
Towards Recovering Architectural Information
from Images of Architectural Diagrams

Emmanuel Maggiori1, Luciano Gervasoni1, Mat́ıas Antúnez1,
Alejandro Rago2, and J. Andrés Dı́az Pace2

1 Facultad de Ciencias de Exactas, UNCPBA, Campus Universitario,
(B7001BBO) Tandil, Buenos Aires, Argentina.

{emaggiori, lgervasoni, mantunez}@alumnos.exa.unicen.edu.ar,
2 ISISTAN Research Institute, CONICET-UNICEN.

{arago, adiaz}@exa.unicen.edu.ar

Abstract. The architecture of a software system is often described with
diagrams embedded in the documentation. However, these diagrams are
normally stored and shared as images, losing track of model-level archi-
tectural information and refraining software engineers from working on
the architectural model later on. In this context, tools able to extract
architectural information from images can be of great help. In this arti-
cle, we present a framework called IMEAV for processing architectural
diagrams (based on specific viewtypes) and recovering information from
them. We have instantiated our framework to analyze “module views”
and evaluated this prototype with an image dataset. Results have been
encouraging, showing a good accuracy for recognizing modules, relations
and textual features.

1 Introduction

Software architecture knowledge is an important asset in today’s projects,
as it serves to capture and share the main design decisions and concerns
among the project stakeholders. Briefly, the software architecture is a
model for describing the high-level organization of a system (since early
development stages) [1]. More specifically, the architecture encompasses
the set of structures needed to reason about a computing system, which
comprises software elements, relations among them, and properties of
both. The architecture can be documented using different mechanisms,
for instance: Word documents, sketchy notes, UML diagrams within a
CASE tool, or Web pages hosted in a Wiki, among others [6,9].

The notion of architectural views is key in documenting software ar-
chitectures [4]. A view presents an aspect or viewpoint of the system
(e.g., static aspects, runtime aspects) by means of textual and graphical
contents. Typical examples of views are: module views (the units of imple-
mentation and their dependencies), component-and-connector views (the

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 36



elements that have runtime presence and their pathways of interaction),
or allocation views (the mappings of software elements to hardware). A
common practice in software projects is to have architectural diagrams
as the main source of documentation. These diagrams are kept as im-
ages (e.g., JPG files) and pass them along as the development process
progresses embedded in textual documents (even if the diagrams were
originally created with a CASE tool). As a result, the model-level infor-
mation contained by the diagram is “frozen” in the image format. This
is a problem if engineers later need to work on the architectural model.
Typical activities (or needs) include: i) updating the diagram, because
the original model file is lost; ii) establishing traceability links with other
models, often in a semi-automated fashion; or iii) feeding the model back
into (other) CASE tools, among others.

In this context, we argue that tools able to extract design informa-
tion from architectural diagrams can be of great help to software en-
gineers. In fact, the areas of image recognition and classification have
greatly evolved over the last years, and advanced techniques for analyz-
ing graphical documents have been developed for engineering domains
such as: patents, architectural drawings, circuit designs and flowcharts,
among others. However, to the best of our knowledge, only a few applica-
tions of these techniques to UML models have been reported [10,12,14]. In
this work, we present an image extraction framework, called IMEAV (Im-
age Extractor for Architectural Views), that is targeted to architectural
views. Our framework takes advantage of the distinctive characteristics
of a given architectural view (also referred to as its viewtype) in order
to derive a view-specific processing pipeline. This pipeline is then able
to read images and generate a graph-based representation of the view
constitutive features as detected in the image (e.g., box types, edges con-
necting the boxes, edge types, text associated to either boxes or edges,
etc.). An instantiation of the framework for the specific case of module
views is presented. A preliminary evaluation with a sample of images of
module views has shown an encouraging detection performance.

The rest of the article is structured into five sections. Section 2 dis-
cusses related work on image processing techniques applied to diagram
recognition. Section 3 introduces the IMEAV framework, its main build-
ing blocks and supporting techniques. Section 4 describes an implemen-
tation for the detection of module views. Section 5 presents the results
of evaluating the detector of module views. Finally, Section 6 gives the
conclusions and discusses future work.

