
Vol.:(0123456789)1 3

Universal Access in the Information Society
https://doi.org/10.1007/s10209-023-01043-5

LONG PAPER

Dynamic detection of accessibility smells

Fernando Durgam1 · Julián Grigera1,2,3 · Alejandra Garrido1,2

Accepted: 28 August 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Automatic detection of accessibility problems is mainly performed by checking for compliance with guidelines on the
HTML structure of web pages. While this method can find many problems, it has limitations in detecting difficulties that
occur during user interaction. The purpose of this work is to find problematic sequences of interaction events, which we
call Accessibility Events. These events occur dynamically as the user interacts with the page and can result in automatic
detection of accessibility problems, called Accessibility Smells. We focus on visually impaired users interacting with the
web through screen readers. Using previously and recently defined Accessibility Smells, we design Accessibility Events
and heuristics to detect them. We describe an empirical study with visually impaired users accessing different pages with
known Accessibility Smells. Using a logging tool, we capture Accessibility Events and report on their relationship (or lack
thereof) with those smells. For the study, we recruited 8 volunteers, who performed user tests in different websites. During
the study, we automatically captured the events on the interfaces and found that out of the 100 events detected during the
sessions, 64 resulted in accessibility odors and 19 did not. The remaining 17 were inconclusive, but helped to reformulate
the current odor heuristics to analyze potential new ones. The results indicate that it is possible to characterize special pat-
terns of Accessibility Events that may be used to detect potential accessibility issues. While further studies are necessary,
our findings provide a base ground for the dynamic detection of accessibility problems in web applications.

Keywords  Web accessibility · Rich internet applications · Accessibility smells · User interaction events

1  Introduction

Web Accessibility continues to be a largely neglected prac-
tice. A recent study conducted by WebAIM for the top mil-
lion websites showed over 96% of homepages with WCAG
2 [23] failures, with an average of more than 50 accessibility
errors per page [28]. Moreover, the steep increase in web
usage caused by the COVID-19 pandemic is causing deep
inequalities for people with disabilities [21]. This makes an
urgent call for action. Many governments and organizations

have created policies and regulations that joined well-estab-
lished accessibility guidelines. Ensuring conformance, how-
ever, can be a very demanding task, especially in already
deployed software. To help in this task, many efforts have
been made to automate the detection of accessibility issues.

Most works in the area of automatic accessibility evalu-
ation focus on static analysis, i.e., parsing HTML code to
find compliance with fixed sets of rules, such as the Web
Content Accessibility Guidelines (WCAG) [23]. While this
is a useful and effective approach, there are accessibility
issues that can only be discovered by analyzing real interac-
tion [14]. For example, consider a simple menu with differ-
ent options at the same level, where the first three options
are rarely used. In this case, a sighted user could ignore
these and go directly to the relevant options, but the visu-
ally impaired relying on a screen reader must necessarily
go through them each time. This could happen even in a
perfectly WCAG-compliant site, but the issue could still be
detected by observing that the visually impaired users gener-
ally skip the irrelevant options.

 *	 Julián Grigera
	 julian.grigera@lifia.info.unlp.edu.ar

	 Fernando Durgam
	 fernando.durgam@lifia.info.unlp.edu.ar

	 Alejandra Garrido
	 alejandra.garrido@lifia.info.unlp.edu.ar

1	 LIFIA, Fac. de Informática, Universidad Nacional de La
Plata, La Plata, Argentina

2	 CONICET, Buenos Aires, Argentina
3	 CICPBA, La Plata, Argentina

http://crossmark.crossref.org/dialog/?doi=10.1007/s10209-023-01043-5&domain=pdf

	 Universal Access in the Information Society

1 3

Matters get worse when considering dynamic content
and when this interaction involves some kind of assistive
technology, like a screen reader [3, 4]. Single Page Appli-
cations (SPA), and more generally, Rich Internet Applica-
tions (RIAs) [8] usually rely on dynamic state changes of
interface components to resemble desktop-like interactions.
This enables complex interactive processes, but at the same
time produces less accessible interfaces. To alleviate the lack
of accessibility in RIAs, the Web Accessibility Initiative
defined WAI-ARIA (Web Accessibility Initiative - Acces-
sible Rich Internet Applications), a specification that defines
HTML attributes to better describe their semantics like roles
or states, with special focus on screen readers. Currently,
several frameworks provide ARIA-compatible components,
although there are still several challenges. Ensuring compli-
ance can be difficult, and automated approaches are usually
limited to HTML structure, so several accessibility flaws
may still be unidentified unless interaction-based analysis
is performed [3].

As an example, Fig. 1 shows a case of an accessibility
problem that occurs with dynamic content. The screenshot
on the left shows the flight search form on the Aerolineas
Argentinas website.1 An origin location is required for the
search. If the user enters a city name that is not available, the
value gets deleted after exiting the field without a notifica-
tion. As can be seen at the right side of Fig. 1, when loading
the page, the HTML code includes a div container with the
class “selectize-dropdown” in a “display: none" style that
makes it invisible. This widget is designed so that when
it receives the focus on an input field, it becomes visible.
These mutations in the structure of the DOM of the page as a

result of user interactions may include accessibility difficul-
ties, and they cannot be detected by accessibility evaluation
tools that analyze static code.

User tests are an excellent source of empirical data that
may provide behavioral indicators for accessibility problems
that occur dynamically. Several of these problems have been
identified in previous works and cataloged as Accessibility
Smells [14]. Similarly to code smells, Accessibility Smells
may indicate design problems, though in this case, the prob-
lems affect the accessibility of a web page as perceived by
its users instead of internal code quality. Moreover, Acces-
sibility Smells are also solved by applying transformations
that do not affect the underlying functionality, called Acces-
sibility Refactorings. Some Accessibility Smells may be
found by inspecting code just like code smells, for example
“Unpredictable size” for lists and tables [13], or the absence
of some WAI-ARIA label. Nevertheless, in this work we are
interested in Accessibility Smells of user interaction, that
is, those that appear in poorly designed interaction paths for
screen reader users. Examples are long navigation paths,
useless link activations or defective/inaccessible validation
messages. Note that these smells may only be found during
user testing or by analyzing interaction logs. Meanwhile, the
refactorings that solve these smells apply transformations
that, while preserving functionality, are meant to improve
the way disabled users access the application’s content or
trigger its behavior. Examples of these refactorings are
“Merge pages" (to solve long navigation paths) and “Add
content summaries" (as a possible solution for useless link
activations).

