
An Approach to Cluster Scenarios According to their
Similarity using Natural Language Processing

Juliana Delle Ville1, Diego Torres 1, Alejandro Fernández 1, Leandro Antonelli1

1 Lifia, Fac. de Informática, UNLP, La Plata, Bs As, Argentina

{juliana.delleville, diego.torres, alejandro.fernandez,

leandro.antonelli}@ lifia.info.unlp.edu.ar

Abstract. Scenarios are ideal to capture knowledge in human computer inter-
face software engineering. Requirements engineering is a fundamental part of
software development. If errors appear in this stage, it will be expensive to cor-
rect them in further stages. The domain experts and the developer team belong
to different worlds. This generates a gap in communication between them. Be-
cause of it, it is important to use artifacts in natural language to communicate
both sides. One simpler approach to specify requirements is Scenarios. They are
widely used artifacts that generally describe the dynamics (tasks, activities) to
be carried out in some specific situation. Generally, scenarios promote commu-
nication and participation from both sides. This can cause some problems. One
of these problems is redundancy, that occurs when two stakeholders describe
the same situation in different artifacts. This paper proposes an approach to ana-
lyze a set of scenarios by grouping them according to their similarity. The simi-
larity is calculated through a series of comparisons of the different attributes of
the scenario. This paper also describes a prototype implementing this method.
Finally, the paper shows the result of a preliminary evaluation with results
about the applicability of the approach.

Keywords: Scenarios, Natural language processing, Similarity.

1 Introduction

The scenarios are ideal to capture knowledge from the experts in Software Engineer-
ing in general, and they are even more necessary in human computer interface soft-
ware engineering (HCI-SE)[3]. Requirements engineering is a critical stage of soft-
ware development. Errors made at this stage can cost up to 200 times to repair when
the software is delivered to the client [4].

Experts and development teams belong to different worlds and use different lan-
guages [16]. The experts use the language of the domain, while development teams
use a computer science language. To cope with this communication gap, it is im-
portant to use artifacts in natural language that are readable by both parties [12].

Scenarios are widely used artifacts. Although scenarios have many conceptions,
they generally describe the dynamics (activities, tasks) to be carried out in some spe-
cific situation, which should be different from the situation and dynamics described in
other scenarios. Nevertheless, multiple scenarios might still depict the same objective.
This definition applies for scenarios in software engineering as well as in finance,
catastrophic events, etc. [7].

Scenarios are suitable to capture knowledge because they simply tell a story, and
people know how to tell stories (funny anecdotes, stories for children, etc.). This story
telling approach is effective because it is a way to incorporate details that are essential
to provide a rich consolidation of knowledge. Because scenarios use natural language,
experts can use them without the need to learn complex formalisms. Moreover, sce-
narios also promote communication and cooperation when there is a wide variety of
experts [5], as many of them can describe different scenarios, improve them (if neces-
sary), while learning from each other.

This collaborative writing of scenarios also introduces some challenges. For exam-
ple, two stakeholders can describe the same situation in different artifacts (scenarios)
with different levels of detail. Thus, redundancy appears. It is very important to pro-
vide tools to identify similar artifacts to avoid redundancy. Similar scenarios can be
merged if they describe the same situation. If they are similar but describe different
tasks to obtain the same result, they need to be enriched to express the details that
make them different.

If we consider texts as sets of words, we can compare them using Jaccard’s simi-
larity index [29]. Jaccard’s similarity is defined as the size of intersection of the sets
divided by the size of the union of the sets. The higher the value, the more similar
they are.

Nevertheless, comparing two scenarios is not as easy as directly computing Jac-
card’s similarity index on their texts. The scenario has a structure, and this structure
can be used to assess similarity with better results than simply applying Jaccard’s

similarity (or any other method) directly to the whole description of the scenario.
This paper proposes a method to assess similarity among a group of scenarios. Par-

ticularly, the method consists in comparing scenarios by pairs, and according to their
similarities, the groups of scenarios are ranked. Thus, this method can be seen as a
way of ranking pairs of scenarios by similarity so an expert can deal with them and
finally decide whether scenarios are similar or not.