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 37



2 Related Work

The problem of document analysis and recognition has been of wide in-
terest to the scientific community for decades [17]. Most works have ad-
dressed the recognition of specific patterns independently. Particularly,
great efforts have been done in character recognition [8], text line seg-
mentation [15] and line detection [13]. For text detection, however, many
works have relied on third-party character recognition (OCR) packages,
such as Tesseract and Abbyword [16,19,21]. Extracting each of these ele-
ments separately is a different problem to the analysis of graphical doc-
uments, given that in the latter all these patterns co-exist.

Patent copying and plagiarism is a relevant area in which different pro-
posals for diagram analysis have been presented [3]. In this domain, graph-
ical descriptions play a crucial role to verify the originality of patents. Sev-
eral patent retrieval systems were developed for indexing and searching
in the documents, based on a prior analysis of the raw image data (gen-
erally, paper-scanned images). Another works have alternatively focused
on recognizing flowcharts within patents [16,19,21].

Although many of the techniques defined in the works above can be
adapted to the domain of architectural diagrams, there are some differ-
ences in patent schemas that prevent a straightforward application to
Software Engineering. For instance, architectural diagrams commonly or-
ganize elements in a hierarchical fashion, allowing child elements to be
connected with external elements, and hence criss-cross with the parent
element [19]. On the contrary, some particularities of flowchart recognition
are not a major concern in the architectural domain, especially process-
ing diagrams sketched by hand. This fact minimizes the need to include
heavy noise reduction, deskewing and brightness correction mechanisms.

Specific to Software Engineering, Karasneh and Chaudron have pre-
sented Img2UML, a tool to reverse-engineer UML class diagrams from
CASE-generated images [12]. Furthermore, the works in [10,14] describe
tools able to recognize UML class diagrams sketched by hand on paper or
whiteboards. Despite their resemblance with architectural views, class di-
agrams are different in several aspects: the shape of the compartments is
unequivocal, the appearance of typed relations is distinctive one another
(allowing to distinguish associations from generalizations easily), among
others. Architectural diagrams are more flexible in terms of drawing con-
ventions, in the sense that different architects can sketch architectural
concepts with similar but not exactly equal shapes.

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 38



3 General Approach

We propose an integral approach called IMEAV for assisting software en-
gineers in the recovery of model-level information held in images, such as
nodes, relations and accompanying text. IMEAV is designed as an image
recognition framework customized for architectural diagrams, which con-
sists of an arrangement of recognition/extraction components that can be
flexibly configured in order to process different architectural viewtypes.
For instance, Fig. 1 shows inputs to our framework for the case of module
views. Note that the diagrams include features such as boxes, arrows con-
necting boxes, text and a hierarchical layout (containers), among others.
The goal of IMEAV is not to develop sophisticated or novel image recog-
nition algorithms, but rather to leverage on existing algorithms/libraries
as the “building blocks” for constructing specialized processing pipelines
that can be used by software engineers in their daily architectural work.

Our framework accepts various image formats as inputs. The only con-
sideration for the input image is that its constituents should adhere, to a
certain degree, to the vocabulary and rules of a valid architectural view-
type. The viewtype must be predefined when the framework is configured
and selected (only one) before it begins its processing. To this end, we
assume the viewtypes defined by Views and Beyond [4], namely: modules,
components and connectors, and allocation. These viewtypes are compli-
ant with the ISO/IEC 42010, provided that the information requirements
of the standard are fulfilled in the corresponding architecture document
[4]. Although IMEAV is expected to be robust and tolerates some “noise”
or elements not belonging to the target (chosen) viewtype (see Fig. 1a,
or even Fig. 1b that mixes elements from a component-and-connector
view), the closer the image to the viewtype vocabulary, the better the
recognition results.

From a blackbox perspective, the output of IMEAV is a graph with
nodes and edges, both possibly decorated with textual annotations. This
representation fits well with the general structure of architectural view-
types, which are described by a collection of element types, relation types,
and properties. Furthermore, this graph representation can be easily con-
verted to UML or XML formats, for instance XMI 3. Fig. 2 shows a pos-
sible output graph generated with IMEAV for the diagram of Fig. 1a. In
the figure, a graph node is labeled with the properties type=“module” and
name=“Server” after analyzing a box in the image that corresponds to
a module. A graph edge is created with the properties type=“usage” and

3 http://www.omg.org/spec/XMI/

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 39

http://www.omg.org/spec/XMI/


(a)

(b)

Fig. 1. Some sample items of our dataset of module diagrams: (a) Non UML-compliant,
(b) UML-compliant.