While user tests are good sources of real usage data, they
require the time and budget to hire users and usability/acces-
sibility experts that may detect problems by observing users’
interactions while performing the test. Motivated to provide

Fig. 1   Example of deleted input content. A search form shows text inputs for origin and destination for a flight, but the entered text can be
deleted by a popup select box. The source code for this is also shown

1  https://​www.​aerol​ineas.​com.​ar.

https://www.aerolineas.com.ar

Universal Access in the Information Society	

1 3

an affordable solution for small- to medium-sized companies
that allows them to evaluate the accessibility of their RIA
applications without consuming so many resources, the goal
of our work is to find an automatic detection mechanism for
Accessibility Smells.

Earlier work has been proven effective to automatically
detect Usability Smells by using a service with minimal
setup that collects interaction events from real users [15, 16].
By capturing problematic sequences of interaction events,
called “Usability Events”, Usability Smells can be detected
on the fly and suggest solutions in terms of “Usability Refac-
torings”. In order to create an automated interaction-based
accessibility analysis, we take advantage of the existing
approaches for Usability Smell detection. However, there
are fundamental differences between the cursor-based inter-
action that is typical of sighted users and interaction with
screen readers, not only in the way elements are accessed,
but also on the threshold values for pauses.

The work that we describe in this article is intended to
characterize problematic patterns of interaction events,
called Accessibility Events, and show through an empirical
study how they may be used to automatically detect Acces-
sibility Smells in dynamic web applications. Going back to
the example shown in Fig. 1, we propose to detect that prob-
lem with the Accessibility Event “Deleted Input Content".
It occurs on a text input field when the data entered by the
user is automatically deleted without reporting it, possibly
as a consequence of some data validation. Moreover, we
have performed a preliminary study with visually impaired
users in order to find suitable threshold that would allow us
to automatically detect Accessibility Smells.

Summarizing, the contributions of this article are:

•	 A proposal of the concept of Accessibility Events as a
way to detect Accessibility Smells automatically in appli-
cations with dynamic content;

•	 A catalog of Accessibility Events and the Accessibility
Smells that these events allow identifying;

•	 The results of an empirical study with visually impaired
participants in which we tested the automatic detection
of Accessibility Events and study their potential to lead
to Accessibility Smells.

2 � Related work

There are a large number of studies related to the static eval-
uation of websites, either for a general or specific domain
like education [5, 17, 26], government [20, 24] or healthcare
[29, 30]. The evaluation method used is mainly based on
automatic tools like AChecker [5], which check compliance
with accessibility guidelines (WCAG), although some stud-
ies apply user testing [29] or a combination of automatic

and manual inspection [30]. The use of automatic tools (like
Hera, TAWS, AChecker) has the advantage of being much
cheaper, but the disadvantage of not considering changes
that occur dynamically.

Apart from static evaluation, there are several works on
the evaluation of dynamic content, that is, the content found
in Rich Internet Applications (RIAs) [3]. The enhanced
interactivity and dynamic nature of RIAs make them very
hard to evaluate and, at the same time, cause the most acces-
sibility problems found on the web, since screen reader users
are rarely able to perceive the dynamic updates that occur
on the page [2, 7]. While the WAI-ARIA framework may
help web developers to improve accessibility by defining
special attributes for dynamic components, they may not
use it properly, and automated methods for checking com-
pliance face several challenges [3]. Surprisingly, a study
over a million homepages detected that those with ARIA
labels have an average of 70% more detected errors than
those without ARIA labels [28]. Moreover, it was shown
through an experiment that even when using WAI-ARIA
compliant components, mobile interfaces still carry signifi-
cant accessibility problems for screen reader users [7]. Thus,
it becomes crucial to have the support of tools to assess their
accessibility.

The work of Zhang et al. 2017 [31] shows that some
screen reader users make use of the shortcuts to skim over
portions of text. This kind of behavior can only be observed
by analyzing interaction events, which is the core of our
proposal. This was also observed by Antonelli et al. [3], who
have recently surveyed current tools for accessibility evalu-
ation of RIAs, discussing several limitations which show
that this is still a challenging problem, and no tool has been
entirely successful. Some of the limitations of RIA evalu-
ation tools are related to the difficulty in identifying RIA
components in source code [3]. In other cases, the evaluation
of dynamic content is performed on the DOM generated
after page load [9, 22]. While this is more accurate than
static analyzers, it does not consider user interactions; hence,
many accessibility issues can go undetected [10].

To overcome that problem, some works attempt to iden-
tify dynamic state changes by simulating user events [6, 10],
or keyboard events [18, 27]. The advantage of this method
is that it may find more accessibility issues than considering
the source code of individual widgets in isolation, but as
a disadvantage, simulating events may cause a downgrade
on performance and may create noise on events that may
never occur in real interactions. In the case of Watanabe
et al. [27], their approach relies on acceptance tests over
keyboard events. Our approach is similar in that we also con-
sider a sequence of keyboard events, although these are not
simulated but real, and our “acceptance criteria” is defined
in a completely generic way, which does not depend on the
domain, page structure or specific ARIA labels in widgets,

	 Universal Access in the Information Society

1 3

but on a symptomatic sequence of events. Bostic et al.
recently developed the Demodocus framework for auto-
mated accessibility evaluation specialized in the dynamic
web, finding more violations than human evaluation baseline
[6]. Although they do tackle JavaScript-based applications,
this tool is still based on guidelines.

The web refactoring approach [12] proposes the use of
the refactoring technique, originally defined as changes that
improve internal quality of software [11], to also identify
changes that improve external quality factors like usability or
accessibility [14]. Particularly, problematic patterns of user
interaction have been catalogued as Usability Smells, which
can be automatically detected while real users navigate a
web application [15] or perform user tests [19]. Moreover,
solutions to each Usability Smell have been proposed in the
form of Client-Side Web Refactorings (CSWR), scripted
changes applied on the DOM structure of web pages in web
browsers [15]. The CSWR approach has been proposed to
improve web accessibility and personalization [13], but there
have not been previous attempts, to our knowledge, for the
automated detection of their corresponding Accessibility
Smells.

