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Abstract

The current knowledge regarding transcriptomic changes induced by alkalinity on plants is scarce and limited to studies
where plants were subjected to the alkaline salt for periods not longer than 48 h, so there is no information available
regarding the regulation of genes involved in the generation of a new homeostatic cellular condition after long-term
alkaline stress. Lotus japonicus is a model legume broadly used to study many important physiological processes including
biotic interactions and biotic and abiotic stresses. In the present study, we characterized phenotipically the response to
alkaline stress of the most widely used L. japonicus ecotypes, Gifu B-129 and MG-20, and analyzed global transcriptome of
plants subjected to 10 mM NaHCO3 during 21 days, by using the Affymetrix Lotus japonicus GeneChipH. Plant growth
assessment, gas exchange parameters, chlorophyll a fluorescence transient (OJIP) analysis and metal accumulation
supported the notion that MG-20 plants displayed a higher tolerance level to alkaline stress than Gifu B-129. Overall, 407
and 459 probe sets were regulated in MG-20 and Gifu B-129, respectively. The number of probe sets differentially expressed
in roots was higher than that of shoots, regardless the ecotype. Gifu B-129 and MG-20 also differed in their regulation of
genes that could play important roles in the generation of a new Fe/Zn homeostatic cellular condition, synthesis of plant
compounds involved in stress response, protein-degradation, damage repair and root senescence, as well as in glycolysis,
gluconeogenesis and TCA. In addition, there were differences between both ecotypes in the expression patterns of putative
transcription factors that could determine distinct arrangements of flavonoid and isoflavonoid compounds. Our results
provided a set of selected, differentially expressed genes deserving further investigation and suggested that the L. japonicus
ecotypes could constitute a useful model to search for common and distinct tolerance mechanisms to long-term alkaline
stress response in plants.
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Introduction

Plant salt stress represents a large economic problem worldwide,

which has been the subject of countless studies. However, given

that the agricultural surface on alkaline soils is higher than that on

saline ones, it is not salinity per se but the generation of alkaline or

mixed salt-alkaline stresses the main source of constraint for

farming [1]. Soils owing its alkalinity to high Na2CO3 and

NaHCO3 contents are extended throughout practically all climatic

regions. In these soils, the stressor factors for plant growth are high

pH, high exchangeable sodium percent, poor fertility, dispersed

physical properties, and very low water infiltration capacity.

Besides, alkalinity affects the solubility of essential micronutrients

such as iron and zinc [2,3].

Global gene expression using cDNA-microarrays has allowed

the identification of groups and networks of genes that respond to

diverse stresses such as cold, drought and salinity in rice [4], or

drought in barley [5]. The same technique has also allowed the

identification of genes that respond to alkalinity in Glycine soja [6,7],
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Glycine max [8], Leymus chinensis [9], Puccinellia tenuiora [10,11] and

Limonium bicolor [12].

The synthesis of polypeptides in response to variations in the

environment was suggested to be biphasic: first proceeds the

synthesis of ‘‘early’’ proteins, which are implicated in the stress

perception and signalling, and this is followed by the synthesis of

‘late’’ proteins, involved in the recovery of a normal cellular

metabolism [13]. In the above mentioned microarray studies on

alkalinity, plants were subjected to alkaline stress for periods not

longer than 48 h, so the outcoming information from those studies

would be mainly implicated in the perception and transduction of

the stress signal. In contrast, no long-term study on plants grown

under alkalinity has been so far undertaken and hence, there is no

information available regarding the regulation of genes involved in

the generation of a new homeostatic cellular condition.

Legumes (Fabaceae) are the major source of plant proteins for

human consumption and livestock feed, as well as key components

of natural and agricultural ecosystems. Within this legume family

is Lotus, a genus comprising several species acknowledged by their

elevated adaptability to divers soil constrains. Lotus species are used

as an alternative forage in South America and Australia, and cover

crop for dunes revegetation and reclamation of heavy metal-

contaminated or burned soils in Europe [14]. In addition, the

species L. japonicus has become a model legume [15] due to its

characteristic genome features, and the development of a variety

of resources for functional genomics, which has helped in the

advance of legume research during the last years [16].

The L. japonicus genome sequencing project has led to the

development of an Affymetrix GeneChipH handling more than

52000 Lotus probe sets, which are representative of most of the

known and predicted open reading frames (ORFs), including

biotic and abiotic stress-responsive genes [16]. Microarray

profiling using the Lotus Genechip allowed the identification of

912 probe sets that were differentially expressed under the

acclimatization of L. japonicus to salt stress [17], and has been

useful to study the role of plastidic glutamine synthetase (GS2) in

proline biosynthesis and drought stress responses in this species

[18]. On other hand, it has been suggested that natural variation

between cultivars or accessions, when coupled with high-through-

put sequencing and quantitative phenotyping for improved stress

tolerance, can pinpoint candidate genes for future study [19].

The aim of the present study was two-fold: first, to

phenotipically characterize the response to alkaline stress of the

most widely used L. japonicus ecotypes [20], Gifu B-129 and

Miyakojima MG-20; and to identify genes regulated by long-term

alkaline stress, with view to increase the current knowledge on

plant response to soil alkalinity. With this purpose, we analyzed

global transcriptome of these two experimental accessions under

alkaline stress (Gifu B-129 sequence data, gene information in L.

japonicus and mapping information available at http://www.

kazusa.or.jp/lotus).

Materials and Methods

Plant Material and Growth Conditions
Seeds from L. japonicus ecotypes MG-20 and Gifu B-129 were

scarified with sulfuric acid (100%) 3 min, washed ten times with

sterile distilled water and sown in Petri dishes containing water-

agar (0.8%). Plates were incubated for 7 days in a growth

chamber, with a 16/8 h photoperiod at 24uC/21uC 62uC (day/

night) and 55/6565% relative humidity. Light intensity

(250 mmol m22 s21) was provided by Grolux fluorescent lamps

(F 40W). One seedling was transferred to each cylindrical pot

(5.869620 cm; volume = 0.53 dm3) containing washed sand mix

(50% fine/50% coarse sand; pH 7.0; E.C. = 0.05 mS cm21) and

irrigated with 0.56Hoagland’s nutrient solution [21] containing

3 mM KNO3; 2 mM Ca(NO3)2.4H2O; 1 mM MgSO4.7H2O;

0.5 mM NH4H2PO4; 0.5 NaFeO8EDTA.2H2O; and 0.5 mM of

each of the following micronutrients: MnCl2.4H2O, H3BO3,

CuSO4.5H2O, ZnSO4.7H2O, and Na2MoO4.2H2O. A drip

irrigation system (9001 Digital Watering Timer Weekly Program,

ELGOH, www.elgo.co.il; flow rate = 6.25 ml/h) was used accord-

ing to Paz et al. [22].