Fig. 2. Output graph for the module view diagram of Fig. 1a

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 40



directionality=“bi” based on the detection of a bi-directional arrow con-
necting two module boxes. However, this does not mean that our frame-
work will always identify all the features present in a diagram. It might
happen that, after running IMEAV, some view-related information goes
undetected and thus missing in the output graph. Examples of such situ-
ations might be: (i) the tool properly recognizes a module and its arrows,
but fails to infer the box type; or (ii) certain image regions are difficult to
process and produce mistakes that might be carried along the pipeline.

The design of our framework follows a pipe-and-filter architecture [1],
according to the general workflow depicted in Fig. 3. The workflow divides
the processing system into 5 configurable phases, namely: preprocessing,
separation of text/structure, element extraction, relation extraction, text
recognition and graph assembly. Each of these phases is explained next.

Fig. 3. The IMEAV processing pipeline and the role of architectural viewtypes

The Preprocessing phase prepares the image for more complex anal-
yses. This usually includes making a conversion from color to gray scale,
but it also allows making additional corrections to the image. For exam-
ple, corrections such as denosing or deskewing are convenient to avoid
mistakes in later phases. The Text/Structure Separation phase aims at
separating the input into two distinct layers: one containing the text and
another one keeping the structural elements (e.g., boxes, arrows). This
procedure, although common for document analyses, is not trivial to per-
form. In general, the separation is implemented in a dedicated component
[19], relying on techniques like blob analysis, anisotropic filtering and per-
ceptual grouping, among others [15].

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 41



The first two phases of IMEAV are agnostic with respect to the target
architectural viewtype. The following phases are affected by the vocab-
ulary of the architectural viewtype chosen for the pipeline (e.g. modules
view). The Text Recognition phase recognizes characters from text areas
of the image. For this reason, having a (prior) good separation between
text and structures is important. The identification of textual charac-
ters is often delegated to third-party OCR implementations, which take
a bounded image portion and produce a set of characters [8].

The Element Extraction phase detects elements such as modules,
nodes and other architectural concepts, by scanning the boxes in the
image. This procedure is not simple, because elements do not necessar-
ily have a one-to-one mapping to geometric shapes. For example, UML
modules are represented with boxes that have a small (contiguous) rect-
angle atop, that is, a combination of two geometrical elements (see Fig.
1b). For this reason, we usually divide this phase into two tasks: (i) ex-
traction of geometric entities (typically, rectangles) that satisfy a number
of conditions, and (ii) identification of the actual elements, based on the
precedent results. The second task can be accomplished by combining
shapes via ad-hoc procedures or using Machine Learning techniques (see
Subsection 4.4 for a specific example).

The Relation Extraction phase reveals relations that connect elements.
This phase is again divided into two tasks: (i) extraction of relevant geo-
metric shapes (e.g., line segments), and (ii) identification of the underlying
connecting paths from sets of shapes (e.g., a relation can be formed by
a sequence of line segments). Additionally, this phase also analyzes the
endpoints of connection paths because they are key to determine the type
of relations. To this end, this phase not only works with information from
relation-related shapes, but also takes advantage of information about
the elements recovered in the previous phase. By relying on elements to
determine relation types, non-existing relations can be filtered out [16]
(e.g., excluding line segments that are part of elements in the image).

Finally, the Graph Assembly phase has the purpose of combining the
outputs of previous phases and constructing a graph representation that
contains a “reverse-engineered” model of the input image (see Fig. 2).
This phase comprises tasks such as: deciding to which feature each textbox
will be coupled by evaluating the element hierarchy, associating relations
to elements, or linking relations with their descriptors.

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 42



4 The Case of Module Diagrams

We have instantiated IMEAV with module views as the target viewtype.
The main elements are modules. A module is an implementation unit that
provides a coherent set of responsibilities. Modules might take the form
of a package, a class, or a layer, among other shapes. Possible relations
among modules are: is-part-of, uses or is-a. The relation is-part-of can
be alternatively represented by a hierarchical containment of modules.
Although module views can be easily represented with UML notation,
non-standard shapes can be used in the diagrams as well (see in Fig. 1a
and 1b). Our processing pipeline is robust enough to support the recog-
nition of both UML and non-UML module diagrams as input images (or
even ”borderline” images, as in Fig. 1b).