3 � Accessibility smells and events

In this work, we will characterize accessibility problems
involving user interaction as Accessibility Smells [14]. The
concept of ”Smell” helps to indicate usual problems, and
makes it easy for developers to determine when they need
to apply a Refactoring. It was originally defined for “Code
Smells”, but later extended to other areas. In this proposal,
we aim at creating a catalog of smells and refactorings for
web accessibility. Since we intend to detect Accessibility
Smells automatically from interaction logs, we also defined
Accessibility Events (AE), which have better detail than
plain JavaScript events. The AEs may be considered a scaf-
fold in the process of automatically detecting smells.

Our hypothesis is that by analyzing user interaction it is
possible to recognize patterns of interaction (AE) that reveal
accessibility difficulties in their behavior. In turn, process-
ing the bulk of AEs generated by from several users will
allow to detect Accessibility Smells in a web application.
The AEs were defined after characterizing the Accessibility
Smells, by studying the micro-behaviors that usually lead
to the problems.

Some of the AEs involve measuring interaction features
like repetitions or durations, so in these cases the thresholds
were set according to a preliminary study. The study con-
sisted of capturing AEs from a group of 5 users with visual
difficulties, performing tasks on two open source Web appli-
cations (medical appointments and e-commerce). During
these sessions, the AEs thresholds were relaxed to maximize

sensitivity. From the complete set of AEs, we first removed
outliers and then manually processed the remaining ones to
determine which were considered problematic (i.e., helpful
for capturing smells) and set the thresholds accordingly.

The rest of this section explains and exemplifies both
accessibility events and smells, each with a catalogue.

3.1 � Accessibility events

Accessibility Events are short interaction patterns that help
reveal accessibility problems. They can be detected auto-
matically from user input by analyzing low level events
and composing them to generate more abstract events that
describe the way visually impaired users browse the web.

We define AE as behavioral patterns while navigating or
accessing web content, which may indicate the presence of
some accessibility issue, i.e., an accessibility barrier that can
be detected while a user interacts with the application. In
particular, we concentrate on barriers for visually impaired
users accessing web applications with screen readers (SR).
Each AE is represented as an aggregation of interaction
instances automatically detectable on an interface. An exam-
ple of an accessibility event is Frequent Tab. This event,
when detected, can be used to diagnose the Accessibility
Smell called “Keyboard-Distant Content", which indicates
that there is a part of the page that is far to reach using a SR,
mostly prepared for linear navigation.

The following catalog details all the currently character-
ized AE. Their detection relies on heuristics based on exist-
ing literature, and user observation.

E01 - deleted input content: this occurs on a text input
field when the data entered by the user is automatically
deleted without a clear indication, possibly as a consequence
of data validation. This AE is not frequent nowadays with
large forms, but persists in several login forms.

E02 - unhelpful label: when a targetable input does not
include a label, or the label is not correctly bound by the
HTML attributes for and id, the screen reader will not
use it as a description for the input. In these cases, the SR
user will navigate the label as a separate element, or even
skip it. This AE may be detected from observing both the
interaction and the HTML code.

E03 - missing SR text: when a targetable input does not
include a text, label or placeholder, the SR will speak a
default message. This message, without a proper context,
could be really unhelpful for the users. This AE is detected
when users focus on an input field for a certain period of
time, and this does not contain a linked label, “aria” role,
or a placeholder.

E04 - frequent tab: this event characterizes bursts of
consecutive Tab keypresses used to cycle through ele-
ments. It can be used to detect a large number of unnec-
essary or irrelevant “stops” in the path to reach the main

Universal Access in the Information Society	

1 3

content or menu. During the preliminary studies, we found
that in most cases, up to 3 tabs do not show a problematic
interaction, so we used 4 consecutive tabs as a threshold
to detect the event.

E05 - unfilled form: this event is raised when a form is
partially completed but not submitted. To capture this event,
any interaction with a form element triggers the start of the
(potential) event, and then the beforeunload event is
handled to determine how the user left the page. If a submit
event is detected prior to beforeunload, then the event
is discarded. Every Unfilled Form event saves the code of
the form and the time that the user was completing the form
before finally leaving it.

E06 - misleading speech synthesis: this event can be pre-
sent in buttons and links, when the text that the SR synthe-
sizes can be unintelligible to the user. Focusing excessively
over an element without performing interaction may signal
a confusing text synthesis, for example, terms in a different
language from the user’s context or the browser. To detect
these particular situations, the known language of the page
and its title are collected, the one of the Focus tag and pre-
determined of the browser.

E07 - winding tab sequence: The access sequence for
focusable elements (like form links and controls) while
using a SR may differ from the visual presentation on screen.
Even alterations of the sequences defined in the “tabindex”
attributes may not consider the impact on keyboard acces-
sibility. This AE detects inconsistencies between the order of
the widget in the visual presentation and the order of focused
defined by “tabindex” (either explicit or implicit).

E08 - fast keyboard scrolling: The event occurs when the
content on the web presentation is quickly moved by repeat-
edly pressing the space key. The recurrence of displacements
exceeding portions of a page can be symptoms of accessibil-
ity difficulties present on a page.

3.2 � Accessibility smells

We call Accessibility Smell of User Interaction to any acces-
sibility difficulties that can be discovered from the analysis
of user interaction logs. This concept was originally devel-
oped in a previous work [14] but we have refined it in our
present research to approach the subset of smells that may
be automatically discovered through algorithms that gather
AEs, compose them and process them. We omitted smells
that do not require interaction analysis to be discovered,
hence out of the scope of this research.

For instance the smell Keyboard-Distant Content, indi-
cates that, in order to reach a given element, the required
path of Tab or Shift + Tab keypresses may be longer
than necessary. Screen reader users generally rely on the
Tab key to navigate, so the order in which elements are
traversed is fundamental for them. Considering this, the

Keyboard-Distant Content smell can be detected when
users cycle through a large number of items to access the
required element, indicating that this element should be
closer in the navigation sequence, avoiding unnecessary
effort.

Our contribution focuses on accessibility in use by
automatically detecting accessibility difficulties in and
during interactions including metadata semantics. Note
that these interactions cannot be evaluated with static
guideline compliance analysis. While the AEs provide
information about the actions in the interface, traceable
Accessibility Smells, from these events, are related to the
accessibility guidelines and their criteria defined by W3C.
Some of these smells are related with known WCAG 2.0
techniques [1]. These relationships can be seen in Table 1.

