
SEMIoTICA - Security Scenarios Modeling for
IoT-based Agriculture Solutions

Julio Ariel Hurtado1, Leandro Antonelli2, Santiago López1, Adriana Gómez3,
Juliana Delle Ville2, Frey Giovanny Zambrano1, Andrés Solis1,4, Marta Cecilia

Camacho5, Miguel Solinas6, Gladys Kaplan7, and Freddy Muñoz8

1 IDIS, Universidad del Cauca, Colombia
{ahurtado, santiagolopez94, freyzambrano, afsolis}

@unicauca.edu.co.edu.co
2 Lifia - Facultad de Informática, Universidad Nacional de La Plata, Argentina

{lanto,jdelleville}@lifia.info.unlp.edu.ar
3 Universidad Tecnologica de Pereira, Colombia

adrianagomezr@utp.edu.co
4 Corporacion Universitaria Comfacauca, Colombia

5 Institución Universitaria Colegio Mayor del Cauca, Colombia
cecamacho@unimayor.edu.co

6 LARYC, FCEFyN, Universidad Nacional de Cordoba, Argentina
miguel.solinas@unc.edu.ar

7 Universidad Nacional de La Matanza, Argentina
gladyskaplan@gmail.com

8 Fundacion Universitaria de Popayan, Colombia
lfreddyms@gmail.com

Abstract. Agriculture is a vital human activity contributing to sustain-
able development. A few decades ago, the agricultural sector introduced
the Internet of Things (IoT), playing a relevant role in precision and
smart farming. IoT developments in farms require a lot of connected
devices working cooperatively. It increases the vulnerability of IoT de-
vices mostly because it lacks the necessary built-in security due to their
constrained context and computational capacity. Additionally, storage
and data processing connecting with edge or cloud servers are the rea-
son for many security threats. To ensure that IoT-based solutions meet
functional and non-functional requirements, particularly security, soft-
ware companies should adopt a security-focused approach to their spec-
ification. This paper proposes a method for specifying security scenarios
integrating requirements and architecture viewpoints in the context of
the IoT in agriculture solutions. The method comprises four activities.
First, the description of scenarios for the intended software. After that,
scenarios with incorrect system use should be described. Then, these are
translated into security scenarios using a set of rules. Finally, the security
scenarios are improved. Additionally, this paper describes a preliminary
validation of the approach, which software engineers in Argentina and
Colombia performed. The results show that the approach proposed al-
lows software engineers to define and analyze security scenarios in the
IoT and agriculture contexts with good results.



2 Authors Suppressed Due to Excessive Length

Keywords: IoT · Quality Scenario · IoT Requirements · Smart Farming
· Industry 4.0

1 Introduction

The International Telecommunication Union (ITU) defines IoT (Internet of the
Things) as a "global infrastructure for the information society that provides ad-
vanced services through the connection of objects (physical and virtual) relying
on the interoperability of current and future knowledge and communication tech-
nologies" [31]. According to [17] as an interconnected network, IoT contributes
to making decisions based on the information collected, and its interaction does
not need human intervention. The definition includes the concept of a Cyber-
Physical system, which is a complex abstraction that requires a conceptual map
[5] rather than a simple definition to state its concept.

Regarding software development, requirements analysis is a critical activ-
ity for defining software functionalities, attributes, and quality properties. This
process is particularly different for software construction by using emergent tech-
nologies like IoT. Traditional software development practices must adapt to these
new technologies and business contexts [17]. Requirements engineering involves
collaboration between clients and development teams for incorporating the right
features into the finished product[27]. Inconsistencies between initial require-
ments and the final product can lead to re-engineering processes, increasing the
project scope and cost[26]. Requirements engineering works with both types
of knowledge, explicit and tacit[1]. Tacit knowledge is difficult to communicate
because experts and development teams often have different backgrounds and
use distinct terminologies [20], making it challenging to elicit information from
stakeholders.