In the following sub-sections, we describe how the phases of Fig. 3 were
adjusted to work with module views. The current implementation is based
on the OpenCV4 toolkit, which provides built-in support for connected
component analysis, morphological and image handling operations.

4.1 Preprocessing

The preprocessing phase simply converts color to grayscale following a
linear combination of the channels. Additionally, this phase also adds
a one-pixel wide external border around the image with the color of its
background. This border is for separating elements/relations that are con-
tiguous to the image frame.

4.2 Text/Structure Separation

(a) (b) (c) (d) (e)

Fig. 4. A fragment of the diagram in Fig. 1: (a) Original, (b) Preprocessed, (c) Bina-
rized, (d)-(e) Text/structure separation.

We use a blob-based analysis algorithm to separate text from struc-
tures [19]. First, the image is transformed with a binarization technique,

4 http://opencv.org

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 43

http://opencv.org


simplifying the extraction of blobs. The text and structures are separated
using an absolute threshold binarization (because text is illustrated with
dark colors) and a set of blobs is produced. Next, the blobs are filtered,
leaving out only those blobs that are potential (individual) characters
and excluding structure and relation boundaries. Then, a morphological
closing is performed in order to unify nearby blobs and close the holes
[7]. This procedure is done horizontally, since this is the usual layout of
module views. Finally, the results of morphological closing are filtered to
remove blobs of inappropriate dimensions. Once text areas are detected,
elements are filled up with the highest foreground intensity and stored on
a separate layer. Fig. 4 shows this algorithm on a fragment of Fig. 1a.

4.3 Element Extraction

To extract elements of module views, we implemented a number of ded-
icated components. First, the image is preprocessed using a binarization
technique. We avoided using an absolute global thresholding technique
for analyzing pixel intensities, since intensities belonging to foreground
and background objects might overlap and thus a global threshold will
induce in a loss of important information. Furthermore, deciding what
constitutes a foreground or background pixel is not straightforward [21].
For these reasons, we developed a custom component that tags each pixel
into one of two classes: foreground and background.

Our binarization component relies on a flood-filling algorithm. This al-
gorithm performs an incremental addition of similar points to the blobs,
with a given tolerance. Blobs that surpass a predefined threshold are
tagged either as black or white. When a blob is tagged as white, a thin
contour of black pixels is added around the blob. This is because some-
times this contour might not exist. For instance, in Fig. 1a the big box
has a different color than its container, but there is not a continuous black
boundary surrounding it. The addition of a black contour when turning
the blobs into white ensures that the boundary between every feature will
be preserved. Our binarization component takes special care for shadows
whose gradient produces a large number of contiguous thin blobs. Black
contours are only added when the blobs enclose a minimum area, so as
not to paint chaotic boundaries in shadowed regions.

Once the binarization is done, a second component finds rectangular
blobs in the (binary) image. To this end, we implemented an algorithm
that computes the rectangularity index of each blob (area of blob / area
of minimum enclosing rectangle) and then decides which ones are actually

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 44



rectangles using a threshold value (for the index). To address the detec-
tion of modules contained in other modules (see Fig. 1a), we applied an
incremental analysis of the rectangles. In every iteration, the rectangles
detected using the index are dilated (i.e., removed) so that contiguous
regions are progressively unified, revealing new rectangles. This analysis
is repeated until no further rectangles are left. After all rectangles are
detected, contiguous rectangles get grouped into the output elements, so
as to reveal the modules. Fig. 5 exemplifies the whole extraction phase.

(a) (b)

(c) (d)

Fig. 5. Node extraction: (a) Original diagram, (b) Detected rectangles, (c) Detected
modules, (d) Line-segment extraction

4.4 Relation Extraction

In module views, relations are represented with dashed/continuous paths
composed of one or more line segments and with arrows at the endpoints.
The lines can follow horizontal, vertical or oblique trajectories. In this
context, we needed a technique able to identify line segments and then to
group close-by lines into paths. For the detection of line segments, we re-
lied on Hough’s transform, an algorithm that supports the identification
of both oblique and dashed lines [13]. Since line segments in binary images
are usually thick, Hough’s transform over-segments the image and pro-
duces a large number of candidate lines. Therefore, the results of Hough’s
are filtered to discard spurious lines using the information of the rectan-
gles detected previously. Fig. 5d shows the results of applying Hough’s
transform to Fig. 5a, with the relations (dashed lines) correctly detected.