D01 - unreadable validation message This smell is
detected when failed data validation tests lack changes on
the interface detectable by SR or whose electronic texts
cannot be synthesized to notify the user. This is based on
WCAG 2.0 techniques such as ARIA18: Using aria-alert
dialog to identify errors, or G83: Providing text descrip-
tions to identify required fields that were not completed.
[1]. As an example of this smell we return to the case of
Fig. 1, where the value is deleted after leaving the field
without notification. This is because it does not provide
client-side validation that adds error text via the DOM nor
does it describe what will happen before a change is made
to a form control that causes a context switch (as described
in G13: Describing what will happen before a change to
a form control that causes a change of context to occur is
made.). In this way we can link a Deleted Input Content
Event with this AS.

D02 - unlabeled input: A text input may lack a label prop-
erly linked by the HTML attribute. The text of the labels can
still be synthesized but not necessarily informing the user of
the expected input.

Table 1   Accessibility Smells and WCAG 2.0 Techniques

Acc. smell WCAG 2.0 guideline / Technique

D01 ARIA18, ARIA19, ARIA21,
G83, G85, SCR19, SCR32,
G13, G84

D02 G13, G83
D03 G83
D06 SCR18
D07 G80, G149, H32
D08 H84, SCR2
D09 G149, G199
D10 G98, H89
D11 G98, G149, H4, H89
D12 G162, H89, SCR18, G98

	 Universal Access in the Information Society

1 3

D03 - undescripted entry fields: This smell denotes the
absence of associated electronic text through the label, posi-
tion marker and ARIA label in an entry field. Under these
conditions, SRs do not report the expected entry to the user.

D04 - keyboard-distant content: This smell refers to
functionalities or contents which are placed far in the linear
navigation path that SR users need to go through. Based on
Distant Content Event [15].

D05 - distant accessible navigation path: Navigation
routes between pages that must be crossed by remaining
short intervals of time in the intermediate nodes. Based on
Navigation Path Event [15].

D06 - inaccessible captcha: Inaccessible security codes
included in the web forms that try to ensure the user is not a
bot. These inaccessible captcha can prevent users with visual
disabilities.

D07 - missing submit button: Detects web forms that do
not have focusable submit buttons, which makes it impossi-
ble to send them by keyboard. Visually elaborate alternative
structures are used on occasions that cannot be focused with
a keyboard and only respond to mouse events.

D08 - mouse-dependent datepicker: Describes popups
that offer a graphical interface to select dates from a calen-
dar. Most of these widgets respond to events associated with
the mouse, which is why users using the keyboard cannot
interact with the component.

D09 - inaccessible search results message: It may occur
on search forms do not provide electronic texts in the results
list. When this happens, the SR cannot synthesize the
description and lack of feedback may puzzle the impaired
users.

D10 - unexpected language: They are literally synthe-
sized texts in a language that is not expected by the user.
This occurs when the languages of the elements on the web-
site are not declared correctly. Difficulty may arise when text
is literally synthesized in a language other than that expected
by the user.

D11 - confusing layout: Web presentation that despite
complying with the functional requirements have an intricate
design for visually impaired users. Navigation with SRs can
be difficult when the inner structure is not coherent with the
visual layout.

D12 - visual-dependent context: These are navigation
difficulties where the text synthesis performed by the SR is
not sufficient to express the semantics of a component. This
might be due to dependence on clues or arrangement that
can only be perceived visually and are not described in the
code or metadata.

3.3 � Examples

This section shows some examples of AE, and how they can
lead to the finding of specific Accessibility Smells.

A case of Winding Tab Sequence occurs during the back-
ing out of the keyboard focus with Tab and Shift+Tab
with the intention of re-synthesizing previously entered text
to verify the data entered. For instance, in the form shown
in Fig. 2, the user is prompted to repeat a procedure number
(“No. de trámite" in the screenshot), much like some forms
ask to repeat a registration email. The procedure number is
a code that is printed in the ID card in Argentina (“DNI"),
which is very unlikely for people to memorize, and it is not
available in braille system. In this example, Winding Tab
Sequence reflected SR users going back to the first input,
probably to revisit the first entered number. Notice also that
the hint explaining where to find such number is in between
the two inputs.

The recurrence of these return situations with focus can
indicate the presence of some accessibility difficulty. This
can happen since, unlike sighted users that can get a quick
general look, SR dependent users must travel in linear way,
synthesizing the electronic on each step - and also back
step. In cases like this, where SR users are forced to re-
visit inputs, we consider the presence of a Confusing Layout
Smell, because the representation from voice synthesis can-
not guide the user well enough - even if sighted users do not
have trouble with it.

The case of Misleading Speech Synthesis occurs when
text synthesis in response to the focus of links and keypad
is unintelligible to the user. In Fig. 3, if Tab is used after
completing the input field, the SR will jump directly to the
link captioned as “acá" (“here"), skipping the text label in
gray (“Si no conoces el código postal podés consultarlo" /
“If you don’t know the postal code you may consult it"), so

Fig. 2   Form showing an example of winding tab sequence for confus-
ing layout smell

Universal Access in the Information Society	

1 3

only the electronic text “acá enlace" (“here link") is synthe-
sized. The recurrence of these situations may indicate the
smell D12- Visual-Dependent Context. In this case, there is
information that is crucial for filling out the input, but SR
users cannot easily access it, only the sighted users.

4 � Smells detection tool

We have built a tool to automatically capture AEs, and
to detect smells from them. This tool works as a service,
featuring a client component that can be installed on any
web application, and a server component that generates the
accessibility reports in terms of smells. As the system is
used, user interaction in the host application is scanned with
the client component in order to detect AEs. Then, the server
processes the AEs with heuristics based on reference values
and tolerance thresholds in order to detect and report new
smells.

The process depicted in Fig. 4 consists of two steps:
Accessibility Events Capture and Accessibility Smells
Detection. As we mentioned earlier, capture happens on the
client, and smells analysis happens on the server. The cli-
ent side component evaluates user interactions by picking
up JavaScript events, filtering and grouping them into the
more abstract AEs. The server component then classifies
and analyzes those events to discover Accessibility Smells.

