output, annotations ready to use with our selected
models. In Figure 5 a column (5a), a beam (5b), and (5c)
slab are tagged on the structural plan. This labeling process

5COCO Dataset - https://github.com/cocodataset/cocoapi.git
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Figure 4: Architectural, structural, and section view blueprints
on dataset

was performed for Architectural and Section plans as well.
The labeling strategy aims to identify the elements and
their shapes. In [26], the labeling covers partially the target
element and includes the reference text (5d).

On the other side, [47, 31, 32] labeled elements by
following the element’s perimeter. This leads to an element
identification extracting also the morphological information
with high precision like location, length, and width, or even
a mask for non-rectangular shapes.

Other authors [26, 28] included textual annotations along
with the drawing elements and relied on the drawing grid
to infer the element length. This means that the approach
excludes plans without any grid from the scope. Moreover,
the method does not allow extracting morphological infor-
mation for non-rectangular shapes.

ioinv,

=227

(a) Column labeling example

A V—227: 15X35

9]

(b) Beam labeling example

inv. V—227: 15X35

20

5] o
@ (]

(c) Slab labeling example

=

(d) Beam labeling not adopted

Figure 5: Structural elements labeling
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3.4.2. Augmentation

The augmentation technique allows the creation of new
images from existing ones by performing transformations
to the original image. It is possible, for example, to rotate,
add zoom, change colors or lighting, add noise, etc. This
technique is really useful when we have few images or when
they are difficult to label. Its importance lies in the fact
that it allows for increasing the effectiveness of the model
since a large number of extra images contemplate different
conditions or situations that were indeed not contemplated in
the original images. will be provided and it is also useful to
avoid overfitting, that is, the memorization by the model of
the training images, which leads to low accuracy in detecting
new images.

Modifying an image means that we also have to update
its mapping file since the same transformation is applied
to the label. Our augmentation process involves taking the
dataset and for each pair of (image, label) converting the
label file to a .csv file for easier management of bounding
boxes and using a Python library called imgaug ©. The
outcome of the augmentation approach is a larger set of
images that are later used for training and testing purposes.
The performed transformations were rotation, scale (up and
down), crop, flip (horizontal and vertical), noise, and blur.

3.5. Dataset separation

After labeling the images, they must be divided into
2 folders (training and test). The first will be used for
training, and the second to periodically evaluate training
performance, allowing the algorithm to make the necessary
adjustments to the network to improve predictions. The
percentage of distribution between both folders was 75%
for training and 25% for the test.For BLD-AR, 69 images
were used for training, with 17 originals and 52 augmented.
On the other hand, 22 images were assigned for testing,
composed of 8 originals and 14 augmented. The BLD-ST
dataset was split in the same way. As presented in Table 2,
within training and test images, the total elements labeled
are 873, and including augmented images is 3237 elements:
1119 columns, 1621 beams, and 497 slabs. In the same
way, in Table 3, the total elements labeled are 867 where
3337 elements are obtained after applying the augmentation
process: 609 windows, 705 doors, and 2013 walls.

within training and test images,

3.6. Network configuration

In this article, our main interest lies in the methodology
for generating a BIM model. We have opted for the Mask R-
CNN model as described in Section 3.3, but we will not focus
on an exhaustive analysis of the performance of the network,
to which in principle we have not made any contributions in
this publication.