Experimental Design
Experiments followed a completely randomized design. Two-

way ANOVA analysis was performed (ecotype6treatment). Two

ecotypes were evaluated: L. japonicus MG-20 and L. japonicus Gifu

B-129, under two treatments: control without salt addition and

alkalinity. Measurements of growth, gas exchange, OJIP, and iron

and zinc contents were performed on 12 plants ( = 12 biological

replicates). For microarray analysis, four replicates per treatment

were used, each replicate consisted of 24 pooled plants.

Alkaline Treatment
Alkaline stress treatment was imposed during 21 days by adding

NaHCO3 10 mM to the 0.56Hoagland’s solution and was started

when plants were at the two full developed leaves stage. Control

treatment consisted of plants irrigated with 0.56Hoagland’s

solution without NaHCO3. The pH and E.C. of irrigation

solutions were monitored every 3 days with a combined pH

meter/conductimeter (HI 255, Hanna Instrument) and main-

tained at pH/E.C. (mS cm21) 6.2/1.2 and 8.2/1.9, for control and

alkaline treatments, respectively. For microarray analysis, plants

were harvested, divided into shoots and roots, frozen in liquid N2

and stored at 280uC until they were processed for total RNA

extraction. For dry matter, plants were dried at 60uC until

constant weight.

Gas Exchange Measurements
The gas exchange parameters, transpiration rate (E), stomatal

conductance (Gs), net photosynthesis rate at light saturation (Pn),

were measured in one apical and one basal leaf per plant at light

saturation (1200 mmol photons m22 s21 illumination, LED light)

using a portable photosynthesis system (TPS-2 Portable Photo-

synthesis System, MA, USA).

Chlorophyll Content Determination
Leaves were harvested and stored at 280uC until use. For

pigments extraction, 40 mg of plant material grounded in liquid

nitrogen was shaken in 100% acetone (4uC, overnight). The

extract was cold centrifuged and the supernatant removed.

Measurements were made at wavelength 663 nm (chlorophyll a)

and 647 nm (chlorophyll b) in a spectrophotometer (Perkin Elmer

Lambda 25 UV/VIS spectrometer), and pigments concentration

calculated according to Lichtenthaler et al. [23].

Iron and Zinc Determinations
To analyze total Fe and Zn concentrations, Lotus roots, leaves

and stems were collected, carefully washed with deionized water

and deposited in glass vials. For dry matter destruction, dry ashing

was performed on 100 mg of material at 550uC for 8 h. Samples

were digested with 0,5 ml of HNO3 65% and completed to 3,5 ml

final volume with deionized water. An Analyst 100 atomic

absorption spectrophotometer (Perkin Elmer), absorption mode

was used.

Response to Long-Term Alkalinity in Lotus japonicus
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Active Fe was extracted and assayed according to Chen and

collaborators [24] with some modifications. Roots, stems and

leaves were harvested, frozen in liquid N2 and stored at 280uC
until analysis. The different organs were cut into small pieces with

a scissor. Tissue samples (100 mg) of each organ were shaken in

1,2 mL of 80 mM 2,29-dipyridyl-HCl (pH 3.0) in 10% methanol

in the dark (4uC; 24 h). Extracts were passed through a 0.45 mm

syringe filter and 1 mL of the filtrate was assayed at 522 nm using

a spectrophotometer (Zeltec ZL-5000 UV/VIS Spectrometer,

Argentina). Active Fe values were calculated from a standard

curve using Fe atomic absorption standard solution.

Chlorophyll Fluorescence Fast-transient Analysis
One day before harvest, non-invasive O-J-I-P analysis was

performed in the first full developed leaf by chlorophyll

fluorometry with a portable chlorophyll fluorometer (PocketPea,

Hansatech Instrument, UK). Leaves were predarkened 20 min

before analysis and then exposed during 3 s to 3500 mmol photons

m22 s21 (637 nm peak wavelength). The maximum quantum

yield of primary photochemistry (FV/FM) was calculated. In

addition, the contribution to photosynthesis regulation by the

three functional steps namely absorption of light energy (ABS),

trapping of excitation energy (TR) and conversion of excitation

energy to electron transport (ET) was expressed through the multi-

parametric expression performance index (PIABS; [25]).

RNA Isolation and Transcriptomic Analysis
Total RNA was extracted from frozen shoots and roots using a

Plant Spectrum Total RNA Kit (Sigma), according to the

manufacturer’s instructions. RNA quality was checked on agarose

gel electrophoresis. Total RNA (300 ng/sample) was labeled using

the Affymetrix GeneChipH cDNA Synthesis and Amplification Kit

protocol, and hybridized to the arrays as described by the

manufacturer. Arrays were scanned on an Affymetrix GeneChipH
Scanner 3000 7G. A GeneChipH Operating Software supplied by

Affymetrix was used to perform the gene expression analysis. Data

(.CEL files) were analyzed and statistically filtered using Robin

software [26]. Input files were normalized with the RMA

algorithm and statistically significant genes were identified using

mixed model analysis of variance with a false discovery rate (fdr

correction) of P,0.05. Fold-change values ,+2 and .22 were

removed. Functional classification of significant genes was

analyzed using MapMan software [27,28] after converting fold

change values to log2 in Excel files. The data (.CEL files) presented

in this publication have been deposited in the ArrayExpress

database (http://www.ebi.ac.uk/arrayexpress/) and are accessible

through the accession number E-MTAB-2418.

Quantitative RT-PCR
To validate microarray values by quantitative PCR, 2.5 ml from

a tenfold dilution of the cDNA stock was further diluted to 15 ml

with the primer mix (300 nM final concentration), 7.5 ml of

FastStart Universal SYBRH Green Master (Rox) and the required

amount of double distilled water. Primers used in these reactions

are listed in Table 1. Reactions were performed in a Mx3005P

qPCR System with the help of the MxPro qPCR Software 4.0

(Stratagene, La Jolla, CA, U.S.A.). Relative quantification was

carried out by the comparative cycle threshold method with the

1aEF (ID: AY633710) as an endogenous control [29].

For comparative purposes, relative gene expression in control

plants was defined as 1. The INFOSTAT [30] software tool was

used to calculate the relative expression ratios on the basis of group

means for target gene transcripts versus the reference gene

transcript [31].

Results and Discussion

Phenotypic Characterization. Plant Growth, OJIP Analysis,
and Fe and Zn Contents

Alkaline treatment caused a considerable reduction in stem

elongation in both ecotypes, even though this effect was stronger in

Gifu B-129 plants (Table 2, Figure 1 A). In turn, a detrimental

effect on dry matter weight was also evident. In this case, MG-20

stem, leaf and root biomass was relatively more reduced with a

total reduction of around 70%. In turn, alkalinity affected leaf and

stem biomass of Gifu B-129 as well, whereas it had no effect on

roots. As a consequence, the effect of treatments on total dry

biomass was mild in this ecotype, ranging around 29%.