In the example presented in the Introduction, the tool
detects a “Deleted Input Content” event, which could in
turn lead to reporting the smell “Unreadable Validation
Message”. To do that, the client-side component observes
the value entered in the “flight origin” input and compares
it to the value after the blur event. The automatic deletion
of the entered value is captured as a Deleted Input Content
event. If many of these events happen on the same input
field, the server component can determine that the valida-
tion message cannot be picked up by the Screen Reader.

Internally, the server side has a set of components
called finders, each one dedicated to find a specific smell,
which consumes and analyzes one or more types of AEs.
They are configured with certain parameters found through
experimentation, which define the number, proportion, or
combination of AEs that trigger the presence of a specific
smell in each finder.

In this work, we mostly analyzed the report of AEs
generated by the tool, to measure the effectiveness of the
approach and threshold values.

5 � Evaluation

In order to evaluate the AE detection system, we used
our tool to analyze interactions generated by a group of
volunteers while completing typical tasks in replicas of
three web applications with known accessibility smells.
The objective of the study was to contrast the detections
of accessibility events related to the smells (true positives)
with those irrelevant or not leading to any cataloged smell.
In this early stage we focus on the detection of AEs for
two reasons (1) the events are the means to detect smells
and we must establish their correct detection and (2) the
detection of smells requires quantities of event substantial
and will require a different evaluation.

Fig. 3   Example of misleading speech synthesis for visual-dependent
context

Fig. 4   Schematics of the detection process for accessibility events detection and accessibility smells reporting

	 Universal Access in the Information Society

1 3

5.1 � Participants

We recruited a total 8 volunteers, 3 female and 5 male with
mean age 31.5 (s2 5.375), 5 from Argentina and 3 from Cen-
tral America, frequent users of NVDA and social networks.
One of them declared 90% reduced vision, 5 indicated to
be totally blind, 1 having a visual reduction of less than
30% and 1 only declared to have difficulty in their vision.
One performed the test at a local work station, while the
remaining interacted through a remote accessories to the SR
without having physical access to the screen.

5.2 � Preparation

The web applications used for the evaluation were 2 teaching
platforms, Siu Guarani (SIUG) 2 and Siu Tehuelche (SIUT),3
and a COVID-194 circulation permit form (COVID-19). To
preserve the privacy of the volunteers, we set up replicas of
all 3 applications. The tasks consisted in creating an account
in each of the teaching platforms and finally requesting a
certificate from the COVID-19 circulation permit website.
We gave each participant instructions on the test software,
a description of the required tasks, their estimated duration
and some sample data to fill out (except for personal data).

5.3 � Results

The tool detected a total 100 Accessibility Events of 6 dif-
ferent types. We evaluated each one of these events to deter-
mine if they were either “linked" with any of the catalogued
Accessibility Smells, “unlinked" in the cases where the
events occurred for unrelated reasons, or “undetermined",
in the cases where the events did not provide sufficient
evidence to determine or rule out the incidence on a con-
crete smell. Table 2 summarizes the detected Accessibility
Events. Out of the total 100, we marked 64% as linked, 19%
as unlinked, and 17% as undetermined. We next describe the
details of each identified event.

Out of the 8 Frequent Tab events, 3 were reported on the
COVID-19 application and 5 on SIUG. In the SIUG events,
we observed input fields accesses with bursts of between 5
and 6 consecutive tabs. Since the fields are not distant on
the form, we can say that the users performed these actions
in an attempt to check the content, structure and/or other
data offered by the SR of the Web component. In the case

of COVID-19, at the top of the page there is an invisible but
focusable link with the legend “Go to main content". Ana-
lyzing the data, we observed two events in which more than
12 consecutive tabs are pressed to change the focus from
this link to other fields of the page. This suggests that users
quickly went through the form looking for something about
the presentation without paying attention to the content in
between. In the remaining event in COVID-19, the user went
from the name of the doctor’s field to a check to indicate
lack of symptoms. This can be interpreted as a path between
fields for which the user may have not had information at
hand, such as the zip code and address of the doctor, and
decided to continue browsing with Tab.

Even if the amounts of consecutive tabulations in SIUG
could have pointed at Keyboard-Distant Content, in this case
a Confusing Layout is more likely to be the cause, since
there was not a great distance between the elements. Simi-
larly, for COVID-19 and considering the dimensions of the
form, a Visual-Dependent Context could be more accurate,
indicating that users wandered around for clues.

The 2 Missing SR text detected were found in the “Coun-
try" entry of residence of the COVID-19 site. One for the
entry of the residence locality of the applicant and another
for the town the applicant had to attend. We considered these
linked to the smell Undescripted Entry Fields because in the
absence of a text hint, the SR synthesized the message “this
field is required, edit required invalid blank entry" which
was not informative for the field.

Of the 20 Unfilled form events, 8 were detected in SIUT, 8
in COVID-19 and the remaining 4 in SIUG. The latter were
classified as “undetermined" since we could not determine
the reason why users abandoned the form. In SIUT, in Fig. 5,
there is a compound input, with 2 fields (type of DNI, num-
ber of DNI), and the focus is automatically set to the second
one. In this context, SR users have no obvious way of telling
the first part was skipped (or that there is a first part at all),
which lead to a validation error that was too difficult to fig-
ure out. To make things worse, the error text did not clearly
indicate the missing input, leading to the form abandonment.

Table 2   Captured accessibility events, along with an indication of
relationship to a catalogued smell

Type Count Linked Not linked Undetermined

Frequent tab 8 8 – –
Missing SR text 2 2 – –
Unfiled form 20 16 – 4
Unhelpful SR text 5 5 – –
Winding tab sequence 57 28 17 12
Misleading speech

synthesis
8 5 2 1

Total 100 64 19 17

2  Siu Guarani web site https://​autog​estio​ng3.​unsa.​edu.​ar/, last
accessed May 2022.
3  Siu Tehuelch site http://​cdcsiu.​unsa.​edu.​ar/​siu/​tehue​lche/, last
accessed May 2022.
4  Circulation permit form https://​www.​argen​tina.​gob.​ar/​circu​lar, last
accessed May 2022 and unavailable after pandemic.

https://autogestiong3.unsa.edu.ar/
http://cdcsiu.unsa.edu.ar/siu/tehuelche/
https://www.argentina.gob.ar/circular

Universal Access in the Information Society	

1 3

In this condition of disordered focus that confuses the user
and prevents the submission of the form, it is more accurate
to consider this as a potential Confusing Layout smell.