The rest of the paper is organized in the following way. Section 2 presents back-
ground concepts about scenarios. Section 3 details our contribution, that is, the pro-
posed approach. Section 4 describes the tool to support the proposal. Section 5 dis-
cusses related work. Finally, Section 6 discusses some conclusions.

2 Scenarios

A scenario is an artifact that describes situations in a specific domain using natural
Language [5]. It describes a situation that occurs in a specific context to reach a cer-

tain goal. There is a sequence of steps to achieve that goal: the scenario’s episodes.
These episodes describe actions that are performed by actors using resources.

Scenarios can be seen as descriptions of real-world situations, captured in a set of
small stories [8][6]. Then, these scenarios can be used in more complex artifacts to
model software requirements. For example, one Use Case can include several Scenar-
ios: a scenario describing the happy path, another scenario that describes the alterna-
tive path, and another scenario that describes the exceptional path [1][28].

There are many proposals to represent scenarios. Leite [10] proposes a structure
with the following attributes: a title, a goal, a context, the actors, the resources, and a
list of episodes. The goal of a scenario is the objective to be attained by executing the
scenario. The actor is the subject who performs the actions described in the episodes.
The context is defined by the place, time, and conditions that allow the scenario to
start. The resources are the tools, materials, and data necessary to perform the scenar-
io. And finally, the episodes are a collection of tasks described using an actor, an
action, and a resource.

Let’s consider the agricultural domain where a farmer sow’s tomatoes. In that do-
main, the irrigation can be done manually (with a watering can), or it can be done
with some infrastructure such as pipes and a pump. The scenario “Irrigate by hand”

(Table 1) and “irrigate manually” (Table 2) describe through different scenarios the

same activity performed using a watering can. Then, the scenario “irrigate with
pump” (Table 3) describes the irrigation using a complex infrastructure of pipes and

valves. Finally, the scenario “sow tomato seeds” (Table 4) describes how to put the

seed into the soil.

Table 1. Description of the scenario “Irrigate by hand”.

Attributes Description
Scenario Irrigate by hand.
Goal Provide H2O to the tomato.
Context The tomato plant is in any state of grow.
Resources Water, watering can.
Actors Farmer.
Episodes The farmer fills the watering can with water.

The farmer pours the water to the base of the plant.

3 The proposed approach

3.1 Our approach in a nutshell

The proposed approach aims to analyze a group of scenarios, comparing them

pairwise and sorting the pairs based on their similarity. Then, an expert can analyze
the pairs of scenarios (from the most to the least similar) to confirm whether the sce-
narios are the same (in this case, they should be merged) or not (in this case their
differences should be emphasized). The similarity of the scenarios is calculated by

comparing their attributes: title, goal, context, actors, resources, and episodes. The
approach is summarized in the algorithm depicted in Table 5.

Table 2. Description of the scenario “Irrigate manually”.

Attribute Description
Scenario Irrigate manually.
Goal Supply water to the tomato plant.
Context Have the tomato plant in any state of grow, but mainly in the fruit for-

mation stage.
Resources Water, watering can, worm leachate.
Actors Farmer.
Episodes The farmer fills the watering can with water.

The farmer adds worm leachate to the watering can.
The farmer approaches the tomato plant.
The farmer visually assesses the humidity of the soil.
The farmer approaches the watering can to the plant's base.
The farmer pours the water.

Table 3. Description of the scenario “Irrigate with pump”.

Attribute Description
Scenario Irrigate with pump.
Goal Provide water for the seeds and the tomato plants.
Context Tomato plant in any state of grow. Deployed an infrastructure of pipes,

valves, pumps.
Resources Cistern with enough water.
Actors Farmer, technician.
Episodes The farmer determines the sector to irrigate.