Accordingly, Pn and WUE were negatively affected by the

NaHCO3 addition in Gifu B-129, but not in MG-20 plants

(Table 3). It should be noticed that at the last experimental stage,

youngest leaves in alkalinized plants of Gifu B-129 were chlorotic

(Figure 1 B), unlike those of alkalinized MG-20 plants which

remained green (Figure 1 C). However, alkalinity decreased the

total chlorophyll content in both ecotypes (Table 4). In addition,

when stress treatment was extended to 2 months, some alkalinized

Gifu B-129 plants died while MG-20 looked well adapted (results

not shown). On these bases, we considered that Gifu B-129 was

less tolerant to alkalinity than MG-20 plants.

It is well known that either Fe or Zn deficiencies may lead to leaf

chlorosis [3]. Our results showed that there were no statistically

significant change in the leaf Fe content between alkalinized and

control plants, regardless the ecotype (Table 5). However, the leaf

content of active Fe was diminished by NaHCO3 addition in Gifu

B-129, but not in MG-20 plants (Table 6), suggesting that the leaf

chlorosis observed in Gifu B-129 could be a consequence of such

diminution. Alkalinity increased the total Fe concentration in the

roots of Gifu B-129 plants and in roots and stems of MG-20 ones

(Table 5). It also led to active Fe accumulation in roots and shoots

of Gifu B-129 plants. By contrast, a notable reduction in Zn

contents were found in both ecotypes, being this reduction more

obvious in Gifu B-129 compared with in MG-20 (Table 5),

indicating that Zn deficiency could also contribute to leaf chlorosis

in Gifu B-129. Generally, plants exhibit Zn deficiency symptoms

at shoot concentrations below a minimum of 15 to 20 ppm Zn/

dry biomass. However this minimum has not been established for

L. japonicus to date and more research is needed in this regard. On

other hand, the higher alkalinity-induced Fe accumulation could

be related to the observed reduction in Zn contents in both

ecotypes, as Zn deficiency led to increased Fe accumulation in

bean [32]. Interestingly, Fe accumulated in roots and stems (but

not in leaves) of both L. japonicus ecotypes, what could be linked to

the fact that Fe has shown to be immobilized in areas close to the

vascular system [33].

Fluorescence due to the presence of chlorophyll a in the PSII

photosynthetic apparatus of plants has been proposed as a

measure of the deleterious effects of different stresses such as

temperature, drought, flooding, salinity, etc. [34]. Two photosyn-

thesis-related indexes, the ratio of variable to maximal chlorophyll

a fluorescence (FV/FM) and the performance index (PIABS) have

been shown to be particularly affected by diverse stresses in several

plant species [35]. Low FV/FM values reflect a diminution in the

ability of PS II to reduce the primary acceptor QA [36]. On the

other hand, the PIABS is a multi-parametric expression taking into

consideration the main functional steps of photosynthetic activity

by a PSII reaction center complex [25]. Our results showed that

both parameters were reduced by alkalinity in Gifu B-129 plants

(Table 7). These data are in agreement with a recent report by

Roosta [37] who informed a reduction in the FV/FM index of

Response to Long-Term Alkalinity in Lotus japonicus

PLOS ONE | www.plosone.org 3 May 2014 | Volume 9 | Issue 5 | e97106

http://www.ebi.ac.uk/arrayexpress/


lettuce plants irrigated with an alkaline nutrient solution. In

contrast, no variations in FV/FM and PIABS indexes were

registered in MG-20 plants, reinforcing the notion of a higher

alkalinity tolerance level in this ecotype compared with Gifu B-

129. Also, it should be considered that alkalinized Gifu B-129

plants presented a high proportion of senescing leaves. Hence, as

leaf senescence has been formerly shown to decrease the FV/FM

ratio in cucumber [38], it is possible that senescence per se and not

alkalinity could have provoked the decrease of the FV/FM ratio.

Microarray Analysis
Global transcription results. In order to gain insight into

the transcriptomic changes involved in the generation of a new

homeostatic cellular condition in alkalinized plants, we attempted

to identify genes that were differentially expressed due to long-

term alkaline treatment in both L. japonicus ecotypes. With this

purpose, we performed an Affymetrix Lotus GenechipH analysis

on pooled shoots and roots of plants from three independent

experiments.

The analysis revealed quantitative and qualitative differences in

transcriptional patterns between Gifu B-129 and MG20 ecotypes

and also between shoots and roots within the same ecotype.

Interestingly, only a minority of the probe sets elicited by alkalinity

was shared between both ecotypes, and between roots and shoots

of the same ecotype (Figure 2), indicating that the response was

ecotype and organ-specific. Overall, 407 and 459 probe sets were

regulated in MG-20 and Gifu B-129, respectively (P,0.05). The

number of probe sets differentially expressed in roots was several-

fold higher than that of shoots, regardless the ecotype, which is

consistent with the role of these organs in detecting and triggering

the main responses to cope with alkalinity.

On the base of shared putative function or common structural

motifs, a functional annotation was assigned to 50% of the total

probe sets using the MapMan software and the latest L. japonicus

mapping file (Table 8). No annotation could be inferred for the

remaining probe sets, which were regarded as genes with unknown

function. In most of the functional categories where the rest of the

genes were assigned, the number of up and down-regulated probe

sets in each ecotype and organ combination was similar. An

exception was found in some functional groups that were

represented only by up-regulated probe sets. This is the case of

glycolysis, gluconeogenesis and tricarboxylic acid cycle (TCA)

functional categories. The number of probe sets in these categories

and their expression level was higher in MG-20 than in Gifu B-129

plants, suggesting a higher potential of the first to supply energetic

and carbon intermediates during the alkaline stress response. The

most represented functional categories were miscellaneous

(17,8%), transcription factors (13,5%), transport (11%), protein

metabolism (10,3%), secondary metabolism (7,5%) and signalling

(6,4%). In the following paragraphs, we describe the most relevant

results within each of these groups (Table 8). MapMan illustrations

depicting differentially expressed transcripts in plants confronted

with NaHCO3 are provided as Figures S1–S4.

Miscellaneous. Most of the probe sets in this group present

homology to known Cytochrome P450 monooxygenase (CYP)

genes (Table S1). CYP proteins plays critical roles in the synthesis

of compounds involved in stress response, such as lignin, pigments,

fatty acids, hormones and signalling molecules in all plant species

[39]. The expression of CYP genes is tightly regulated by

phytohormones during biotic and abiotic stresses [40]. Our

analysis showed that CYP-like probe sets were regulated in both

ecotypes, mainly in roots. However, the number of CYP regulated

genes was higher in MG-20 than in Gifu B-129 plants. In addition,

these genes show an up-regulated pattern in MG-20 in contrast to

Gifu where down-regulation prevailed.