In the case of COVID-19, the extension of the form and
its numerous mandatory input fields hinder completeness
due to data required that is unlikely to be remembered by
the users. We can also find an instance of inaccessible
RIA application behavior, as seen in Fig. 6: when users
indicate a particular vehicle and/or motorcycle, a license

plate input will be dynamically required. These interac-
tions are difficult to detect with current automatic tools
and can significantly affect accessibility during the use of
the page. Although we do not typify a particular Smell for
this situation, these AEs denote accessibility difficulties
and were marked as “linked" in consequence.

Out of the 5 Unhelpful SR Text detected in COVID-19,
in the apartment data entry for voice synthesis is ineffec-
tive for users, indicating a potential Unlabeled Input smell.
In these cases SR cannot retrieve a label for the input
field. This happens in the field for the address to which
the applicant must go: when focused, users are prompted
with a validation error (“mandatory field"), which doesn’t
provide sufficient information to amend the missing data.
These AE occurrences are linked to the Unlabeled Input
smell.

The distribution of the 28 events Winding Tab Sequence
detected at the sites (SIUG, SIUT and COVID-19) is
described in Table 3.

Regarding this particular AE, the focus interactions
detected on SIUG and SIUT reflect erratic sequences. Ana-
lyzing the data more closely, we found a behavior that is
quite common among SR users. They rapidly skip between
tags, which allows them to orient themselves within the
structure of the page. This would allow us a priori to infer
that the semantics returned by the SR is unclear or that the
electronic texts could be insufficient and that such a con-
dition could be associated with difficulties of Confusing
Layout or Visual-Dependent Context. However, in SIUG
we found a particular case, in which a link outside of the
form structure could lead to navigation sequences far dif-
ferent from the one designed in the visual presentation. For
SIUT we found one of the winding paths that focused on
the input of the ID type, which we analyzed in Fig. 5 for the
event Unfilled Form. This shows that this situation requires
to overcome the difficulty an additional navigation or outside
the one planned in the design. We can add that SIUG and
SIUT contain forms that distribute the inputs in a vertical
presentation order in the first case and combined, between
horizontal and vertical in the second, and since they belong
to the same organization and try to appear uniform in their
designs they should preserve the styles in their forms for the
sake of accessibility.

Fig. 5   Form affected by unfilled form in SIUT

Fig. 6   An input field for a mandatory vehicle license place input in
COVID-19

Table 3   Winding tab sequence event

Smell Relationship

Site YES NO N/S Total

SIUG 13 1 2 16
COVID-19 11 15 9 35
SIUT 4 1 1 6
Total 28 17 12 57

	 Universal Access in the Information Society

1 3

There is another example of Winding Tab Sequence in
COVID-19, in the form in Fig. 7. The options presented as
Check Box and Radio Button contain sworn statements with
legal implications, which require an additional cognitive
effort to be interpreted together. Notice that in this condi-
tion, a sighted user alternates the focus between the texts,
analyzing to decide quickly without being conditioned by
the events on the application.

In the analyzed case, when the Check Box was focused,
the linked text was synthesized, but after focusing and syn-
thesizing the Radio Button text, which required a new sworn
statement, the user returned the focus from the SR to the pre-
vious Check Box, probably because now he has more infor-
mation and can reconsider the previously selected action.
If these actions were to be required recurrently, it would be
necessary to adopt measures in view of the accessibility bar-
rier. In short, in all these cases the positions of the elements
in the screen differ from the typically traversed SR paths.
Visually impaired users can be affected with the Confusing
Layout smell.

In the case of Misleading Speech Synthesis, 2 events
were detected on a button with the “Back" caption, which
coincides with Fig. 5 on SIUT and 3 events in links whit
captioned as “here” (“acá” in original Spanish) in COVID-
19, which coincides with Fig. 3. These text literals are not
enough to describe the functionality to which it accesses
through the widget. A significant increase in reports of these
conditions could indicate the presence of the Visual-Depend-
ent Context smell.

5.4 � Discussion

The results and interpretation described in the previous section
show that there is a generation of accessibility problems for
visually impaired users that cannot be detected with traditional
techniques. Even if there is still work ahead to actually detect
Accessibility Smells from the AEs in the study, results are

promising. In our own work in accessibility refactoring [13],
we created a catalog of Accessibility Smells, but these were in
some cases too general and difficult to detect from JS events.
In this work, we specialized that catalog to feature only those
smells that can be detected from behavior logs.

These results could be contrasted with other tools that
consider the dynamic behavior of RIAs, such as Watanabe
et al. [27]. That work is based on detecting DOM changes,
so there are AEs that could also be detected with their tech-
nique (E01, for instance). However, even if there is some
overlapping, the kind of problems they will find are different,
since their work is mainly focused on drop-down menus and
they do not analyze user behavior directly. Another previ-
ous work of ours uses a similar technique [25] and could be
combined with the present proposal nonetheless.

5.5 � Threats to validity

The relatively low amount of AEs captured can be a source
of bias. This was mainly due to the difficulty of recruiting
volunteers with visual disabilities, even more difficult in the
context of the COVID-19 Pandemic (which is why almost
all recorded sessions were remote). Therefore, we describe
associations between Events and Smells that could provide
indications on causal relationships linked to accessibility
difficulties. Additional experimentation is required to gather
sufficient evidence for a more decisive formulation with
respect to the detection of Accessibility Smells.

The two different access configurations for the SR, remote
and local, could lead to an internal validity problem. We
favored the remote configurations because they gave us
access to volunteers we could not meet personally anyway
(foreigners).

In the particular case of the volunteers residing in Central
America, it may have been confusing for them to interpret
terms in the contents due to regionalisms or expressions used
in the Argentinian pages. For example, the Labor Identifica-
tion Code corresponds to a number assigned by the National
Social Security Authority to Argentine residents. The web-
sites replicated to collect empirical data emulate real web
pages that were downloaded and housed on dedicated serv-
ers, so this experimental context could differ from the real
one. We tried to mitigate this by imitating the real actions of
the web site, but at the same time preventing volunteers from
being worried about entering personal data, even though we
incurred a slight bias of external validity.

