
A data service layer for Web extensions

Alex Tacuri Name1 a, Sergio Firmenich Name1 b,Alejandro Fernandez Name1 c and Gustavo Rossi
Name d

1LIFIA, Facultad de Informática, UNLP, Argentina
{alex.tacuriu,s author}@info.unlp.edu.ar, t author@dc.mu.edu

Keywords: Web scraping Web Browser extensions

Abstract: Nowadays, Web browser extensions are the more convenient way to modify existing Web applications and
the browser itself to satisfy non-contemplated requirements. Extensions play an important role because of
the relevance that the Web and the Web browser have in our daily life. The functionality offered by Web
extensions varies. Many Web extensions are tools that improve the interaction with existing Web sites based
on techniques such as mashups and Web augmentation. Accessing and manipulating Web sites’ content is a
challenge for the development and maintenance of extensions. In this paper, we present a data service layer
that allows extension developers to create APIs based on Web annotations to access existing Web content. The
data service layer simplifies the retrieval of structured information from Web pages, without the need of DOM
manipulation in the extension code. We provide visual programming tools to create these APIs so there is no
need for advanced programming skills, making extension development and maintenance easier.

1 INTRODUCTION

The Web browser is no longer a simple client for ren-
dering Web pages. Nowadays, it is also a platform
to run rich applications, that may enhance Web ap-
plications loaded in the browser, but also improve
the browser with new functionalities and applications.
Web extensions are a particular kind of software, run-
ning on the browser, that augments the browser’s ca-
pabilities at different layers. Extensions may add new
capabilities such as scraping, may improve accessibil-
ity, integrate crypto wallets, adapt loaded Web pages,
change the default behavior of the new tab page or
even serve a specific application that is hosted inside
the Web browser.

Many Web extensions consume content available
online. Usually, Web browser extensions perform
some form of Web scraping to obtain the required in-
formation. In other cases, they use APIs to obtain
specific information elements. For instance, there are
several web extensions to create alerts about the varia-
tions of cryptocurrencies. All of them scrap informa-
tion from online crypto portals, or use APIs to obtain
up-to-date information. In many other cases, the in-

a https://orcid.org/0000-0003-3159-5556
b https://orcid.org/0000-0000-0000-0000
c https://orcid.org/0000-0000-0000-0000
d https://orcid.org/0000-0000-0000-0000

formation is scraped from Web pages and used as part
of a Web augmentation artifact (Dı́az and Arellano,
2015) or a mashup application.

Although the availability of APIs has grown
steadily in recent years, Web scraping is still a fre-
quently used technique for retrieving Web content,
just because a great majority of existing Web sites
do not provide an API. In these cases, Web exten-
sions may obtain the HTML document for a specific
URL, and manipulate its DOM and obtain specific in-
formation items. Web scraping is challenging in sev-
eral aspects. First, Web extensions are frequently im-
plemented with hard-coded DOM references, making
them fragile as DOM references tend to brake when
the Web site is modified. Second, scraping becomes
more difficult when a scraping pipeline involves sev-
eral web sites (i.e. the result of scraping connects ele-
ments from various web sites). Third, it is challenging
(if not impossible) to reuse the scraping code in dif-
ferent Web extensions.

In this paper, we propose a data service layer
for Web extensions. The layer encapsulates site-
specific, search and scraping logic, and exposes
object-oriented search APIs. By using this layer, de-
velopers can build Web extensions based on this API,
which automates the use of Web site search engines
and abstract their object models. In this way, devel-
opers are unaware of the complexity of data search,

retrieval and scraping. The data service layer includes
a visual programming environment for the specifica-
tion of data search and object model creation, which
are exposed then as a programatic API. Users can
define a search API that uses an existing Web site’s
search functionality, and defines how search results
are abstracted into objects. In addition, the user of
the approach can compose several search API to con-
struct a more complex model object. A model triggers
requests to other APIs and defines how the resulting
data objects are connected (thus returning a graph of
connected objects). This layer acts as a bridge be-
tween a Website’s DOM, and the implementation of
the extensions. When a Web site is changed, only
search APIs and their object models require main-
tenance and Web extensions keep working without
changes. We believe that this layer could make it
much easier to create Web extensions that require in-
formation retrieving. The impact of the proposed data
service layer could be significant if we consider the
number of Web extensions and user scripts already
available in public repositories. Currently, and just for
considering extensions for Google Chrome Browser,
there are more than 137,345 extensions any another
kind of artifact (more related to Web augmentation)
such as user-scripts also has huge repositories like
greasyfork.org with thousands of artifacts, that could
use this service layer.