Another probe set included in this category correspond to a

protein with a DHL domain which is exclusively regulated in MG-

20 (2.9-Fold, Table S1). Several lines of evidence demonstrate that

Table 1. Primers used for quantitative real-time PCR.

Probeset ID Forward primer Reverse primer

ljwgs_124992.1_at AAGTTGTCATCCAAGTTG GTAGTAGTTCATATTCACCAT

ljwgs_011581.2_at AAGTTGTCATCCAAGTTG GTAGTAGTTCATATTCACCAT

ljwgs_086126.1_at GAGCACTTGAACATTGAA TCCACTAACATCCTTGAG

chr5.cm0456.15_at CGGATTACTACCTTGACA TGATTGAAGAAGCAAAGTG

Ljwgs_012445.1_at ATGCTGTAACCATCTGAAT GCCAATAATCACTGAATG

chr6.cm0437.7_at GGGTCCAAAGAGAAAGTT AGTCACATCAAGCACATAA

cm0528.2_at CTCGTCAAACAACTTCAC CAATGGCACAAATCCTAAA

ljwgs_038566.1_at CTTCATCAGCAACAATCAT AAGCAATACCAGTTCCAA

ljwgs_049882.1_at TGATGACTCCTCAGAACTT CCTATGATTACAGAATGAACAAC

ljwgs_021886.2_at TGAGCTTGTGAAGGTTGG AACAGGGAGTTGACAAATCT

chr1.cm0378.1_at AAGATGGAGAGGGATATGG GTCTTGTTCTCACGCTTT

chr3.cm0279.2_at TGGAGGTCATAGTAGTATCT GAGGACTCACTTCTTCAT

ljwgs_063085.1_x_at ATACAACTACAGCGTCAT GCAATCAATTTGGACTCA

chr5.cm0019.23_at TTTAACCCTCATAGTCCT ATTGCTAGTGAAGACATC

chr1.cm0433.18_at ACTTGGTGTTAAGGAGATT TTGTCTGAATGGAGTTGA

ljwgs_147904.1.1_at TGGTGAGTGGAGGAAGTG TAGCATTGACAGAGATGAAGAG

ljwgs_055792.1_at CCAATCTTCAACATTCCAA CTATCTTACAAGGCTCAGT

chr1.cm0800.52_at CTCTTGGTCTTCTTCTCAATACA ATAGCAACGAATGGCATCA

1aEF (Housekeeping gene) TGACAAGCGTGTGATCGAGAGG GATACCTCTTTCACGCTCAGCCTT

doi:10.1371/journal.pone.0097106.t001
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proteins from this family are usually involved in cell detoxification

[41].

Transcription factors. Plant cells have evolved intricate

signalling pathways to coordinate gene expression in response to

external stimuli [42]. Among the genes involved in the transduc-

tion of these signals are transcription factors (TFs), which alter the

expression of diverse stress-responsive genes. Many of the known

TFs show differential regulation during abiotic stress in several

important crop species [43,44]. Our microarray analysis showed

that several probe sets belonging to different TF families were

regulated in roots and shoots of both ecotypes, such as bHLH,

WRKY, GRAS, C2C2(Zn), NAC, MADS box, AP2/ERF, bZIP,

G2-GARP. The number and diversity of these transcripts was

considerably higher in Gifu B-129 than in MG-20. Moreover, the

representatives from these categories in roots were more numerous

compared to those in shoots (Table S1). These results suggested a

higher stress perception in Gifu B-129, compared with MG-20,

and confirmed the higher stress perception of roots. The top two

Figure 1. Plant growth response to alkalinization of the two L. japonicus ecotypes Gifu B-129 and MG-20. Plants of both ecotypes grown
under alkalinity and control treatments (A); close up views of alkalinized Gifu B-129 (B) and MG-20 (C) plants. Plants at the two full developed leaves
stage were watered with nutrient solution containing or lacking 10 mM NaHCO3 addition during 21 days.
doi:10.1371/journal.pone.0097106.g001
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TFs families with the largest number of genes differentially

regulated were bHLH and MYB. Interestingly, we detected

several bHLH-like probe sets strongly induced in MG-20 roots,

whereas most of the bHLH-like genes were down-regulated or

showed a very low induction in Gifu B-129 roots. In contrast, most

MYB-like genes were up-regulated in roots of Gifu B-129, while

no MYB-like genes were induced in MG-20. It has been suggested

that the attenuated expression of a complex integrated by MYB

and bHLH would allow metabolites from the flavonoid pathway to

be diverted to the isoflavonoid biosynthesis in L. japonicus [45]. This

is important since diverse roles for many of these secondary

metabolites in plant defense against environmental and biotic

stresses, as well as in the acclimatation to abiotic stress responses

have been previously reported [46]. Members of some subgroups

of these TF families were also shown to co-regulate the

anthocyanin pathway in maize [47], or the proanthocyanidin

pathway in Arabidopsis [48], L. corniculatus [49] and L. japonicus [50].

Based on above mentioned reports, it could be postulated that the

observed divergence in the expression patterns of bHLH and

MYB-like genes between Gifu B-129 and MG-20 might lead to the

occurrence of distinct alkalinity-induced arrangements of flavo-

noids and isoflavonoids in each ecotype, which in turn might

account for differences in plant tolerance between them. On the

other hand, one of the most differentially regulated TFs was a G2-

GARP-MYB-like transcript related to probe set chr1.tm0221.2_at,

which was induced in shoots of both ecotypes but its expression

level was higher in MG-20 than in Gifu B-129 (7,6-fold and 4-fold,

respectively). Recently, a G2-GARP TF was shown to respond to

arsenic in rice [51] and alkalinity in soybean leaf [7]. Therefore, it

might be a common regulator of stress response in L. japonicus.

At last, putative HAP2 and AS2/LOB TFs were induced

exclusively in Gifu B-129 roots. HAP2 TFs were shown to be

involved in osmotic stress response in sorghum roots [52], whereas

the AS2/LOB genes are involved in regulatory networks

controlling root development in rice [53] and Medicago truncatula

[54]. Interestingly, the addition of 10 mM NaHCO3 altered root

architecture in the forage species L. tenuis [22]. On these grounds,

we speculate that the regulation of these genes in this ecotype

might be essential to change root morphology and trigger the plant

response to alkalinization.

Transport. A group of five putative metal transporters were

regulated in MG-20 roots and shoots, predominating the up- over

down-regulation pattern (Table S1). The most up-regulated probe

sets corresponded to genes coding for ZIP proteins, transporters

involved in micronutrient homeostasis. It has been shown that

these transporters are able to translocate various divalent cations,

including Fe, Zn, Mn, and Cd [55]. The expression of ZIP genes is

induced under Fe or Zn deficiency [55], which may come up as a

Table 2. Stem length and dry weight in samples of L. japonicus MG-20 and Gifu B-129 plants.