6 � Conclusions

In this paper we presented a way of detecting accessibil-
ity problems from interactions that is oriented to visually
impaired users of Screen Readers. It is based on the concepts

Fig. 7   Instance of a winding tab sequence for confusing layout smell

Universal Access in the Information Society	

1 3

of Accessibility Event and Smell to facilitate the detection
and characterization of the accessibility problem on the
front end of a web site. We also presented two catalogs, one
for Accessibility Events and another one for Accessibility
Smells that show the scope and relationship of these con-
cepts. We validated this technique with an evaluation where
we show that automatic detection is possible and could lead
to the eventual detection of concrete problems in terms of
Accessibility Smells.

During the evaluation we found that most of the events
are related to Accessibility Smells (64%), while the rest are
either not clearly linked (19%) or not feasible to determine
(17%), for which further analysis is required.

We plan to expand our evaluation to a larger scale, so that
we can test the feasibility of automatic detection of acces-
sibility problems of user interaction. We are also expanding
the Events and Smells catalogs from new observations.

Acknowledgements  This research was partially funded by the
Argentinian National Agency for Scientific and Technical Promotion
(ANPCyT), grant number PICT-2019-02485.

Author Contributions  All authors contributed to the creation of the
approach, design of the evaluation, as well as the writing and revision
of the manuscript. Fernando Durgam executed the evaluation.

Data availability  The datasets generated and analyzed during the cur-
rent study are not publicly available to preserve volunteers’ privacy but
are available from the corresponding author upon reasonable request.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Techniques and failures for web content accessibility guidelines
2.0. URL https://​www.​w3.​org/​TR/​WCAG20-​TECHS/​Overv​iew.​
html

	 2.	 Almeida, Leonelo Dell Anhol., Baranauskas, Maria Cecília
Calani. Accessibility in rich internet applications: People and
research. In Proceedings of the 11th Brazilian Symposium on
Human Factors in Computing Systems, IHC ’12, page 3-12,
Porto Alegre, BRA, 2012. Brazilian Computer Society. ISBN
9788576692621. https://​doi.​org/​10.​5555/​23935​36.​23935​38

	 3.	 Antonelli, Humberto Lidio, Sensiate, Leonardo, Watanabe, Wil-
lian Massami, de Mattos Fortes, Renata Pontin. Challenges of
automatically evaluating rich internet applications accessibility.
In Proceedings of the 37th ACM International Conference on the
Design of Communication. ACM, October 2019. https://​doi.​org/​
10.​1145/​33280​20.​33539​50

	 4.	 Baazeem, Ibtehal S., Al-Khalifa, Hend S.: Advancements in web
accessibility evaluation methods: How far are we? In Proceedings
of the 17th International Conference on Information Integration
and Web-Based Applications & Services, iiWAS ’15, New York,
NY, USA, 2015. Association for Computing Machinery. ISBN
9781450334914. https://​doi.​org/​10.​1145/​28371​85.​28438​50

	 5.	 Barricelli, Barbara Rita, Casiraghi, Elena, Dattolo, Antonina,
Rizzi, Alessandro: 15 years of stanca act: are italian public
universities websites accessible? Univ Access Inf Soc 20(1),
185–200 (2020)

	 6.	 Bostic, Trevor, Stanley, Jeff, Chudnov, Daniel, Higgins, John,
Tracy, Brittany, Brunelle, Justin F.: Demodocus: Automated
web accessibility evaluations. In ICT Accessibility Testing
Symposium: Time for Testing in Testing Times (Remote Work,
Commerce, Education, Support...), page 81, 2020

	 7.	 Carvalho, Lucas Pedroso, Ferreira, Lucas Pereira, Freire,
André Pimenta.: Accessibility evaluation of rich internet appli-
cations interface components for mobile screen readers. In Pro-
ceedings of the 31st Annual ACM Symposium on Applied Com-
puting, SAC ’16, page 181-186, New York, NY, USA, 2016.
Association for Computing Machinery. ISBN 9781450337397.
https://​doi.​org/​10.​1145/​28516​13.​28516​80

	 8.	 de Mattos Fortes, R.P., Antonelli, H.L., Watanabe, W.M.:
Dynamic web content. In: Human-Computer Interaction Series,
pp. 373–395. Springer, London (2019)

	 9.	 Duarte, Carlos, Salvado, Ana, Akpinar, M. Elgin, Yeşilada,
Yeliz, Carriço, Luís.: Automatic role detection of visual ele-
ments of web pages for automatic accessibility evaluation. In
Proceedings of the 15th International Web for All Conference,
W4A ’18, New York, NY, USA, (2018). Association for Com-
puting Machinery. ISBN 9781450356510. https://​doi.​org/​10.​
1145/​31927​14.​31968​27

	10.	 Fernandes, Nádia, Batista, Ana Sofia, Costa, Daniel, Duarte, Car-
los, Carriço, Luís.: Three web accessibility evaluation perspec-
tives for RIA. In Proceedings of the 10th International Cross-
Disciplinary Conference on Web Accessibility - W4A ’13. ACM
Press, (2013). https://​doi.​org/​10.​1145/​24611​21.​24611​22

	11.	 Fowler, Martin: Refactoring: improving the design of existing
code. Addison-Wesley Professional, Addison-Wesley, USA (2018)

	12.	 Garrido, Alejandra, Rossi, Gustavo, Distante, Damiano: Refactor-
ing for usability in web applications. IEEE Softw 28(3), 60–67
(2011). https://​doi.​org/​10.​1109/​ms.​2010.​114

	13.	 Garrido, Alejandra, Firmenich, Sergio, Rossi, Gustavo, Grigera,
Julian, Medina-Medina, Nuria, Harari, Ivana: Personalized web
accessibility using client-side refactoring. IEEE Internet Comput
17(4), 58–66 (2013). https://​doi.​org/​10.​1109/​mic.​2012.​143

	14.	 Garrido, Alejandra, Rossi, Gustavo, Medina, Nuria Medina, Grig-
era, Julián, Firmenich, Sergio: Improving accessibility of web
interfaces: refactoring to the rescue. Univ Access Inf Soc 13(4),
387–399 (2013). https://​doi.​org/​10.​1007/​s10209-​013-​0323-2

	15.	 Grigera, Julián, Garrido, Alejandra, Rivero, José Matías., Rossi,
Gustavo: Automatic detection of usability smells in web applica-
tions. Int J Human Comput Stud 97, 129–148 (2017). https://​doi.​
org/​10.​1016/j.​ijhcs.​2016.​09.​009