To extract relations out of line segments, we devised an algorithm
that computes multi-segment paths. First, we store the endpoint posi-
tions of individual segments. After sorting segments by their length, we
select the most prominent one and start looking for continuations of that
segment (probably in another direction). To do so, we analyze every other

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 45



endpoint, seeking for nearby segments and consider the closest ones on a
proximity basis (using a window size parameter). From all candidate seg-
ments, we select the longest one whose angle is beyond a given threshold,
so as to keep moving along the path.

After detecting the paths, we have to analyze the endpoints. With this
purpose, we applied a Machine Learning technique to classify endpoints
according to their shape (e.g., arrow, line, diamond). In order to train
the classifier, we first need a suitable representation for endpoint shapes
compatible with classification algorithms. We chose to use Hu’s shape
transformation instead of a pixel-wise conversion for robustness. Hu’s
transformation defines 7 features of a shape that globally constitute a
rotation and scale invariant descriptor [11]. We assembled a dataset of
endpoints using Hu’s features and tagged them manually. This dataset
was inputted to a Bayesian classifier5 for training, and the classifier was
used to predict the shape of the endpoints.

4.5 Text Recognition

Following the separation of text and structures, our instantiation at-
tempts to “read” the text boxes detected earlier by invoking an OCR
system called Tesseract [20]. Tesseract is an open-source OCR engine that
can process different image types and identify the text in them. Tesseract
makes two passes on the images and uses an adaptive classifier trained
on over 60.000 samples. The accuracy of Tesseract is good enough for
processing CASE-generated images, thus suiting our purposes well.

4.6 Graph Assembly

Finally, after all the image analyses are concluded, we developed a com-
ponent for creating a graph-based representation of the module view. To
compute the information of the underlying model of the diagram, we fol-
lowed a series of steps. First, a hierarchy of modules is constructed by
observing those that contain other modules and those contained by an-
other module. Then, modules and relations are linked. Three constraints
are verified for this linkage, namely: (i) the distance between the extreme
of a relation and a module must be lower than a pre-defined threshold;
(ii) a relation is only valid if it connects two different modules; and (iii),
no module has to include the other ones following the hierarchy.

Next, text boxes are associated with whatever module/relation they
belong to. To do so, the distance from the center point of each text box

5 http://docs.opencv.org/modules/ml/doc/normal_bayes_classifier.html

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 46

http://docs.opencv.org/modules/ml/doc/normal_bayes_classifier.html


to modules (and relations) are computed, and then the text boxes are
associated with the closest module (or relation) found.

The graph representation progressively emerges from the features ex-
tracted with the different components of the pipeline. Our implementation
currently outputs the graph in DOT6, a standard format which can be
easily visualized with a number of tools (e.g. Graphviz). Fig. 2 shows a
graphical representation of a sample module view.

5 Experimental Evaluation

To assess the performance of our pipeline for module diagrams, we tested
it with a dataset of images7. This dataset was collected from two sources:
(i) software architecture documents produced by students of a Software
Design course taught at UNICEN University, and (ii) paper-scanned di-
agrams from an architecture documentation book [4]. The dataset com-
prises 60 heterogeneous diagrams, of which half of them are UML-compliant.
The processing of each image took around 2 seconds (in average), run-
ning on a notebook with an Intel I7 2.2 GHz processor and 4Gb RAM
memory, under a standard OS. The performance of systems like IMEAV
is generally determined by evaluating each phase separately [21]. Specifi-
cally, we were interested in the accuracy of the module-view pipeline for
element/relation extraction, text recognition and graph assembly.