MG-20 Gifu B-129

Growth parameter Control Alkaline Control Alkaline

Stem length (cm) 11.560.45 a 6.1760.44 b 9.060.27 a 3.9660.28 b

Root dry weight (g) 0.09260.008 a 0.02860.008 b 0.06560.008 a 0.05760.008 a

Stem dry weight (g) 0.03260.003 a 0.01260.003 b 0.01960.002 a 0.00860.002 b

Leaf dry weight (g) 0.1260.032 a 0.03260.010 b 0.04760.004 a 0.02860.004 b

Total dry weight (g) 0.2460.02 a 0.0760.02 b 0.1360.012 a 0.09360.013 b

Stem length reduction (%) 46.3863.68 b 56.0662.42 a

Total biomass reduction (%) 70.4763.85 a 29.6768.33 b

Seven-day-old plants were watered with 0.50 Hoagland’s nutrient solution, with or without the addition of 10 mM NaHCO3 during a period of 21 days. Results are the
mean of 12 biological replicates 6SE. Statistical differences between control and treatments within each ecotype are shown as P,0.001 (Duncan’s post-hoc test).
doi:10.1371/journal.pone.0097106.t002

Table 3. Gas exchange parameters transpiration rate (E), stomatal conductance (Gs), net photosynthesis (Pn) and water use
efficiency (WUE) in basal and apical leaves of L. japonicus Gifu B-129 and MG-20 plants.

E Gs Pn WUE

(mol H2O m22 s21) (mmol H2O m22 s21) (mmol CO2 m22 s21) (mmol CO2 mmol21H2O)

Basal leaf Gifu B-129 control 2,2260,25a 197635a 3,660,6a 1,760,2a

alkaline 1,4860,29a 126641a 1,560,6b 1,160,2b

MG-20 control 2,1860,25a 213636a 3,160,6ab 1,560,2a

alkaline 1,6960,25a 178636a 2,960,6ab 1,760,2a

Apical leaf Gifu B-129 control 2,260,4a 197641a 2,960,5a 1,2860,25a

alkaline 2,460,4a 214641a 0,960,5b 0,4360,25b

MG-20 control 260,4a 200641a 3,360,5a 1,6360,25a

alkaline 1,860,5a 193647a 2,3360,6ab 1,460,28a

Seven-day-old plants were watered with 0.50 Hoagland’s nutrient solution, with or without the addition of 10 mM NaHCO3 during a period of 21 days. Results are the
mean of 12 biological replicates 6SE. Statistical differences between control and treatments within each ecotype are shown as P,0.001 (Duncan’s post-hoc test).
doi:10.1371/journal.pone.0097106.t003
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result of high soil pH values [56]. Interestingly, no ZIP-like

transporters were regulated in Gifu B-129 roots. Such a variation

between both ecotypes in the expression pattern of this type of

genes could be related to their different capability to cope with

stress. However, further research addressing the ion specificity of

these transporters is required in order to establish an unambiguous

cause-effect relationship linking the expression of these genes with

Fe and Zn accumulation in alkaline conditions.

On other hand, several probe sets related to transporters of

highly diverse non-metal molecules were also regulated in both

ecotypes. Among them, two ammonium transporters (AMT)-like

transcripts were induced in roots, one in MG-20 (ljwgs_

019948.1_at otra vez, mirar cual es el nombre completo; 2-fold),

and the other in Gifu B-129 (ljwgs_019948.1_at lo mismo; 1.3-

fold). Interestingly, the induction of the LeAMT1 gene in tomato

roots was formerly observed under Fe-deficiency condition [57].

Also, three different putative nitrate transporters were up-

regulated in MG20 roots, whereas another transcript of this type

was down-regulated in roots of both ecotypes. The most highly

induced of these transcripts in MG-20 (chr4.cm0046.61_at; 4,3-

fold) is similar to an Arabidopsis nitrate transporter (AT1G59740)

which functions in nitrate removal from xylem sap [58]. These

results suggest a better nitrate assimilation in MG-20 compared to

Gifu B-129, which is in line with the fact that Gifu B-129 plants

experienced a higher level of active Fe-deprivation than MG-20

ones, since nitrate acquisition was shown to be limited under Fe

deficiency in cucumber [59].

Another interesting observation is the down-regulation of three

probe sets related to aquaporins (TIP) in Gifu B-129 roots. In turn,

no regulation in members of this gene family was observed in MG-

20 plants. It has been shown that intravesicular acidification

inhibits the gating of plasma membrane aquaporins in storage root

cells of Beta vulgaris [60]. However, nothing has been informed so

far with regard to the effect of high pH on the expression of

aquaporin genes in plants. We envision that forthcoming research

will bring to light valuable new information on the effect of

alkalinity on aquaporin functionality.

Several probe sets similar to Arabidopsis pleiotropic drug

resistance (PDR) transporters (a type of ABC transporters) were

strongly up-regulated in MG-20 and Gifu B-129 shoots, and more

slightly induced in roots of both ecotypes. In plants, PDR-type

transporters have been implicated in detoxification [61] and biotic

defense response [62]. In addition, one probe set (ljwgs_

125461.1_at) similar to a Phosphorous-glycoprotein (PGP, another

type of ABC transporter) was exclusively regulated (3.1-fold

change) in Gifu B-129 roots. Most of the plant PGPs characterized

to the present have been implicated in auxin transport [63],

although some evidence supports that AtPGP1 might function as

ecto-phosphatase [64]. Since all probe sets putatively correspond-

ing to auxin-responsive genes were downregulated in Gifu B-129

roots, it could be hypothesized that the observed induction of the

PGP-like gene in this ecotype is a plant response to alkali-derived P

deprivation.

Protein metabolism. Most of the regulated probe sets in this

group correspond to genes involved in protein degradation.

Interestingly, a higher proportion of up-regulated probe sets were

observed in Gifu B-129, compared with MG-20 roots. It is well

known that a primary function of protein degradation in stressed

plants is to minimize the stress-induced damage by limiting

abnormal protein accumulation and by supplying the amino acids

necessary for maintaining cellular homeostasis and growth [65].

Thus, our microarray results suggest that a greater protein

turnover could occur in Gifu B-129. The 2-isopropylmalate

synthase (IPMS) is the first committed enzyme in leucine

Table 4. Contents of chlorophyll a, b and total in apical leaves of L. japonicus Gifu B-129 and MG-20 plants.

Chlorophyll a Chlorophyll b Total chlorophyll

Gifu B-129 control 0,960,1b 0,3460,03a 1,2460,14b

alkaline 0,460,1c 0,1860,03b 0,5960,14c

MG-20 control 1,2560,1a 0,2560,43a 1,6860,14a

alkaline 0,8260,1b 0,4160,33a 1,1560,14b

Seven-day-old plants were watered with 0.50 Hoagland’s nutrient solution, with or without the addition of 10 mM NaHCO3 during a period of 21 days. Results are the
mean of 12 biological replicates 6SE. Statistical differences between control and treatments within each ecotype are shown as P,0.001 (Duncan’s post-hoc test).
doi:10.1371/journal.pone.0097106.t004

Table 5. Total, leaf, stem and root iron and zinc contents in plants of L. japonicus MG-20 and Gifu B-129 plants.