Software products are defined by a set of functional and non-functional re-
quirements. The latter is responsible for the software product’s quality and is
most frequently considered when developing an IoT system according to its spe-
cific application domain [17]. A way to specify software requirements is to de-
scribe use scenarios through storytelling techniques. This approach is effective
because it is a way to incorporate details that are essential to provide a rich con-
solidation of knowledge. Scenarios employ natural language, allowing experts
to use them without complex formalisms. This makes them highly effective in
promoting communication and collaboration among diverse groups of experts
[3].

The main challenges associated with these requirements in developing these
products are limited processing and storage capacity, performance reliability,
availability, accessibility, interoperability, security, privacy, scalability flexibility,
and context awareness [17, 19]. In this line of thought, security is an aspect
that is highly relevant in IoT-based software because it protects resources such
as modules, code, and others from unauthorized access [19]. With scenarios,
experts can describe various situations and work together to improve them,
learning from one another in the process. This can be especially valuable when



Title Suppressed Due to Excessive Length 3

dealing with complex problems that require inputs from multiple perspectives.
Overall, scenarios can be a powerful tool for fostering cooperation and achieving
better outcomes in a wide range of domains.

The software architect must consider designing the whole system when stake-
holders identify security concerns rather than adding security technologies in an
ad-hoc manner [15]. As Bruce Schneier points out[25], security is a process and
a chain that is only as strong as its weakest link. Therefore, software providers
must adopt a security-centric approach to designing and developing IoT-based
solutions that conform to functional and non-functional requirements like secu-
rity [14].

The agricultural sector now requires data collection and advanced technolo-
gies to improve production while using limited resources. Sustainable agriculture
can help preserve nature without compromising the needs of future enerations[6,
13]. The Food and Agriculture Organization (FAO) has identified population
growth, resource scarcity, and degradation as key challenges. There is a need to
increase efficiency, productivity, and quality in agrifood systems while protecting
the environment[24]. To achieve this, new developments and technologies must
be introduced to automate traditional farming methods and make farm labor
more efficient. The Internet of Things (IoT) appears as technology to transform
conventional processes [6, 13].

This paper proposes a scenario-based method for specifying the architec-
ture’s security aspects. The method is composed of four essential activities. The
first activity consists in describing scenarios of the intended software applica-
tion. The second activity consists in describing scenarios related to the previous
ones but referring to incorrect usage of the application. The third activity con-
sists in applying a set of rules to map attributes from the previous scenarios
to the architecture scenarios. Finally, the four activity consists in describing
the architectural scenarios in more detail. Moreover, this document describes a
preliminary evaluation of the proposed approach. Given the security challenges
facing IoT agriculture, the research question in his paper is: how adequately
elicit security requirements in IoT- based smart agriculture solutions?

The paper is organized in the following way. Section 2 describes some back-
ground about the scenarios. Then, section 3 describes some related work. Section
4 details our contribution, which is the proposed approach. Section 5 describes
the tool to support the proposed method. Section 6 presents the preliminary
evaluation. Finally, Section 7 discusses some conclusions.

2 Background

This section describes two types of scenarios. First, it describes scenarios that
focus on the functionality of a software application. Afterward, the section de-
scribes scenarios that focus on architectural security concerns.



4 Authors Suppressed Due to Excessive Length

2.1 Scenarios for describing functionality

A scenario [3] is an artifact that describes situations (in the application or the
software domain) using natural language. It describes a specific situation that
arises in a certain context to achieve some goal. There is a set of steps (the
episodes) to reach that goal. In the episodes, active agents as actors use materials,
tools, and data as resources to perform some specific action. Although there are
many templates to describe scenarios, this paper will use the scenarios proposed
by Leite et al. [21]. Figure 1 summarizes the template.

Fig. 1. Template for describing scenarios that focus on functionality.