Precision and recall measures were employed to gauge the quality of
detection. To decide whether a particular image constituent was correctly
detected, we analyzed the results after completing the Graph Building
phase. This means that a relation is considered as a true positive if, be-
sides being detected by the relation extractor, it connects the modules
affected by it. A similar reasoning is followed for modules and text prop-
erties. Since some phases are executed sequentially, we took into account
error propagation throughout the pipeline. In the case of relations, be-
cause their detection depends on the (correct) identification of modules,
we consider an undetected relation as a false negative only when its as-
sociated modules were correctly spotted. Analogously, we consider an
incorrectly-detected relation as a false positive only if it connects mod-
ules that were correctly detected. Thus, we tested the relation extractor
only when the module extractor worked properly. Table 1 summarizes
the results obtained in the experiments. In the table, n is the population
of modules/relations considered for analyzing the results, which in the

6 http://http://www.graphviz.org/doc/info/lang.html
7 Available for download at: www.exa.unicen.edu.ar/~arago

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 47

http://http://www.graphviz.org/doc/info/lang.html
www.exa.unicen.edu.ar/~arago


case of relations is a subset of the total amount. Results are organized
into two categories, differentiating those images with UML and non-UML
features. We also included overall detection results.

Table 1. Accuracy of module and connector extraction

Module n Recall Precision Relation n Recall Precision

non-UML 194 96% 98% non-UML 140 63% 89%
UML-compliant 195 97% 95% UML-compliant 126 66% 88%

Overall 389 97% 96% Overall 266 64% 88%

IMEAV was very precise for separating text and structure. We only
found problems in some cases where the text areas “touched” other mod-
ules or relations. The module detection obtained high recall and also high
precision (9̃7% for both), meaning that the pipeline succeeded at iden-
tifying the majority of the modules. Yet, we observed issues with some
images. On one hand, false negatives came from unclear or broken edges
(see an example in Fig. 6a). On the other hand, false positives came from
overlapping relations that were mistakenly identified as modules, because
their intersection points formed a rectangular shape (see Fig. 6b).

(a) (b) (c)

Fig. 6. (a) Interrupted edge, (b) Rectangular areas, (c) Interrupted connectors

The detection of relations showed acceptable results, but it was not
on a par with that of modules. Although the precision was good (9̃0%),
the recall was merely sufficient (6̃5%). These results are similar to those
reported by other researchers [21]. An in-depth study of the results re-
vealed many false positives when analyzing relations composed of multi-
ple line segments. Especially, we found that the proximity constraint was
not robust enough for detecting relations, because it does not take into
account their direction. We also discovered that Hough’s transform had
some issues with gap-filling tolerance (needed for dashed lines), in which
the lines went beyond the limits of the relation and extended to modules
or even to other relations. This aspect poses a trade-off between over-
segmentation and precision that should be further studied. To a lesser

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 48



extent, false negatives were caused by text that overlapped with lines
(Fig. 6c). Similarly to the discussion of dashed lines, the number of false
positives depends on how over-segmentation was dealt with. For the de-
tection of relation types, a 10-fold cross validation was run when evalu-
ating the Bayesian classifier with Hu’s discretization. We considered two
types of module relations: unidirectional and bi-directional. The classifier
achieved a precision of 88% for directional endpoints and 79% for unidi-
rectional endpoints. When it comes to attaching text to its corresponding
module/relation, 89% and 85% of the text areas were correctly associated
for UML and non-UML diagrams, respectively.

Overall, the results showed that our pipeline was able to effectively
reverse-engineer module views “as a whole”, in spite of some difficulties
with the detection of relations. Furthermore, the pipeline behaved almost
equally in both UML and non-UML diagrams, corroborating the robust-
ness of the implementation.

6 Conclusions and Future Work

In this article, we have presented a fast and automated approach for
recovering model-level information from architectural diagrams stored in
static images. Our IMEAV framework defines a processing pipeline that is
driven by architectural viewtypes. The pipeline is made of generic phases,
which must be tailored to the vocabulary of the target viewtype. As a
proof-of-concept, IMEAV was exercised with a special pipeline for mod-
ule views. In this experience, we were able to reuse several components
from OpenCV, but still implemented a few dedicated components for the
viewtype. So far, modules are the only viewtype supported by IMEAV,
but we will extend the framework with viewtypes for components-and-
connectors, and for allocation.