The technician opens the valves of the sector to irrigate.
The farmer decides the intensity of the irrigation.
The technician sets the pump to the intensity of the irrigation.
The technician starts the pump.

Table 4. Description of the scenario “Sow tomato seeds”.

Attribute Description
Scenario Sow Tomato Seeds.
Goal Place the Tomato Seeds in the seedbed.
Context The seedbeds are already prepared.
Resources Seed, substrate, water.
Actors Farmer.
Episodes The farmer digs a hole in the seedbed.

The Farmer places the seeds in the seedbed.
The Farmer covers the seeds with substrate.
The farmer sprays the seedbed with water.

Table 5. Algorithm of the approach.
Line Code

1 Similarity (Si.attribute, Sj.attribute)-> si.attribute

2 Convert to lemma (Si.attribute) -> si.attribute

3 remove stop words (Sj.attribute)-> sj.attribute

4 Convert to lemma (Sj.attribute) -> sj.attribute

8 return Jaccard_Similarity (Si.attribute, Sj.attribute)

9 Jaccard_Similarity (Si.attribute, Sj.attribute)

10 Local intersection

11 Local union

12 calculate intersectionof(Si.attribute,Sj.attribute)

 ->intersection

13 calculate union of (Si.attribute, Sj.attribute)-> union

14 Return size(intersection) / size(union)

15 rank (scenarios)

16 for each scenario Si, Sj in scenarios

17 Similarity (Si.title, Sj.title)-> title.similarity

18 Similarity (Si.goal, Sj.goal)-> goal.similarity

19 Similarity (Si.context, Sj.context)-> context.similarity

20 Similarity (Si.resources, Sj.resources)

-> resources.similarity

21 Similarity (Si.actors, Sj.actors)

-> actors.similarity

22 Similarity (Si.episodes, Sj.episodes)

-> episodes.similarity

23 Title.similarity + ((goal.similarity + con-

text.similarity)/2) + ((actors.similarity + re-

sources.similarity)/2) + episodes.similarity)/4->rank

24 Answer add Pair (Si, Sj) with rank rank

25 Return answer order by rank descending.

The approach consists of comparing attributes by attributes to obtain a general as-
sessment of similarity. Concepts and verbs are extracted from every attribute and a
relation between number of equal elements (the intersection) divided the total number
of elements (the union) is obtained (this is Jaccard’s method). Then, the similarity
between two scenarios is calculated. To do so, some attributes are grouped (goal with
context, and actors with resources).

It is important to mention that the comparison is merely syntactical, that is, syno-
nyms are considered as different words. For example, provide and supply, H2O and
water, tomato plant and plant, base of the plant and plant’s base are different concepts

for the approach.
The steps to compare the expressions are the following. First, every word is con-

verted to its root form (lemma). And then, the words with semantic meaning are fil-
tered (that is, the stop words are removed).

3.2 Example

Let’s consider the four scenarios that describe situations in the agricultural domain

depicted in Tables 1, 2, 3, and 4. Two scenarios are quite similar and describe how to

irrigate manually (let’s identify them as Scenario A, the one described in Table 1, and

Scenario B, the one described in Table 2). Then, another scenario describes how to
irrigate with pipes and pumps (Table 3, identify it as Scenario C), so it resembles the
previous scenario, but it is not so similar. Then, the fourth scenario describes how to
sow seeds (Table 4, let’s identify it as Scenario D). This scenario is quite different
from the previous ones.

Scenario A and B are quite similar since both describe how to irrigate manually.
The differences between the scenarios are two. Firstly, scenario A is shorter than sce-
nario B, since scenario A only describes how to supply water while scenario B also
considers worm leachate. Scenario B also describes in detail how to pour the water.
Secondly, scenarios A and B use synonyms or different expressions to refer to the
same elements or actions. The following table 6 and 7 summarizes the comparison
and its final rank which is 0.635

Table 6. Comparison between scenario A and B (attribute by attribute).