"Imgaug - https://imgaug.readthedocs.io/en/latest/

Table 2
Detail of elements labeled in the structure blueprints data set

STRUCTURE DATASET
QTY ELEMENTS LABELED

Set column
Train orig 201 270 91 562
Train aug 622 887 262 1771

Test orig 105 164 42 311
Test aug 191 300 102 593

Sum 1119 1621 497 3237

beam slab  Sum

Table 3
Detail of elements labeled in the architectural blueprints data
set

ARCHITECTURAL DATASET
QTY ELEMENTS LABELED

Set window door wall  Sum

Train orig 129 139 428 696
Train aug 399 456 1232 2087

Test orig 29 39 103 171
Test aug 52 71 250 373
Sum 609 705 2013 3327

3.7. Semantic information extraction
3.7.1. OCR recognition

Our approach requires the extraction of object annota-
tions using an OCR to enrich their semantic information.
Although there are world-class OCR services, we chose
Google’s Cloud Vision service to extract all the text pre-
sented in the image, because it has a good performance and
was easily integrated into our solution by means of API
requests. In [48], the OCR portion of the process was carried
out by detecting horizontal and vertical text separately and
generating spreadsheet files with the text data (text without
image position coordinates). We instead opted to process the
image and extract every text and its coordinates found on
the input image. For such a task, we designed an algorithm
able to match the detected blueprint elements with their
corresponding label extracted via OCR.

This way we obtain accurate labels to then enrich our
model with the necessary context.

3.7.2. Object’s description association

The script expects two lists of elements, in this case,
Labels and DetectedObjects. The script will iterate over the
list of pivot elements (i.e. DetectedObjects) and search for
the closest label in the list of available labels. This is done by
calculating the minimum distance between the nearest points
of each element. Once we have the nearest one detected,
we bind them create a pair and eliminate the label from the
available list. This process is repeated until there are no more
matches to be made.

Urbieta et al.: Preprint submitted to Elsevier
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In Fig. 6, let’s consider the marked blue column as
a pivot. It would iterate over the labels (@) and @) and
calculate the nearest distance between them, it will then pair
up the column with label @ since they are closest to each
other.

ca [v=poa: 18x30]® | cos
] { “,
%2 B |
L é W
-+ s 2
gl " 10
> L

V—=209: 15X30 |
| 'S}

Figure 6: Annotation processing

To minimize false positives, the algorithm just does not
compute the distance among all elements and all text labels,
instead, it filters each label to only match the ones that
correspond to the object type. This is possible due to each
element type having a standard nomenclature during label-
ing, ie. beams are V-XXX and columns are C-XXX. This
step allowed us to reduce the number of missed assignments
to a more than acceptable-value.

3.7.3. Elements associations

When detecting objects in plans, there are elements that
require establishing semantic relationships with other ele-
ments. For example, when a beam is supported by columns
that transmit its loads. This relation has to be inferred from
the object disposition in the plan. To address this situation,
a script was developed that proposes elements’ relationships
based on their placements.Conceptually, the approach does
not differ much from the one described in Section 3.7.2,
where the descriptive text of the element is associated with
the element.

For our use case, we needed to know what beams are
related to a certain column. Nonetheless, the module it’s
flexible and was built with the option to be extended.

Since each element is already classified, by simply in-
dicating what type of element the script should use as
the pivot, the script can search and assemble the relation
between elements. The script considers objects to be related
by calculating the distance between the nearest points each
other. If it is within a threshold, 20 pixels to be precise,
the objects will be considered related and that relationship
will be recorded. This process is repeated for each object of
the type selected as the pivot. Additionally, we considered a
column to have a maximum of 4 beams assigned, and beams
to have a maximum of 2 columns. This is done in order
to prevent over-assignments and minimize the impact of

missing/duplicate detection that might possibly occur during
the object detection.

3.8. Building Information Model generation

As mentioned, the result obtained after identifying archi-
tectural and structural objects on blueprints, are TXT files
with the detected elements as a collection dictionary with
keys -values for defining the element class and the boundary
box pair points defined as X,Y pixels. The objects to be
recognized require volume definition in order to create them
on an [FC model.

The sets of files are the inputs for the BIM generation
model algorithm developed in Python. Each type of input is
kept in a specific folder. The input files must be organized in
such a way that there is a uniqueness between the position
of each storey in its respective folder, even if one of them
does not contain data. hlThe first step consists of parsing
the detected structure elements stored in a file, where each
file represents a storey. The storey height is set based on a
parameter in our script. But the approach could be enhanced
to process section view plans and pull the storey height from
it. For each storey level, the set of each element type as
columns, beams, and slabs are instantiated.