This paper is structured as follows. In Section 2
we present a running example. Section 3 presents
the approach, its architecture, the tool involved to cre-
ate search APIs and the tool for defining information
models. In Section 3.4 we present briefly a usability
study. Section 5 introduces related works and finally,
in Section 6 we conclude and plan future works.

2 RUNNING EXAMPLE

Figure 1 depicts a mockup of the UI of a Web exten-
sion that provides a mashup application for the do-
main of scientific research. This mashup application
allows one to search scientific articles in Springer,
and when an article is selected further information
is retrieved and shown. Particularly, it displays the
number of citations (which is extracted from Google
Scholar). It is also possible to select an author of
the article in order to obtain and show related arti-
cles of that author (extracted from DBLP). As the
reader may note, it would require using the search
engine from Springer, parse its DOM to obtain arti-
cles’ information, and with this information perform-
ing similar tasks with Google Scholar and DBLP. The
Web extension developer must create the scraper for

all three Web sites but also program the logic to cre-
ate the pipeline in which the title of an article ob-
tained in Springer is used to search for it in Google
Scholar and, similarly, the logic to obtain author’s ar-
ticles from DBLP.

Figure 1: Mockup of the UI of a Web extension that a pro-
vides a mashup application

3 THE APPROACH AND TOOLS

In this section, we present our approach and tools.
First, we describe the architecture. Next, we explain
how search APIs may be defined based on Web con-
tent annotation. Third, we present our model editor
that allows to combine different search APIs to create
more complex information models.

3.1 Architecture

We propose a simple architecture in which Web ex-
tensions developers need to have installed our Web
extension to use the data service layer. Figure 2 shows
an overview of the architecture. In this Figure it can
be seen that our data service layer includes two tools
(Search API tool and API composition tool), each one
generating a kind of artifact that is stored in this layer.
Also, it provides an API Interaction service layer that

allows Web extensions to consume those information
models created with the API composition tool.

Figure 2: Data service layer architecture

3.2 Search services definition

To create a search service we use the search engine of
a specific website and by web annotation and scraping
techniques, we extract the results that the search en-
gine returns to create domain objects. The tool allows
to annotate the UI search components, and abstract
the results as domain objects allowing the user to de-
fine different properties for them, all these operations
are done by using an end-user programming tool. A
detailed explanation of how these search services are
defined can be found in previous work (Bosetti et al.,
2022).

3.3 Information models through API
composition

To show how the data service layer is used to create
web extensions, let us first return to the running ex-
ample presented in Section 2. The main idea is to
obtain an information model based on this composi-
tion of search APIs for Springer, DBLP and Google
Scholar, offering the integration of information from
the three Web sites in a single response. Then when
the model is executed by searching for something
with the Springer search service, the response will in-
clude the number of citations obtained from Google
Scholar and related articles (articles from the first au-
thor) obtained from DBLP.

To create an information model based on search
service composition, the user must first have created
the search service of the websites that he wishes to
integrate, following the process presented in the pre-
vious subsection. Then, the user starts the API Com-
position Tool from the extension’s main screen. The
first step to create a composed model is to name it (we
use the name “Research” for our model). Next, the

extension shows an editor where the defined search
services are presented in a menu at the left, and the
composition canvas is the main component of the UI.
The user drag&drop the services he want to compose
(i.e., Springer, Google Scholar and DBLP services)
into the canvas. Each search service is shown as a
node in a graph. Now, in order to integrate the re-
sults of the search services, the user needs to estab-
lish links between the search services nodes. This
is done by relating properties in the data models of
each service. In this example, we are going to con-
nect Springer with Google Scholar through the Title
property and Springer with DBLP through the Au-
thor property. Each connection must have a name
and a way to interact with the search service, that is,
how many results can it obtain from the search ser-
vice. It is worth mentioning that if it does not find
any matches, there are no results. Figure 3 provides
an overview of the resulting composed model. The
property Author of results from a search in Springer
is used to search in DBLP. The results from DBLP are
injected into the “Articles” property of each Springer
result. The integration between services can be done
as one-to-one (connect to the object corresponding to
the first search result) or one-to-N relationships (as in
this example).