We ran some experiments with a dataset of module diagrams, and
the pipeline for module views showed promising results. This evalua-
tion also revealed some limitations of the approach. For instance, the
detection of relations between modules was sometimes incorrect, due to
over-segmentation issues. Also, the distinction of endpoint types was not
perfect, even though we only considered two relation types. We expect
to alleviate these limitations as we refine our framework with more de-
tection/extraction components, and also using IMEAV to process other
types of architectural diagrams. Furthermore, our future work will be ori-
ented to apply the framework to a number of SE domains currently under
research in our faculty. To name a few interesting applications, we plan to

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 49



identify architectural patterns and rules out of the graph-based represen-
tation [2], improve Wiki-based assistants for architectural documentation
[5], and use the knowledge of architectural views to recover traceability
links to requirements and source code [18].

References

1. Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Addison-
Wesley Professional (2012)

2. Berdún, L., Dı́az-Pace, J.A., Amandi, A., Campo, M.: Assisting novice software
designers by an expert designer agent. Expert Syst. Appl. 34(4), 2772–2782 (2008)

3. Bhatti, N., Hanbury, A.: Image search in patents: A review. International Journal
on Document Analysis and Recognition (IJDAR) 16(4), 309–329 (2013)

4. Clements, P.: Documenting Software Architectures: Views and Beyond. Addison-
Wesley (2003)

5. Diaz-Pace, J.A., Nicoletti, M., Schiaffino, S., Villavicencio, C., Sanchez, L.E.:
A stakeholder-centric optimization strategy for architectural documentation. In:
LNCS: Model and Data Engineering, vol. 8216, pp. 104–117. Springer Berlin (2013)

6. Farenhorst, R., Izaks, R., Lago, P., van Vliet, H.: A just-in-time architectural
knowledge sharing portal. In: WICSA’08. pp. 125–134. IEEE (2008)

7. Gil, J., Kimmel, R.: Efficient dilation, erosion, opening, and closing algorithms.
IEEE Trans Pattern Anal Mach Intell 24(12), 1606–1617 (2002)

8. Govindan, V., Shivaprasad, A.: Character recognition—a review. Pattern recogni-
tion 23(7), 671–683 (1990)

9. de Graaf, K.A., Tang, A., Liang, P., van Vliet, H.: Ontology-based software archi-
tecture documentation. In: WICSA’12. pp. 121–130. IEEE (2012)

10. Hammond, T., Davis, R.: Tahuti: A geometrical sketch recognition system for uml
class diagrams. In: SIGGRAPH 2006. p. 25. ACM (2006)

11. Hu, M.K.: Visual pattern recognition by moment invariants. Information Theory,
IRE Transactions on 8(2), 179–187 (1962)

12. Karasneh, B., Chaudron, M.R.: Img2uml: A system for extracting uml models from
images. In: Soft. Eng. and Adv. App. pp. 134–137. IEEE (2013)

13. Kiryati, N., Eldar, Y., Bruckstein, A.M.: A probabilistic hough transform. Pattern
recognition 24(4), 303–316 (1991)

14. Lank, E., Thorley, J., Chen, S., Blostein, D.: On-line recognition of uml diagrams.
In: Document Analysis and Recognition. pp. 356–360. IEEE (2001)

15. Louloudis, G., Gatos, B., Pratikakis, I., Halatsis, C.: Text line and word segmen-
tation of handwritten documents. Pattern Recognition 42(12), 3169–3183 (2009)

16. Mörzinger, R., Schuster, R., Horti, A., Thallinger, G.: Visual structure analysis of
flow charts in patent images. In: CLEF’12 (2012)

17. Nagy, G.: Twenty years of document image analysis in pami. IEEE Transactions
on Pattern Analysis and Machine Intelligence 22(1), 38–62 (2000)

18. Rago, A., Marcos, C., Diaz-Pace, J.A.: Uncovering quality-attribute concerns in
use case specifications via early aspect mining. Req. Eng. 18(1), 67–84 (2013)

19. Rusinol, M., de las Heras, L.P., Mas, J., Terrades, O.R., Karatzas, D., Dutta, A.,
Sánchez, G., Lladós, J.: Flowchart recognition task. In: CLEF’12 (2012)

20. Smith, R.: An overview of the tesseract ocr engine. In: ICDAR. vol. 7, pp. 629–633
(2007)

21. Thean, A., Deltorn, J.M., Lopez, P., Romary, L.: Textual summarisation of
flowcharts in patent drawings. In: CLEF’12 (2012)

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 50


	Towards Recovering Architectural Information from Images of Architectural Diagrams