Given that blueprints are two dimensional documents,
we defined two possible strategies to set the columns’
heights. If a document scale is detected (pixels to meters),
we use a constant value for the column’s height (i.e. 2.60
meters). This can be improved by processing x-sections
plans to get the storey’s levels. If the scale is not detected,
we used a ratio coefficient as height = 13.2 times the minor
dimension of all detected columns. We have set this rela-
tionship considering that the local regulation defines 20 cm
as a minimum dimension for reinforced concrete columns;
it is 2.64 meters in this case. The architectural prediction
input is merged in a similar way, including in the array of
elements such as walls, doors, and windows. The next step
is to run the BIM Generation script with the input array as
a result of merging input files, which creates new instances
of each column, beam, slab, wall, door, and window, and
generates one IFC model file. For manipulating the IFC
file, we used an IfcOpenShell open-source (LGPL) software
library for python. At the moment, input files only contain
geometry data. The model can be enriched by identifying
other properties like material by combining the approach
where the material is extracted from indoor/outdoor building
pictures [49]. The IFC BIM structure model is created
by using IfcColumn, IfcBeam,IfcSlab. Architectural model
components were created by using IfcWallStandardCase,
IfcDoor IfcWindow. The Doors and windows belong to a
family object that requires a host element. In this case, for
each instance of door or windows, the script creates a wall
and opening, as [fcOpeningElement, where the carpentry
is related. A standard template for an IfcProject is used
for setting up quickly project information, units system,
and directions. New entity instances will be related to the
IfcProject. IFC model implements the composition/decom-
position to represent the relationship among the building
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elements. The aggregation relationship IfcRelAggregates’ is
a special type of the general composition/decomposition (or
whole/part) relationship.

Figure 7 illustrates the steps to create the object instance
for IfcColumnStandardCase ® that includes the OCR de-
scription association stage. After recognizing the object with
the trained neural network @, the text extracted via OCR@
is associated by proximity to the element @), as described in
section 3.7.2. The step @ consists of the application of the
alignment and scale transformations, which allows mapping
from the Pixel Coordinate System (PCS) to the Drawing
Coordinate System (DCS). The plant and the height of the
element are considered in sequence when the IFC object
is instantiated @. Continuing on @, the element profile is
defined by a sequence of points specified as Python tuples
retrieved from the input TXT file as a polyline IfcPolyline
which defines a closed profile IfcArbitraryClosedProfileDef
or swept area. The solid volumes are defined as extruded area
solid (IfcExtudedAreaSolid) by sweeping a bounded planar
surface through a given direction (ExtrudedDirection) and
the length of the extrusion given by a Depth attribute.
The position of the extruded area solid is defined by its
location (IfcAxist2Placement3D object), for the columns the
extrusion direction has been defined as a vertical vector
(IfcDirecton), and the extrusion depth is defined by the
column height. The position of the extruded area solid is
defined by its location (IfcAxist2Placement3D object), the
extrusion direction as a vertical vector (IfcDirecton object),
and the extrusion depth by the column height.

A body representation is related to the swept solid (Ifc-
ShapeRepresentation) to get a product shape (IfcProduct-
DefinitionShape). The product to be instanced as, for ex-
ample, IfcColumn @), is associated with the product shape,
material @ (IfcMaterial), property set (IfcPropertySer), and
element quantities ([fcElementQuantity) once the area is
extruded (IfcProductDefinitionShape). For the sake of sim-
plicity, the process of modeling the beam element indicated
in @ is similar to that described for the column case ex-
plained in steps 1-8. The column and the beam are related
(IfcRelDedineseByType) to each other in step @

In the case of window or door, additionally has to be
instance a IfcOpeningElement and relate it to a wall host
before relating the product to the opening.