Ion Ecotype Treatment Total (ppm) Leaf (ppm) Stem (ppm) Root (ppm)

Fe MG-20 Control 1848,96174,72b 179,44622,97a 181,33619,56a 15166170,3a

MG-20 Alkalinity 2681,546174,72a 174,5622,97a 306,7655,46b 21996170,3b

Gifu B-129 Control 2065,236165,76b 233,71622,97a 306,65618,76a 15796161,6a

Gifu B-129 Alkalinity 2609,016198,12a 184,5623,99a 354,73635,12a 20916193,1b

Zn MG-20 Control 104,6365,67a 27,6461,69a 43,0563,32a 36,4263,38a

MG-20 Alkalinity 39,1665,4b 10,4561,69b 7,0264,34b 24,8863,09a

Gifu B-129 Control 122,4965,4a 35,7861,69a 64,9163,46a 23,2563,09a

Gifu B-129 Alkalinity 33,2765,4b 9,1861,95b 14,2864,34b 16,6863,23b

Seven-day-old plants were watered with 0.56Hoagland’s nutrient solution, with or without addition of 10 mM NaHCO3 over 21 days. Average data (6SE; n = 12) with
the same letter within each ecotype are not significant different (Duncan, P,0.001).
doi:10.1371/journal.pone.0097106.t005
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biosynthesis and a key part of essential aminoacids biosynthesis

and primary metabolism [66]. In line with former results, we

detected the induction of four transcripts similar to IPMS genes,

exclusively in MG-20 roots, suggesting a more active aminoacids

biosynthesis in this ecotype.

Several expression studies indicated the possible involvement of

plant matrix metalloprotease (MMPs) in the response to abiotic

stresses, such as salinity [67], wounding, dehydration [68], and low

temperature [69]. Accordingly, we detected a regulated probe set

(chr2.cm1150.57_at) similar to At1g70170, a matrix metallopro-

tease (MMP) with funtions in zinc ion binding and proteolysis,

which was 3-fold induced in Gifu B-129 roots. In contrast, another

MMP-like probe set (chr2.cm1150.58_at) detected in MG-20 roots

was downregulated.

Metal handling. Ferric chelate reductase (FRO) enzymes

have been shown to reduce and solubilise Fe(III) chelates at the

root surface in Arabidopsis [70]. On other hand, nicotianamine

synthase (NAS) is a key enzyme in the synthesis of nicotianamine

(NA) in non-graminaceous plants, which do not produce

phytosiderophores to acquire Fe. In these plants, NA chelates

metal cations including those formed by Fe, suggesting a function

in the internal mobilization of Fe and other metals [3,71].

According to our microarray results, several FRO-like genes were

downregulated in Gifu B-129 shoots but induced in roots of both

ecotypes (showing a higher regulation on MG-20). In parallel, two

nicotianamine synthase-like genes were induced in shoots upon

alkalinization. Whereas one of them was exclusively regulated in

Gifu B-129 (chr1.cm0206.26_at), the second probe set

(chr6.cm0539.8_at) was regulated in both ecotypes, being its

expression level higher in MG-20 than in Gifu B-129. Taken

together, the transcriptomic pattern of FRO, NAS and ZIP-like

genes displayed in our microarray suggests that under the alkaline

condition, MG-20 would have a higher ability to mobilize Fe in

leaves and to reduce ferric chelates in the root surface than Gifu B-

129. This is in line with our results showing a higher alkalinity-

induced total Fe accumulation in MG-20, compared with Gifu. In

turn, the occurrence of a more suitable machinery for Fe

acquisition in MG-20 may help to explain the better performance

of this ecotype under the alkaline condition.

It has been shown that after Fe is loaded into the root xylem

from the pericycle, a ferric reductase defective (FRD) gene coding

for a multidrug and toxin efflux protein, facilitates Fe chelation to

citrate and their subsequent transport from roots to shoots [72].

Our microarray data also showed the induction of two FRD-like

probe sets, one in MG-20 shoots and the other in Gifu B-129

roots. Possibly, the asymmetric location of alkalinity-regulated

FDR-like genes between MG-20 and Gifu B-129 could contribute

to explain the differences in the levels of shoot Fe accumulation

found between both genotypes.

Secondary and hormone metabolism. Most of the differ-

entially expressed probe sets related to secondary metabolism were

regulated in roots, where induction prevailed over down-regula-

tion. In both ecotypes, the majority of induced probe sets were

similar to genes that participate in flavonoids synthesis. As stated

above, these compounds play a role in plant defence against

environmental and biotic stresses. In addition, two probe sets

assignable to the lignin biosynthetic enzymes cinnamyl alcohol

dehydrogenase (CAD) were induced in roots and shoots of MG-20

plants, whereas no gene of this type was regulated in Gifu.

Several hormone-related probe sets were differentially expressed

in MG-20 and Gifu B-129 upon alkalinization. Those that were

regulated in shoots were mostly induced and showed homology

with auxin-responsive genes, as well as genes involved in

gibberellin and jasmonic acid biosynthesis. Suggestively, no

regulation of probe sets putatively involved in hormone biosyn-

thesis was detected in MG-20 roots. Moreover, a probe set

(cm0584.17_at) similar to a negative regulator of the gibberellin

signal transduction pathway (RGA) [73] was induced in roots of

this ecotype. In contrast, several probe sets putatively related to

ABA and ethylene biosynthesis were induced in Gifu B-129 roots,

where the down-regulation of genes probably involved in auxin

and cytokinin response or biosynthesis was also observed. In

Arabidopsis, the expression of the senescence-related AtMYBL TF

was induced by ABA [74]. In turn, the overexpression of AtMYBL

Table 6. Available iron contents (nmol/gr de peso fresco) in leaves, stems and roots of L. japonicus Gifu B-129 and MG-20 plants.

Root Stem Leaf

Gifu B-129 control 0,660,07b 0,5360,08b 0,8560,06a

alkaline 1,1860,07a 1,2260,08a 0,5160,06b

MG-20 control 0,5160,07a 0,2560,08a 0,5960,06a

alkaline 0,5760,07a 0,4160,08a 0,5360,06a

Seven-day-old plants were watered with 0.56Hoagland’s nutrient solution, with or without addition of 10 mM NaHCO3 over 21 days. Average data (6SE; n = 12) with
the same letter within each ecotype6organ are not significant different (Duncan, P,0.001).
doi:10.1371/journal.pone.0097106.t006

Table 7. Fv/Fm and PIABS measured on leaves of L. japonicus MG-20 and Gifu B-129 plants.