 Scenario A Scenario B Intersection /

Union
Title Irrigate Irrigate 1 / 1 = 1
Actors Farmer Farmer 1 / 1 = 1
Resources Water, watering

can
Water, watering can, worm leachate 2 / 3 = 0.66

Goal Provide, h2o, toma-
to

Supply, water, tomato plant 0 / 6 = 0

Context Tomato plant, state
of grow

Tomato plant, state of grow, fruit
formation stage

2 / 3 = 0.66

Episodes Farmer, fill, water-
ing can, water,
pour, base of the
plant

Farmer, fill, watering can, water,
add, worm leachate, approach,
tomato plant, assess, humidity of
the soil, plant’s base, pour

5 / 13 = 0.38

Table 7. Comparison between scenario A and B final rank.

Attributes Similarity
Title 1
Actors and resources (1 + 0.66) / 2 = 0.83
Goal and context (0 + 0.66) / 2 = 0.33
Episodes 0.38
Final rank (average) 2.54 / 4 = 0.635

Scenario A and C describe the same activity (irrigation), but it is done in different

ways. Scenario A describes how to irrigate manually, while scenario C describes how
to irrigate with a pump (a complex infrastructure of pipes, valves and pumps). The
following table 8 and 9 summarizes the comparison. The final rank is 0.305.

Table 8. Comparison between scenario A and C (attribute by attribute).

 Scenario A Scenario C Intersection / Un-
ion

Title Irrigate Irrigate, pump 1 / 2 = 0.5
Actors Gardener Farmer, tech-

nician
1 / 2 = 0.5

Re-
sources

Water, watering
can

Cistern, water 1 / 3 = 0.33

Goal Provide, h2o, to-
mato

Provide, wa-
ter, seed, tomato
plant

1 / 6 = 0.16

Context Tomato plant, state
of grow

Tomato plant,
state of grow,
deploy, pipe,
valve, pump

2 / 6 = 0.33

Episodes Farmer, fill, wa-
tering can, water,
pour, base of the
plant

Farmer, de-
termine, sector
to irrigate, tech-
nician, open,
valve, decides,
intensity of the
irrigation, set,
pump, start

1 / 15 = 0.06

Table 9. Comparison between scenario A and C final rank.
Attributes Similarity
Title 0.5
Actors and resources (0.5 + 0.33) / 2 = 0.415
Goal and context (0.16 + 0.33) / 2 = 0.245
Episodes 0.06
Final rank (average) 1.22 / 4 = 0.305

Scenario A and D describe completely different activities: irrigation and sowing.

The following table 10 and 11 summarizes the comparison. The final rank is 0.191.

Table 10. Comparison between scenario A and D (attribute by attribute).

Scenario Scenario D Intersection / Union
Title Irrigate Sow, tomato seed 0 / 3 = 0
Actors Farmer Farmer 1 / 1 = 1
Resources Water, water-

ing can
Seed, substrate, water 1 / 4 = 0.25

Goal Provide, h2o,
tomato

Place, tomato seeds, seed-
bed,

0 / 6 = 0

Context Tomato
plant, state of
grow

Seedbed, prepared 0 / 4 = 0

Episodes Farmer, fill,
watering can,
water, pour,
base of the plant

Farmer, dig, hole, seedbed,
places, seeds, covers, sub-
strate, spray, water

2 / 14 = 0.14

Table 11. Comparison between scenario A and D final rank.

Attributes Similarity
Title 0
Actors and resources (1 + 0.25) / 2 = 0.625
Goal and context (0 + 0) / 2 = 0
Episodes 0.14
Final rank (average) 0.765 / 4 = 0.191

Table 12 summarizes the comparison among all the scenarios.

Table 12. Final rank of the scenarios
Scenario i Scenario j Rank
Scenario A Scenario B 0.635
Scenario A Scenario C 0.305
Scenario B Scenario C 0.230
Scenario A Scenario D 0.191
Scenario B Scenario D 0.155
Scenario C Scenario D 0.010

4 Tool support

A software tool was prototyped to assist the application of the proposed method. The
prototype is a web application written in Python [18] using Spacy [25] and NLTK
[15] libraries to deal with natural language processing.