4. Case Study: From blueprints to BIM

4.1. Dataset

To train our network, we prepared two datasets, namely
BLD-AR and BLD-ST for building architecture blueprints
and building structure blueprints respectively. Both datasets
include real-life building projects with less than 10 levels
provided by the building constructor. Figure Fig.8 presents a
detail of the composition of the dataset: 9 concrete buildings

7https ://standards.buildingsmart.org/IFC/DEV/IFC4_3/RC1/HTML/
schema/ifckernel/lexical/ifcrelaggregates.htm

8https ://standards.buildingsmart.org/IFC/DEV/IFC4_3/RC1/HTML/
schema/ifcsharedbldgelements/lexical/ifccolumnstandardcase.htm

with 72 structural (BLD-ST) and 38 floorplan images, 18
sections views, and 9 front/back views (BLD-AR). Floor
plans are mostly rectangular shapes. The set BLD-AR con-
sists of building architecture like floorplans, building sec-
tions, front view, and back view, gathered in the same plan
layout (Fig.4a), which was split into floor plans (Fig.2a), and
views (Fig.4c) before tagging. The set BLD-ST consists of
floor plans with structural elements such as columns, beams,
slabs, and foundations, and are required to be separated per
floor plan.(Fig.2c)

4.2. Training model configuration

We used Google Colab Pro service to train all models
involved in our approach. In order to analyze the perfor-
mance of the models, we tested different hyperparameters
settings comprising the Number of Training Steps per Epoch,
Number Epoch, and Batch Size parameters. We computed
the mean Average Precision (mAP) for each setting and the
time it took to train the model. The sessions shared some
parameters like the learning rate (0.0001), and validation
steps (10); the images were picked randomly in each step.

The Table 4 shows the batch size, training steps, valida-
tion steps, number of samples (batch * epochs * steps),
the time it took the training, and mAP for the six training
sessions. In the first scenario (batch size 1, 20 steps, 2500
epochs ), the mAP was 96.77% and required 7 hours of train-
ing. From Session 2 to Session 6, we increased the training
step from 20 to 50, batch size from 1 to 6, and resumed the
number of epochs from the last saved checkpoint in every
new training session. In this way, we were able to detect
where the mAP gets stable on session 6 where it was 96.32%.

Although it is recommended to set # of images/ batch
size as training steps to train all over the dataset samples,
we were not able to run such a number of steps on Google
Colab Pro and our sessions were closed without even one
checkpoint. That is to say, each epoch took more than 12
hrs. Consequently, we reduced the number of steps per
epoch to 50 which allowed completing the epoch safely. The
reader can notice that there is a huge difference between
Session 1 and the others because, unfortunately, the allocated
GPU (with high computational power) was not available in
subsequent sessions; this significantly increased the number
of training hours required for similar training.

The latest session required processing less number of
images ( #samples column ) than the first scenario to get
a similar mAP.

Without a doubt, a topic for future work is to compare
the benchmarks obtained, with those resulting from the use
of other CNN models, without ruling out different configura-
tions that would improve the fine-tuning of the Mask R-CNN
model used in this research.
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Figure 7: IFC Column Standard Case implementation flow

Table 4

Training sessions
# GPU Batch | Training steps | Validation steps | Epoch | # samples | Time — hrs | mAP
1 | NVIDIA A100 1 20 10 2500 50000 7 0.967
2 NVIDIA T4 6 50 10 11 3300 12 0.876
3 NVIDIA T4 6 50 10 17 5100 24 0.927
4 NVIDIA T4 6 50 10 24 7200 36 0.944
5 NVIDIA T4 6 50 10 34 10200 48 0.958
6 NVIDIA T4 6 50 10 38 11400 60 0.963

4.3. Cloud Network training.

The network was trained using the Google Colab Pro
platform; although resources are not guaranteed, we were as-
signed NVIDIA T4 and A100° with priority access and high-
RAM setting at this time. In general, notebooks can run for at
most 12 hours, depending on availability and usage patterns.
For processing the classified element, we developed custom
scripts based on Python 3.8.16 programming language. The

9https ://cloud. google. com/compute/docs/gpus

original resolution of the images for the input floor plan was
around 3000 x 7000. We resized the images before training
because that image size was not processable by the model
without overflowing the available resources.