3.4 Using the search service in a web
extension

At the moment we present two use cases that we have
given to the composition, the first with a mashup and
the other with requirements not contemplated in web-
sites.

3.4.1 Using composite search API on mashup
web extension

Now that we have created a composed search API and
its data model, let’s use it to create the mashup appli-
cation discussed in Section 2.

The web extension presents a main screen (see the
browser window in the middle of Figure 4) with an
input text, where the user enters a topic to search for,
(in this example it was “scraping”). The search button
triggers a search using the composed search API de-
scribed in the previous section. Results are displayed
along the number of cites (which is extracted from
Google Scholar), and related articles of the selected
author (extracted from DBLP). It was implemented as
a browser’s web extensions with background and con-
tent scripts. Next, we discuss key parts of the source
code to show that the developer is unaware of the web
requests and scraping tasks.

Figure 3: The API composition tool: Integration between Springer and DBLP search APIs

The consumer API has the “search” function in
Listing 3.1, which receives four parameters such as:
the token or service layer identifier (which is different
in each browser), the text to search within in the com-
posed search API, the composed search API’s name
to which we are going to invoke and the Search API
where we are going to start the search for information.
When the service layer is invoked through the search
function, it executes the model and returns a JSON
message, whose structure can be observed in the code
3.2

1 $scope.searchData = function (args) {
2 var api=new dataServiceLayer();
3 api.search(args.token ,args.text ,

args.model ,args.searchapi).then(
papers=>{

4 $scope.results=papers
5 })
6 }

Listing 3.1: Source code for the service layer invocation

1 {
2 "Author":"Yang Lin, Chun -

Yaun Yeh, Shiau -Cheng Shiu",
3 "Title":"The design and

feasibility test of a mobile
semi -auto scraping system",

4 "service":"Springer",
5 "cites":[

6 {
7 "cite":"Cited by 4",
8 "title":"The design and

feasibility test of a mobile
semi -auto scraping system",

9 "service":"Google"
10 }],
11 "articles":[
12 {
13 "Author":"Junchao Xiao,

Lin Yang, Fuli Zhong, Hongbo
Chen, Xiangxue Li: Robust
anomaly -based intrusion
detection system for in-vehicle
network by graph neural network
framework. Appl. Intell. 53(3):
3183-3206 (2023)",

14 "Title":"Robust anomaly -
based intrusion detection system
for in-vehicle network by graph
neural network framework.",

15 "service":"DBLP"
16 },
17 ...
18]
19 }
20

Listing 3.2: Json of the communication message between
the service layer and the mashup.

Figure 4: Search results in the model containing Springer, Google Scholar and DBLP

Figure 5: Configuration of the web extension that contains the mashup application

3.4.2 Class, Object and Interaction diagrams

The figure 6 shows the diagram of classes and ob-
jects of the services layer at the macro level, the main
classes are: “SearchAPI”, which defines the abstrac-
tion of DOM elements, and “ComposedSearchAPI”,
which integrates the SearchAPIs to generate more
complex structures.

(a) Class diagram

(b) Object diagram

Figure 6: Service layer class and object diagram

In the figure 7 we present the interactions that oc-
cur between mashup and the proposed services layer.
First, the client web extension sends a message to the
service layer, which executes the search in Springer;
then, upon receiving the information, for each of the
objects received, it searches the different integrations
that are part of the model, in this case in Google
Scholar and later in DBLP to finally return a message
with the information received from the three search
engines.

3.4.3 Using composite search API on unsatisfied
website requirements

We can also use the composed search API to satisfy
requirements and functionalities that websites do not
have. An example of this use is shown in Figure 8
where the number of citations that the article has from
Google scholar is presented within the Springer site
and also the articles that the first author has made in
DBLP is shown on the same site. Note that the code
the developer must write to conduct searches and ob-
tain the results is the same as in the mashup applica-
tion previously discussed. The data service layer not
only hides the complexity of scraping and data inte-
gration but also supports reuse.

4 Preliminary evaluation

We have conducted a usability study with 16 partic-
ipants in order to measure the usability of the tool
and detect usability problems to later carry out a more
complete experiment to study in depth the impacts
and applicability of the approach. In previous work
we have evaluated the creation of Search Services
(Bosetti et al., 2022).