As input, the prototype receives a set of scenarios and as output it produces a set of
tuples with the following information (’rank’, ‘scenario_i’, ‘scenario_j’). The applica-
tion processes every possible pair of scenarios and calculates the rank of similarity for
every pair. Figure 1 describes a snapshot of the application.

Figure 1. Prototype with the scenarios used as example.

The process to calculate the similarity has different steps. The first step consists in

tokenizing the scenarios. It can be done in two different ways. If the attribute is a list
of words (actors and resources), it is processed by lowering them and removing stop
words. If the attribute is a sentence or a group of sentences (title, goal, context, epi-
sodes), stopwords are removed and they are lemmatized and lowered. Then, nouns
and verbs are collected. Then, Jaccard’s method receives the data from the two sce-
narios from the previous step and calculates the jaccard similarity. This result and the
scenarios are stored in a tuple as (’rank’, ‘scenario_i’, ‘scenario_j’). Figure 2 summa-
rizes this process.

Figure 2. Summary of the implementation.

5 Related works

There are many works that use Jaccard to determine similarity in natural language
artifacts. Some of them analyze requirements specification [14], some other are used
in information retrieval [22], while some others are used for bugs reports [23][9][27].
Instead of Jaccard’s similarity, other works [19] [13] rely on cosine similarity. And
some other defines their own method [30][2][20][9].

Regarding requirements specification, some papers analyze User Stories [2] to
search duplicated or to compare similarity with the use case descriptions [17], some
others analyze UML diagrams [30] to measure similarity between use case description
and sequence diagram in a requirement specification, and some others uses docu-
ments without an specific template to evaluate the benefits of automatic similarity
analysis [14]. There is one approach [30] that analyzes UML (Uses Cases) and docu-
ments at the same time. Another approach is by using similarity in queries [22] to
obtain better results in the search. And another approach is by using a discriminating
model [26] detect duplicated requirements.

Many methods rely on syntactic similarity [24][11], although some of them also re-
lies on semantic similarity [2] [19] [20].

Priyadi et al. [17] propose a method to assess the similarity of User Stories but they
do not focus simply on the artifact, they also deal with the elicitation process to de-
termine the suitability between the requirements elicitation and requirement model-
ing. Barbosa et al. [2] propose a method to assess the similarity of User Stories in the
scrum process based on Jaccard and cosine similarity for syntactic similarity. The
method proposed in this paper only focuses on the requirement artifact scenario and
can be used in any elicitation technique.

Yanis et al. [30] deal with UML, particularly with Use Cases and Sequence dia-
grams studying the similarity between them and the section object of a software de-
velopment document to determine the suitability of these two. In this paper, the meth-
od proposed only focuses on text similarity. Sari et al. [24] propose a study of seman-
tic similarity via Wu Palmer method through functional requirements with use case
diagrams. al. [13] propose a method to obtain a linkage between software reusability
and similarity text, to find similarity between projects and reuse components. The
method proposed in this paper uses the Jaccard similarity method to cluster scenarios
by syntactic similarity through its field. Dag et al. [14] analyzed the benefits of auto-
mated similarity analysis of textual requirements focused on market-driven develop-
ment. This paper is not focused on any development method, is an approach with a
general application of scenarios to help to determine duplicated scenarios. Rao et al.
[21] propose a method to detect duplicate requests in the requirements analysis stage
using similarity techniques. The approach proposed in this paper focuses on the writ-
ten scenarios not on the requests. Rago et al. [20] propose a tool, reqAligner, that
combines text processing techniques and creates an abstract representation to identify
duplicated functionality with semantic similarity. This paper only focuses on syntactic
similarity.