4.4. Running example

The building to be modeled has 9 levels for functional
units, and 4 additional levels that correspond to the machine
room and elevated tank. Level O (ground floor) corresponds
to the building access, levels 1 to 8 correspond to repeated
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Building Blueprints by type

Nr Structure  Architectural SectionView  Views
1 8 5 2 2
2 9 5 2 1
3 6 4 2 1
4 5 4 2 1
5 7 3 2 1
6 9 3 2 1
7 8 4 2 -
8 9 3 2 1
9 11 7 2 1

Sum 72 38 18 9

Figure 8: Detail of blueprints data set

standard floor plans and each floor of the building matches
a rectangular shape, resulting in a quite simple volume with
repeated levels. The output files obtained from both models
trained previously were 13 for structure and 12 for archi-
tecture. We ran our Code described in section 3.8 using the
IfcOpenShell python library for instantiating elements. The
script processes in alphanumeric order each structure file and
then the architectural ones. The alphanumerical ordering of
the files coincided with the location of each floor from the
lowest to the highest level.

The model result is an IFC file that can be presented
visualized with xBIM Xplorer'?, a free open-source IFC
viewer. A screenshot of the complete model is presented in
figure 9, already integrated with the architectural and struc-
tural elements. In figure 10 an x-view of the same building
is shown; the inner elements modeled as doors, windows,
columns, and walls can be appreciated. Figure 11 presents
the result of running our approach using only structural
plans where columns, beams, and slabs were instantiated.
It is highlighted that a key factor to modeling a building
coherently turns out to be the consistency between vertical
positions and their appropriate scale between different levels
of the element detected by each trained model that maps
the structure plane as architecture respectively. This key
factor is considered in section 3.1 feature alignment and
scale. To generate the model, 1155 mapped elements were
instantiated: columns (181), slabs (110), beams (321), walls
(391), doors (103), and windows (49). Itis worth mentioning
that minor adjustments were made on some elements to get
a clear model. For example, slab stretching connects all the
beams.

5. Discussion

In this section, we discuss the benefits, challenges, and
limitations of our approach.

5.1. Pros

Our approach to generating BIM from blueprints aims at
generating full BIM models from plans without any manual
tasks. The digitalization of large datasets of building plans
would be faster (milliseconds) and cheaper than a manual

1Ohttps ://docs.xbim.net/downloads/xbimxplorer.html

Figure 11: Structure modeled

translation of existing designs by a specialist (minutes to
hours). In the context of a city hall that has decades of plans
and building permits, bulk processing is feasible but it is
not the case for the manual translation to BIM. Capturing
the experience and knowledge available in plans into models
allows performing big data analysis to train a neural network
that could aid the design of new buildings based on recom-
mendations.

5.2. Cons
In our approach, once the elements are identified, there
is a mapping script that generates the right IFC element.
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We have only covered a basic set of IFC elements to test
our approach. A building design is an art that continuously
explores different element combinations to get the most
functional but creative solution. Our approach has not been
yet tested on different building types and locale-specific
design styles.

5.3. Limitation

There are some limitations of the current solution. First,
this work showed the benefits of applying ML to generate
preliminary BIM models that help address some analysis
concerns. There are works that address the code of practice
compliance checking [50] in BIM based on local require-
ments. The generated models for existing buildings may
fail the validation process if they were developed using a
previous code of practice that is incompatible.

Second, the lack of a larger blueprint dataset restricts
the ability to process diverse building types. Our dataset
consists only of concrete buildings. The extended dataset
should include, but not be limited to, houses, industries, and
warehouses built of concrete, steel, wood, and/or other ma-
terial. For example, we have evaluated the proposed method
considering a basic subset of BIM elements however it is
still pending to pull fine-grain details to increase the Level
of detail (LoD) [51]. The level of detail is LOD 200 (walls,
doors, and windows) and LOD 290[52] (slab, column, and
beams), where the model element is graphically represented
as a generic system or object, with approximate quantities,
size, shape, and their exact positions subject to change (i.e.
windows height). Non-graphical information may also be in-
cluded in the modeled elements. From the generated model,
its element’s properties can be checked out such as geometric
dimensions, area, and volume audited. Moreover, the struc-
tural model could be enhanced by integrating this approach
with [53] where appendix tables that include reinforcement
details information. These tables would be ingested and
combined with beams and slab elements, thereby increasing
the LOD and allowing for sophisticated analysis, such as
building earthquake studies. One of the main goals of this
approach is to process the plans in bulk, in order to learn the
general aspects of buildings. The generated model still lacks
many details such as materials, HVAC systems, plumbing
systems, etc., although the approach can be extended to
consider those details. As discussed before, their extraction
depends on the local drawing/design style.