In this new study, participants were asked to do 7
tasks related to the creation and edition of API com-
position models. The model that participants were
asked to create was the one of the example of this
paper, using Springer, Google Scholar and DBLP. 13
people managed to complete the tasks, 2 people com-
pleted 4 tasks and 1 completed 5 tasks. It is impor-
tant to mention that participants had no programming
skills.

At the end of the tasks, the System Usability Scale
(SUS) method was used, which as a result presents
us with an average of 68.11, which according to the
different standards is acceptable.

5 Related works

Web scraping is the process of non-structured (or with
some weak structure) data extraction, usually emu-
lating the Web browsing activity. Normally, it is
used to automate data extraction in order to obtain
more complex information, which means that end-
users are not usually involved in determining what
information to look for and still less about what to
do with the abstracted objects. Some Web sites al-
ready tag their contents allowing other software arti-
facts (for instance a Web Browser plugin) to process
those annotations and improve interaction with that

Figure 7: Service layer interaction diagram

Figure 8: Reusing the search API to augment Springer’s web site

structured content. A well-known approach for giving
some meaning to Web data is Microformats (Khare
and Çelik, 2006). Some approaches leverage the un-
derlying meaning given by Microformats, detecting
those objects present on the Web page and allowing
users to interact with them in new ways. A very
similar approach is Microdata. Considering Semantic
Web approaches, and an aim similar to our proposal,
(Kalou et al., 2013) presents an approach for mashups
based on semantic information; however, it depends
too heavily on the original application owners, some-
thing that is not always viable. However, when ana-
lyzing the Web, we see that a huge majority of Web
sites does not provide this annotation layer. Accord-
ing to (Bizer et al., 2013), only 5,64% among 40.6
million Web sites provide some kind of structured
data (Microformats, Microdata, RDFa, etc.). This re-
ality raises the importance of empowering users to
add semantic structure when it is not available. Sev-
eral approaches let users add structure to existing con-
tents to ease the management of relevant information
objects. For instance, HayStack (Karger et al., 2005)
offers an extraction tool that allows users to populate
a semantic-structured information space.

Atomate it! (Kleek et al., 2010) offers a reactive
platform that could be set to the collected objects by
means of rule definitions. Then the user can be in-
formed when something interesting (such as a new
movie, or record) happens. (Van Kleek et al., 2012)
allows the creation of domain specific applications
that work over the objects defined in a PIM. Rousillon
is an interesting approach based on end-user program-
ming for defining scraped based on hierarchical data
(Chasins et al., 2018). In (Katongo et al., 2021) an-
other approach is presented to enable web customiza-
tion through web scraping defined by users without
programming skills. However, it is different to our
approach because our data service layer could be used
for many Web extensions.

Web augmentation is a popular approach that lets
end-users improve Web applications by altering orig-
inal Web pages with new content or functionality not
originally contemplated by developers. Nowadays,
users may specify their own augmentations by using
end-user programming tools. Very interesting tools
have emerged (Dı́az et al., 2014), to manipulate DOM
(Document Object Model) objects in order to specify
the adaptation. Reuse in Web Augmentation has been
tackled. For example, Scripting Interface (Dı́az et al.,
2010) is oriented to support better reutilization by
generating a conceptual layer over the DOM, specif-
ically for GreaseMonkey scripts. Since the specifica-
tion of a Scripting Interface could be defined in two
distinct Web sites, the augmentation artifacts written

in terms of that interfaces could be reused.

6 Conclusions and future works

Web extensions are a very particular kind of software
that allows end users to adapt their Web experience.
Many of them are based on some kind of scraping
of Web sites to obtain the desired information to en-
rich the user experience. A part of the development
of web extensions has proved to be possible with-
out programming skills, using end-user development
tools. However, when the extension requires informa-
tion scraping, the development becomes more com-
plex.

In this paper we presented a data service layer ap-
proach, that allows web extension developers to de-
fine in a no-code fashion how to scrap web sites based
on the abstraction of their search services. Then, de-
velopers may delegate in our extension all the scrap-
ing required to obtain a JSON object with the results.

We have conducted a usability study showing
promising results. Although we have detected some
usability problems, most of the participants were able
to define the API composition models required in the
tasks, even although all participants had no program-
ming skills.

As future works, we plan to conduct a more com-
prehensive experiment for validating other aspects of
our approach.