Ecotype Treatment Fv/Fm PI abs

MG20 Control 0,8460,01a 5,6860,31 ab

MG20 Alkalinity 0,8460,01a 6,1560,31 a

Gifu Control 0,8360,01a 4,860,31 b

Gifu Alkalinity 0,7760,01b 1,2260,31 c

Seven-day-old plants were watered with 0.56Hoagland’s nutrient solution, with or without addition of 10 mM NaHCO3 over 21 days. Average data (6SE; n = 12) with
the same letter within each ecotype are not significant different (Duncan, P,0.001).
doi:10.1371/journal.pone.0097106.t007
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increased the levels of the Senescence-related gene 1 (SRG1), which was

reported to increase in senescent organs and hence, it was

proposed as a marker for senescence in that model plant [75]. The

fact that three SRG-like probe sets (chr2.cm0124.31_at,

ljwgs_067741.2_at and ljwgs_084207.1_at), along with four

MYB-like TF were induced in Gifu B-129 (whereas these types

of genes were down-regulated or undetected in MG-20) is in line

with the higher root turnover of Gifu roots suggested above, and

congruent with the view that these roots were senescing, unlike

those of MG-20.

Stress perception and signaling. Plant stress perception is

followed by the expression of a large number of genes involved in

morphological or physiological processes that increase survival

under stressful condition. This process relays on a number of cell

surface proteins, including calcium-binding proteins, receptors-like

kinases (RLKs), G-protein-coupled receptors and two-component

histidine kinase receptors [42]. Our results showed the regulation

of 41 probe sets putatively representing several of these stress

receptors. These types of genes were more abundant in roots than

in shoots, in congruence with the fact that roots are in direct

contact with the stress source.

Some types of G-proteins called GTP-binding proteins partic-

ipate of vesicle trafficking and have a role in plant adaptation to

stress and damage repair [76]. Interestingly, a G-protein-like

probe set (gi1370149_at), similar to the GTP- binding protein

AT1G06400 was 2.2-fold induced in Gifu B-129 shoots, whereas

no GTP-binding-like gene was regulated in MG-20, indicating a

possible higher requirement for damage repair in the former

ecotype.

Other genes of interest. Among all regulated transcripts in

our microarray, the most up-regulated was chr1.cm0109.32_at,

which was induced in MG-20 and Gifu B-129 shoots (7.7 and 4.2-

fold, respectively). This transcript showed homology to the Phloem

protein ATPP2-B15 of Arabidopsis. PPs proteins are poly-GlcNAc-

binding lectins [77], whose expression is developmentally related

to defined stages of phloem differentiation [78]. PP2 also interacts

with mesophyll plasmodesmata to increase the size exclusion limit

and traffic cell-to-cell in Arabidopsis [79]. As this transcript was

more highly induced in MG-20 than Gifu B-129 shoots, it is

suggested that the former ecotype has greater sugar transportation

ability.

The carbonic anhydrase (CA) enzyme catalyzes the rapid

interconversion of bicarbonate and protons to dioxide and water

(or vice versa), by removing a water molecule from carbonic acid.

In plants, CA is involved in diverse biological processes including

pH regulation, respiration and photosynthesis [80]. In addition,

Zn deficiency induces a decrease in the activity of CA [81], which

in turn has been proposed as an indicator for diagnosing Zn

deficiency in plants [82]. Our microarray results revealed the

regulation of three CA-like genes. In this trend, ljwgs_021122.2_at

and chr2.cm0201.34_at were 5 and 4.3-fold induced in MG-20

roots, respectively, whereas another probe set of this type

(ljwgs_048469.1_at) was induced in Gifu B-129 roots, even though

showing a lower expression level (1.3-fold). These results reinforce

the view that roots of the second ecotype could have experienced

Zn deficiency, unlike those of MG-20.

Another highly regulated probe set (chr5.CM0456.15_at), a

putative acidic endochitinase (CHIB1), was 4-fold induced in MG-

20 shoots. Interestingly, this transcript was formerly shown to be

strongly up-regulated (5.1-fold) in shoots of this ecotype when

challenged with Pseudomonas syringae pv. tomato [83], suggesting

that it could be involved in a generalized mechanism of plant

response to biotic and abiotic stresses.

The main cause of declination in plant growth and productivity

under stress conditions is the oxidative damage at the cellular level

[84]. Plant thioredoxins are thought to act as regulators of

scavenging mechanisms and as components of signalling pathways

in the plant antioxidant network [85]. Their induction was higher

in MG-20 (1.7 vs 1-fold), suggesting a greater antioxidant potential

in this ecotype. Finally, several peroxidases-like genes were also

slightly regulated in root of both genotypes, but the relation of

down-regulated to induced transcripts was similar in both

ecotypes.

Validation of Microarray Data by Real-time Quantitative
PCR

To validate microarray results presented in this study, we

analyzed the expression data of 20 randomly chosen genes by

qRT-PCR (Table 9), using cDNA from three independent

biological replicates. A linear regression analysis of microarray

and qRT-PCR values (Figure 3), yielded a R2 = 0.6597 (Pearson’s

correlation r = 0.86). In addition, although the magnitude of the

Figure 2. Venn diagram showing common and unique regulated genes by alkalinity between roots and shoots of MG-20 and Gifu
B-129.
doi:10.1371/journal.pone.0097106.g002
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transcript abundance varied, the gene expression patterns

obtained by microarray and qRT-PCR were similar.

Conclusions

We report in this work a comparative analysis of alkali-induced

changes on growth, physiological parameters and gene expression

in the L. japonicus ecotypes MG-20 and Gifu B-129. Plant growth

assessment revealed substantial differences in tolerance to soil

alkalinity between both ecotypes, which were reflected by

physiological analysis and metal accumulation measurements.

These results support the notion that overall, MG-20 plants

displayed a higher tolerance level to alkaline stress than Gifu

B-129.

Importantly, plants were exposed to alkalinity for 21 days, a

period much longer than those used by other authors in similar

works. This approach allowed the detection of genes involved in

metabolic pathways shown to be activated by nutrient deficiency

in other plant species, in particular Fe and Zn. Such results suggest

that MG-20 and Gifu B-129 ecotypes differed in their regulation of

genes commonly believed to be involved in the generation of a

new Fe/Zn homeostatic cellular condition. Thus, MG-20

displayed higher number and expression level of several metal

transporters (Fe, Zn and Cd), such as ZIP, NAS and PDR-like

transcripts, as well as transcripts coding for proteins shown to

reduce Fe (III) chelates at the root surface to form soluble Fe

(FRO). Taken together, the transcriptomic pattern suggests that

under alkaline conditions, MG-20 has a more suitable machinery

for Fe acquisition and for Fe and Zn transport than Gifu B-129.