6 Conclusions and future work

This paper described a method to rank a set of scenarios according to their similarity.
This method compares every pair of scenarios to scenarios to determine the level of
similarity between them, and then it sorts them in order from the most to the least
similar. This paper also presents a software prototype implementing the proposed
method. The results are promising, even though there is still much work to be done.
The work of different people in the same project obtaining scenarios can generate a
duplication of different scenarios with different levels of details. The contribution of
the proposed approach can help detecting similar scenarios. Nevertheless, this ap-
proach relies on syntactic similarity. This analysis can be more complex with seman-
tic similarity. Because different people can describe the same activity or object in
different words. For example, watering the plant is the same as irrigating the plant.
This can be even more complex with hypernyms. Thus, we plan to continue with the
proposal adding some semantic similarities. Moreover, it is necessary to perform a
detailed validation of the proposed approach. That is, we plan to perform a case study
in order to assess the usability and applicability of the proposed approach. And we
also plan to perform an experiment in order to assess the effectiveness of the proposed
approach in comparison with some other approaches. Finally, we plan to improve the
prototype with some usability functionality. Particularly, we believe that awareness is
an important feature that should be included to foster practitioners to use the tool
(hence the approach).

References

1. Alexander, I., Maiden, N.: Scenarios, Stories, Use Cases, through the system development
life cycle, John Wiley & Sons (2004).

2. Barbosa, R., Silva, A. E. A., Moraes R.: Use of similarity measure to suggest the existence
of duplicate user stories in the scrum process. In Proc 46th annual IEEE/ifip international
conference on dependable systems and networks workshop. IEEE (2016).

3. Benyon, D., Macaulay, C.: Scenarios and the HCI-SE design problem. Interacting with
Computers, 14(4), 397–405. doi:10.1016/s0953-5438(02)00007-3 (2002).

4. Boehm, B.W.: Software Engineering, Computer society Press, IEEE, (1997).
5. Carrol, J. M.: Five reasons for scenario-based design, in Proceedings of the 32nd Annual

Hawaii International Conference on Systems Sciences pp. 2-5. (1999).
6. Carroll J.M.: Making Use: Scenario-Based Design of Human-Computer Interactions,

Cambridge MA, MIT Press (2000).
7. Cockburn A.: Writing Effective Use Cases, Addison-Wesley, Boston MA (2001).
8. Gough P.A., Fodemski F.T., Higgins S.A., Ray S.J.: Scenarios: An Industrial Case Study

and Hypermedia Enhancements, in Proc IEEE International Symposium on Requirements
Engineering (RE '95), IEEE Computer Society Press, Los Alamitos CA, pp. 10-17, (1995).

9. Khtira, A., Benlarabi, A., El Asri, B.: Detecting feature duplication in natural language
specifications when evolving software product lines. In Proc International Conference on
Evaluation of Novel Approaches to Software Engineering (ENASE). IEEE, pp. 257-262.
(2015).

10. Leite, J. C. S. d. P., Rossi, G., Balaguer, F., Maiorana, V., Kaplan, G., Hadad, G. Oliveros,
A.: Enhancing requirements baseline with scenarios, Requirements Engineering Journal,
vol. 2, no. 4, pp. 184-198 (1997).

11. Lerch, J., Mira M.: Finding duplicates of your yet unwritten bug report. 17th European
conference on software maintenance and reengineering, IEEE, pp. 69-78. (2013).

12. Lim, S. L., Finkelstein, A.: StakeRare: Using Social Networks and Collaborative Filtering
for Large-Scale Requirements Elicitation, IEEE transactions on software engineering,
Volume 38, Issue 3, May-Jun 707-735, (2012). doi 10.1109/TSE.2011.36

13. Mihany, F. A., Moussa, H., Kamel, A., Ezzat, E., Ilyas, M.: An automated system for
measuring similarity between software requirements. Proceedings of the 2nd Africa and
Middle East Conference on software engineering (2016).