REFERENCES

Bizer, C., Eckert, K., Meusel, R., Mühleisen, H., Schuh-
macher, M., and Völker, J. (2013). Deployment of
rdfa, microdata, and microformats on the web - A
quantitative analysis. In Alani, H., Kagal, L., Fokoue,
A., Groth, P., Biemann, C., Parreira, J. X., Aroyo, L.,
Noy, N. F., Welty, C., and Janowicz, K., editors, The
Semantic Web - ISWC 2013 - 12th International Se-
mantic Web Conference, Sydney, NSW, Australia, Oc-
tober 21-25, 2013, Proceedings, Part II, volume 8219
of Lecture Notes in Computer Science, pages 17–32.
Springer.

Bosetti, G., Tacuri, A., Gambo, I. P., Firmenich, S., Rossi,
G., Winckler, M., and Fernández, A. (2022). AN-
DES: an approach to embed search services on the
web browser. Comput. Stand. Interfaces, 82:103633.

Chasins, S. E., Mueller, M., and Bodı́k, R. (2018). Rousil-
lon: Scraping distributed hierarchical web data. In
Baudisch, P., Schmidt, A., and Wilson, A., editors,
The 31st Annual ACM Symposium on User Interface
Software and Technology, UIST 2018, Berlin, Ger-
many, October 14-17, 2018, pages 963–975. ACM.

Dı́az, O. and Arellano, C. (2015). The augmented web:
Rationales, opportunities, and challenges on browser-
side transcoding. ACM Trans. Web, 9(2):8:1–8:30.

Dı́az, O., Arellano, C., Aldalur, I., Medina, H., and Fir-
menich, S. (2014). End-user browser-side modifica-
tion of web pages. In Benatallah, B., Bestavros, A.,
Manolopoulos, Y., Vakali, A., and Zhang, Y., editors,
Web Information Systems Engineering - WISE 2014 -
15th International Conference, Thessaloniki, Greece,
October 12-14, 2014, Proceedings, Part I, volume
8786 of Lecture Notes in Computer Science, pages
293–307. Springer.

Dı́az, O., Arellano, C., and Iturrioz, J. (2010). Interfaces
for scripting: Making greasemonkey scripts resilient
to website upgrades. In Benatallah, B., Casati, F.,
Kappel, G., and Rossi, G., editors, Web Engineering,
10th International Conference, ICWE 2010, Vienna,
Austria, July 5-9, 2010. Proceedings, volume 6189 of
Lecture Notes in Computer Science, pages 233–247.
Springer.

Kalou, A. K., Koutsomitropoulos, D. A., and Pap-
atheodorou, T. S. (2013). Semantic web rules and on-
tologies for developing personalised mashups. Int. J.
Knowl. Web Intell., 4(2/3):142–165.

Karger, D. R., Bakshi, K., Huynh, D., Quan, D., and Sinha,
V. (2005). Haystack: A general-purpose information
management tool for end users based on semistruc-
tured data. In Second Biennial Conference on In-
novative Data Systems Research, CIDR 2005, Asilo-
mar, CA, USA, January 4-7, 2005, Online Proceed-
ings, pages 13–26. www.cidrdb.org.

Katongo, K., Litt, G., and Jackson, D. (2021). Towards
end-user web scraping for customization. In Church,
L., Chiba, S., and Boix, E. G., editors, Programming
’21: 5th International Conference on the Art, Science,
and Engineering of Programming, Cambridge, United
Kingdom, March 22-26, 2021, pages 49–59. ACM.

Khare, R. and Çelik, T. (2006). Microformats: a pragmatic
path to the semantic web. In Carr, L., Roure, D. D.,
Iyengar, A., Goble, C. A., and Dahlin, M., editors,
Proceedings of the 15th international conference on
World Wide Web, WWW 2006, Edinburgh, Scotland,
UK, May 23-26, 2006, pages 865–866. ACM.

Kleek, M. V., Moore, B., Karger, D. R., André, P., and
m. c. schraefel (2010). Atomate it! end-user context-
sensitive automation using heterogeneous information
sources on the web. In Rappa, M., Jones, P., Freire,
J., and Chakrabarti, S., editors, Proceedings of the
19th International Conference on World Wide Web,
WWW 2010, Raleigh, North Carolina, USA, April 26-
30, 2010, pages 951–960. ACM.

Van Kleek, M., Smith, D. A., Shadbolt, N., et al. (2012). A
decentralized architecture for consolidating personal
information ecosystems: The webbox.