On the other hand, the MG-20 ecotype showed a greater

number of regulated transcripts (and with higher expression levels)

putatively involved in glycolysis, gluconeogenesis and TCA. This

suggests that this ecotype could count with a better supply of

energetic and carbon intermediates during alkaline stress. In this

regard, the induction of a transcript putatively involved in phloem

differentiation (PP2) in MG-20, but not in Gifu B-129, is in line

with these results and indicates a greater sugar transportation

ability in the first ecotype. The last results agrees also with the fact

Table 9. Microarray and qRT-PCR analysis of expression of 20 randomnly selected genes in Lotus japonicus roots and leaves
treated with NaHCO3 during 21 days.

Probeset Relative expression (fold change) Ecotype6organ

Microarray qRT-PCR

chr1.cm0800.52 1 1,552 Gifu B-129 root

ljwgs_021886.2 1,109 3,918 MG-20 leaf

ljwgs_063085.1 1,192 2,526 MG-20 leaf

chr1.cm0378.1 1,195 3,109 MG-20 leaf

cm0528.2 1,304 1,156 MG-20 root

cm0528.2 1,627 4,757 MG-20 leaf

cm0528.2 1,685 3,477 Gifu B-129 leaf

chr3.cm0279.2 1,987 2,607 MG-20 root

ljwgs_147904.1.1 1,99 2,301 Gifu B-129 root

ljwgs_055792.1 2 2,168 MG-20 root

chr1.cm0433.8 2,264 2,378 Gifu B-129 root

chr5.cm0019.23 2,365 2,492 MG-20 root

chr6.cm0437.7 2,567 5,155 MG-20 leaf

ljwgs_038566.1 2,884 4,512 MG-20 root

ljwgs_049882.1 2,935 4,155 MG-20 root

chr5.cm0456.170.r2.d 4,047 35,302 MG-20 leaf

ljwgs_086126.1 4,209 77,753 MG-20 leaf

Ljwgs_012445.1 4,262 23,316 MG-20 leaf

ljwgs_124992.1 5,059 99,971 MG-20 leaf

ljwgs_011581.2 6,33 89,008 MG-20 leaf

doi:10.1371/journal.pone.0097106.t009

Figure 3. Comparison of microarray and quantitative real-time
PCR data for 15 selected genes. Symbols represent Log2

transformation of mean expression levels relative to control treatments.
doi:10.1371/journal.pone.0097106.g003
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that CYP-likes genes (a gene family playing critical roles in the

synthesis of plant compounds involved in stress response) were

induced in a higher number and expression level in MG-20 than

in Gifu B-129. As a whole, this information advocates for a

superior primary and secondary metabolism activity in MG-20,

compared with Gifu B-129, including the biosynthesis of plant

defense-related compounds. On the other hand, a bulk of genes

that were exclusively, or more regulated in Gifu B-129 than in

MG-20, was indicative of a greater stress level in the first ecotype.

Among these genes, we detected up-regulated MMP with

functions in Zn ion binding/proteolysis and a higher proportion

of up-regulated to down-regulated probe sets putatively involved

in protein-degradation, suggesting a higher protein turnover in the

first ecotype. In this trend, we also identified the induction in Gifu

B-129 shoots of a probe set similar to a G-protein, with role in

plant adaptation to stress and damage repair and the induction of

senescence-related genes in roots. On other hand, differences

between both ecotypes in the expression patterns of bHLH and

MYB-like genes constitute a hint that both ecotypes could display

distinct arrangements of flavonoid and isoflavonoid compounds,

which in turn could account for a lower or higher plant tolerance

to biotic and abiotic stresses.

In the present work, we showed that the Gifu B-129 and MG-20

ecotypes differ in their homeostatic response to long-term

alkalinity and provided a set of selected, differentially expressed

genes deserving further investigation.

Finally, our results, in addition to a previous study showing

contrasting responses to a hemibiotrophic bacteria [83], tempt us

to propose Gifu B-129 and MG-20 ecotypes as useful models to

search for common and distinct tolerance mechanisms to biotic

and abiotic stress responses.

Supporting Information

Figure S1 MapMan illustration depicting transcripts
from the ‘‘Cell functions overview’’ bin regulated in
MG-20 leaves, upon alkalinization. Transcriptomic data

from NaHCO3-treated plants was compared to respective

untreated controls. Genes that were shown to be differentially

expressed were mapped using the MapMan software (http://

mapman.gabipd.org). Log fold change ratios are indicated as a

gradient of red (down-regulated) and blue (up-regulated).

(TIF)

Figure S2 MapMan illustration depicting transcripts
from the ‘‘Cell functions overview’’ bin regulated in

MG-20 roots, upon alkalinization. Transcriptomic data from

NaHCO3-treated plants was compared to respective untreated

controls. Genes that were shown to be differentially expressed

were mapped using the MapMan software (http://mapman.

gabipd.org). Log fold change ratios are indicated as a gradient of

red (down-regulated) and blue (up-regulated).

(TIF)

Figure S3 MapMan illustration depicting transcripts
from the ‘‘Cell functions overview’’ bin regulated in Gifu
B-129 leaves, upon alkalinization. Transcriptomic data from

NaHCO3-treated plants was compared to respective untreated

controls. Genes that were shown to be differentially expressed

were mapped using the MapMan software (http://mapman.

gabipd.org). Log fold change ratios are indicated as a gradient of

red (down-regulated) and blue (up-regulated).

(TIF)

Figure S4 MapMan illustration depicting transcripts
from the ‘‘Cell functions overview’’ bin regulated in Gifu
B-129 roots, upon alkalinization. Transcriptomic data from

NaHCO3-treated plants was compared to respective untreated

controls. Genes that were shown to be differentially expressed

were mapped using the MapMan software (http://mapman.

gabipd.org). Log fold change ratios are indicated as a gradient of

red (down-regulated) and blue (up-regulated).

(TIF)

Table S1 List of main functional categories and probe-
sets regulated in response to alkalinity, mentioned in
Results and Discussion.
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27. Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, et al. (2004) Mapman: a
User-Driven Tool To Display Genomics Data Sets Onto Diagrams of Metabolic

Pathways and Other Biological Processes. The Plant Journal 37: 914–939.

28. Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE, et al. (2005) Extension
of the visualization tool MapMan to allow statistical analysis of arrays, display of

coresponding genes, and comparison with known responses. Plant Physiology
138: 1195–1204.

29. Paolocci F, Robbins MP, Passeri V, Hauck B, Morris P, et al. (2011) The

strawberry transcription factor FaMYB1 inhibits the biosynthesis of proantho-
cyanidins in Lotus corniculatus leaves. Journal of Experimental Botany 62: 1189–

1189.

30. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, et al. (2011)

InfoStat versión 2011. Argentina. URL http://www.infostat.com.ar: Grupo
InfoStat, FCA, Universidad Nacional de Córdoba.
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