	16.	 Grigera, Julian, Garrido, Alejandra, Rossi, Gustavo. Kobold: Web
usability as a service. In 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE,
October 2017b. https://​doi.​org/​10.​1109/​ase.​2017.​81157​17

	17.	 Máñez-Carvajal, Carlos, Cervera-Mérida, Jose Francisco,
Fernández-Piqueras, Rocío: Web accessibility evaluation of top-
ranking university web sites in spain, chile and mexico. Univ
Access Inf Soc 20(1), 179–184 (2019). https://​doi.​org/​10.​1007/​
s10209-​019-​00702-w

	18.	 Mesbah, A., van Deursen, A., Roest, D.: Invariant-based automatic
testing of modern web applications. IEEE Trans Softw Eng 38(1),
35–53 (2012). https://​doi.​org/​10.​1109/​tse.​2011.​28

	19.	 Paternò, Fabio, Schiavone, Antonio Giovanni, Conti, Antonio.
Customizable automatic detection of bad usability smells in
mobile accessed web applications. In Proceedings of the 19th
International Conference on Human-Computer Interaction with
Mobile Devices and Services. ACM, September 2017. https://​doi.​
org/​10.​1145/​30982​79.​30985​58

https://www.w3.org/TR/WCAG20-TECHS/Overview.html
https://www.w3.org/TR/WCAG20-TECHS/Overview.html
https://doi.org/10.5555/2393536.2393538
https://doi.org/10.1145/3328020.3353950
https://doi.org/10.1145/3328020.3353950
https://doi.org/10.1145/2837185.2843850
https://doi.org/10.1145/2851613.2851680
https://doi.org/10.1145/3192714.3196827
https://doi.org/10.1145/3192714.3196827
https://doi.org/10.1145/2461121.2461122
https://doi.org/10.1109/ms.2010.114
https://doi.org/10.1109/mic.2012.143
https://doi.org/10.1007/s10209-013-0323-2
https://doi.org/10.1016/j.ijhcs.2016.09.009
https://doi.org/10.1016/j.ijhcs.2016.09.009
https://doi.org/10.1109/ase.2017.8115717
https://doi.org/10.1007/s10209-019-00702-w
https://doi.org/10.1007/s10209-019-00702-w
https://doi.org/10.1109/tse.2011.28
https://doi.org/10.1145/3098279.3098558
https://doi.org/10.1145/3098279.3098558

	 Universal Access in the Information Society

1 3

	20.	 Paul, Surjit, Das, Saini: Accessibility and usability analysis of
indian e-government websites. Univ Access Inf Soc 19(4), 949–
957 (2019). https://​doi.​org/​10.​1007/​s10209-​019-​00704-8

	21.	 Scanlan, Mark: Reassessing the disability divide: unequal access
as the world is pushed online. Univ Access Inf Soc 21(3), 725–735
(2021). https://​doi.​org/​10.​1007/​s10209-​021-​00803-5

	22.	 Schiavone, Antonio Giovanni, Paternò, Fabio: An extensible envi-
ronment for guideline-based accessibility evaluation of dynamic
web applications. Univ Access Inf Soc 14(1), 111–132 (2015).
https://​doi.​org/​10.​1007/​s10209-​014-​0399-3

	23.	 Henry, Shawn Lawton. WCAG 2 Overview, 2022. URL https://​
www.​w3.​org/​WAI/​stand​ards-​guide​lines/​wcag/

	24.	 Siqueira, M.S.S., Nascimento, P.O., Freire, A.P.: Reporting behav-
iour of people with disabilities in relation to the lack of accessibil-
ity on government websites: analysis in the light of the theory of
planned behaviour. Disabil CBR Incl Dev 33(1), 52 (2022)

	25.	 , Toledo Maximiliano, Grigera, Julián, Garrido, Alejandra. Detec-
ción automática de problemas de accesibilidad a partir de eventos
de interacción de usuario. In Anais do XXV Congresso Ibero-
Americano em Engenharia de Software, pages 128–142, Porto
Alegre, RS, Brasil, (2022). SBC. https://​doi.​org/​10.​5753/​cibse.​
2022.​20968

	26.	 Silas Formunyuy Verkijika and Lizette De Wet: Accessibility of
south african university websites. Univ Access Inf Soc 19(1),
201–210 (2018). https://​doi.​org/​10.​1007/​s10209-​018-​0632-6

	27.	 Watanabe, W.M., Fortes, R.P.M., Dias, A.L.: Acceptance tests for
validating ARIA requirements in widgets. Univ Access Inf Soc
16(1), 3–27 (2015)

	28.	 WebAIM Institute. The WebAIM Million, 2022. URL https://​
webaim.​org/​proje​cts/​milli​on/

	29.	 Yong Jeong Yi: Web accessibility of healthcare web sites of
korean government and public agencies: a user test for persons
with visual impairment. Univ Access Inf Soc 19(1), 41–56 (2018)

	30.	 Youngblood, Norman E., Capanoglu, Muhammet Fehmi, Sesek,
Richard: The accessibility of state occupational safety and health
consultation websites. Univ Access Inf Soc 20(1), 85–92 (2020)

	31.	 Zhang, Mengni, Wang, Can, Yu, Zhi, Shen, Chao, Bu, Jiajun.
Active learning for web accessibility evaluation. In Proceedings
of the 14th International Web for All Conference. ACM, (2017).
https://​doi.​org/​10.​1145/​30585​55.​30585​59

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1007/s10209-019-00704-8
https://doi.org/10.1007/s10209-021-00803-5
https://doi.org/10.1007/s10209-014-0399-3
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://doi.org/10.5753/cibse.2022.20968
https://doi.org/10.5753/cibse.2022.20968
https://doi.org/10.1007/s10209-018-0632-6
https://webaim.org/projects/million/
https://webaim.org/projects/million/
https://doi.org/10.1145/3058555.3058559

	Dynamic detection of accessibility smells
	Abstract
	1 Introduction
	2 Related work
	3 Accessibility smells and events
	3.1 Accessibility events
	3.2 Accessibility smells
	3.3 Examples

	4 Smells detection tool
	5 Evaluation
	5.1 Participants
	5.2 Preparation
	5.3 Results
	5.4 Discussion
	5.5 Threats to validity

	6 Conclusions
	Acknowledgements
	References