There is a natural limitation that requires building plans’
availability as digital assets. Municipal archives must imple-
ment digitization techniques within their internal processes
to generate these assets. Customizing the generation script
of each new type of element or class to be modeled is a task
that requires qualified personnel.

Training a neural network for supporting all possible
design elements and adjusting the script for combining iden-
tified elements is complex. So we suggest prioritizing the
most important elements to get a simple but mindful BIM
model. For example, modeling the layer composition of a
wall is more relevant than modeling the internal furnishings

if you want to perform a thermal balance analysis. The mod-
eled building has a simple and repetitive geometry in height.
Floors with curved or sloped beams and sloped ceilings
have not been tested. Within existing constructions, some
have been through a continuous reform process and may
have properly documented the building history. Therefore,
plans from different periods can be processed, but this is
beyond the scope of this work since they imply modeling the
different stages for the same construction, from a previous
model. It is important to clarify that the generated model
tries to reflect the processed documentation as it is. In this
work, we did no consider any Code of Practice for e-summit
applicable to the generated BIM model.

6. Conclusions and further work

The generation of building models from plans has been
widely studied. Recently, with the advancement of deep
learning models, different works have been presented that
seek to attack the same problem from the machine learn-
ing perspective. The proposed methodology uses different
sources to generate an object-oriented model at a low cost
and supports the BIM model generation in an IFC format
from floor plan blueprint images using machine learning.
The approach allows the plans to be processed in bulk
for obtaining BIM with room for increasing the LoD. The
methodology is novel as it introduces instance segmentation
by implementing Mask R-CNN model, trained on a novel
dataset BLD-AR and BLD-ST. The final result is an IFC
interchangeable file generated with open-source libraries.

In this work, we presented an approach to generate a
multi-level building model where beams, columns, slabs,
windows, walls, and doors are instantiated, in their standard
cases. We could show the preliminary results of an object
recognition algorithm to process structural and architectural
blueprints automatically.

The generation of BIM models from existing construc-
tion documentation undoubtedly will be targeted as an im-
portant subject by data science. Some of the benefits of this
approach are the possibility to:

e Aiding retrofit design tasks for an existing building
with recommendations based on BIM models and
massive building analysis to optimize energy con-
sumption is of great interest.

e Aiding design tasks with recommendations based on
BIM models and massive building analysis to opti-
mize energy consumption is of great interest.

We plan to gather blueprints honoring different drawing
styles and from different countries applying different stan-
dards. We are also planning to synthesize blueprints for the
training step from existing BIM models [41] using different
drawing styles. As this work was limited to structural and
architectural drawings, we are also planning to study how
to identify mechanical, electrical, and plumbing elements.
We plan to research how to automatically automate the
classification of plans and their content in bulk mode. In
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order to evaluate the model quality of this solution. we plan
to request architects/engineers to design BIM models and
compare the manual and system-generated versions to find
possible optimizations and missing best practices. Addition-
ally, due to the computational power required to train the
neural network, we will work on a new approach based on a
hybrid solution combining small and big element detection
[54]. The approach splits the image into tiles and uses a
specialized neural network trained with small elements such
as doors or columns and bigger ones as slabs or long walls.
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Dear reviewers,
This article presents the following contribution:

+ An approach for identifying drawing elements from plans using machine
learning,

+ Novel public dataset with structural and architectural plans,

+ Building Model Information model generation from structural and architectural
plans,

+ Extensible to include specialties like mechanical, electrical, and plumbing,
+ We illustrate our approach in a building case study.
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