14. Natt och Dag, J., Regnell, B., Carlshamre, P., Andersson, M., Karlsson, J.: A feasibility
study of automated natural language requirements analysis in market-driven development,
Requirements engineering Journal, vol 7, pp 20-33 (2002).

15. NLTK Natural Language Toolkit, https://www.nltk.org/, accessed 17/5/2023.
16. Potts, C.: Using schematic scenarios to understand user needs, in Proceedings of the 1st

conference on Designing interactive systems: processes, practices, methods, & techniques,
pp. 247-256. (1995)

17. Priyadi, Y., Putra, A. M., Lyanda, P. S.: The similarity of Elicitation Software Require-
ments Specification in Student Learning Applications of SMKN7 Baleendah Based on Use
Case Diagrams Using Text Mining. In proc 5th International Conference on Information
Technology, Information Systems and Electrical Engineering (ICITISEE). IEEE, pp. 115-
120. (2021).

18. Python, https://www.python.org/, accessed 17/5/2023.
19. Qurashi, A. W., Holmes, V., Johnson, A. P.: Document processing: Methods for semantic

text similarity analysis. In Proc International Conference on INnovations in Intelligent
SysTems and Applications (INISTA), IEEE, pp. 1-6. (2020).

20. Rago, A., Marcos, C., Diaz-Pace, J. A.: Identifying duplicate functionality in textual use
cases by aligning semantic actions. Software & Systems Modeling 15.2, pp. 579-603.
(2016).

21. Rao, D., Bian, L., Zhao, H.: Research of Duplicate Requirement Detection Method. Smart
Computing and Communication. In Proc 7th International Conference, SmartCom 2022,
New York City, NY, USA, November 18–20, Springer Nature Switzerland, pp. 213-225.
(2023).

22. Rinartha, K., Suryasa, W.: Comparative study for better result on query suggestion of arti-
cle searching with MySQL pattern matching and Jaccard similarity. In Proc 5th Interna-
tional Conference on Cyber and IT Service Management (CITSM), IEEE, pp. 1-4. (2017).

23. Runeson, P., Alexandersson, M., Nyholm, O.: Detection of duplicate defect reports using
natural language processing. In Proc 29th International Conference on Software Engineer-
ing (ICSE'07), IEEE, pp. 499-510. (2007).

24. Sari, E. J., Priyadi, Y., Riskiana, R. R.: Implementation of Semantic Textual Similarity Be-
tween Requirement Specification and Use Case Description Using WUP Method (Case
Study: Sipjabs Application). In Proc IEEE World AI IoT Congress (AIIoT), IEEE, pp.
681-687. (2022).

25. spaCy · Industrial-strength Natural Language Processing in Python, https://spacy.io/, ac-
cessed 17/5/2023.

26. Sun, C., Lo, D., Wang, X., Jiang, J., Khoo, S. C.: A discriminative model approach for ac-
curate duplicate bug report retrieval. In Proc Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering, vol. 1. pp. 45-54. (2010).

https://www.nltk.org/
https://www.python.org/
https://spacy.io/

27. Sureka, A., Jalote, P.: Detecting duplicate bug report using character n-gram-based fea-
tures. In Proc Asia Pacific software engineering conference, IEEE, pp. 366-374. (2010).

28. Sutcliffe, A. G., Maiden, N. A., Minocha, S., Manuel, D.: Supporting Scenario-Based Re-
quirements Engineering, IEEE Transactions on Software Engineering, vol. 24, pp 1072-
1088. (1998).

29. vor der Brück, T., Pouly, M.: Text similarity estimation based on word embeddings and
matrix norms for targeted marketing. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies vol 1 pp. 1827-1836. (2019).

30. Yanis, R. Z. I., Priyadi, Y., & Puspitasari, S. Y.: Measurement of Similarity between Use
Case Description and Sequence Diagram in Software Requirement Specification using
Text Analysis for Dtrain Application. In Proc 2nd International Conference on Electronic
and Electrical Engineering and Intelligent System (ICE3IS), IEEE, pp. 328-333. (2022).