Let’s consider the following example that describes a scenario about how the
irrigation system is activated. This task can be done in different ways regard-
ing the technological infrastructure that the farm has. For example, an operator
can manually start the irrigation by physically accessing the machine room with
the pumps. In this situation, there is no IoT software application. This paper
is going to focus on another scenario where a software application performs the
activation of the pumps. For example, an agriculture expert evaluates the field
conditions to determine whether irrigating is necessary and provides the infor-
mation to the farm supervisor. Then, the supervisor activates the irrigation pipe
through an IoT-based web application. Table 2 summarizes the situation.

Fig. 2. Authorized attempt to start the irrigation system.

The previous scenario describes an authorized person’s legitimate use of the
software application to activate the irrigation system. This scenario could be
similar to Use Cases or User Stories [20]. Nevertheless, the software system can
be vulnerable to hack attacks, where a malicious user desires to break into the
web software application to start the irrigation system just for fun or to destroy



Title Suppressed Due to Excessive Length 5

the crop. This incorrect and harmful description of the software application is
related to misuse cases [12].

2.2 Scenarios for describing architectural security concerns

Software architecture is the designing process of the system’s fundamental struc-
ture and organization to achieve specific quality attributes, which are the criti-
cal non-functional characteristics determining the system’s overall effectiveness.
Quality attributes are specified through quality scenarios, which define how the
system should behave under various conditions. A Quality Attribute (QA) Sce-
nario is a specific, testable scenario that demonstrates how a quality attribute
requirement is satisfied. A QA scenario is typically structured with an id, a
stimulus that triggers the interaction with the software application, the environ-
ment where the interaction occurs, the artifact affected, the response, and some
quantitative description of the response. Table 3 summarizes the template.

Fig. 3. Security scenario template.

Security refers to the system’s capability to defend against danger, ensure its
safety, and protect system data from unauthorized disclosure, modification, or
destruction. Security involves protecting computer systems themselves through
technical and administrative safeguards. Additionally, security can refer to the
degree to which a particular security policy is enforced with some level of as-
surance. The three fundamental types of security concerns are confidentiality,
integrity, and availability. Confidentiality refers to the protection of data and
processes from unauthorized disclosure or access by individuals or entities that
are not authorized to access it. Integrity refers to protecting data and processes
from unauthorized modification, intentional or accidental. It includes ensuring
that data is not tampered with or corrupted during storage, processing, or trans-
mission. And availability refers to the protection of data and processes from de-
nial of service attacks or other forms of disruption that can prevent authorized
users from accessing or using them. This includes ensuring that systems are avail-
able and responsive when needed and that they can handle high levels of traffic
or activity without becoming overloaded or crashing. Figure 4 describes an ex-



6 Authors Suppressed Due to Excessive Length

ample of a security scenario that refers to the same situation of the requirement
scenario described in Figure 2.

Fig. 4. Security scenario example.

3 Related works

The complexity of IoT software applications is a concern identified several re-
searchers. Thus, there are some proposals to deal with this complexity. Nguyen
et al. [16] propose FRASAD, a model-driven software development framework
to manage the complexity of Internet of Things (IoT) applications. Karadu-
man et al. [11] is another proposal to deal with the complexity. Their approach
includes activities such as requirements development, domain-specific design,
verification, simulation, analysis, calibration, deployment, code generation, and
execution. Nevertheless, these proposals do not consider security, which is our
main concern.

Some other approaches consider the security issue, but it is considered in
terms of implementation, while our proposal considers the security in terms of the
specification of requirements. Cardenas et al. [2] propose a process and a tool to
apply formal methods in Internet of Things (IoT) applications using the Unified
Modeling Language (UML). They have developed a plug-in tool to validate UML
software models regarding the design of a secure software application. Slovenec
et al. [28] present a taxonomy of security requirements to consider them when
designing and implementing the software application. El-Gendy et al. [7] propose
a security architecture to provide security enabled IoT services, and provide a
baseline for security deployment. Sotoudeh et al. [29] proposes a model as a
reference architecture to meet all security requirements.

There are some approaches that consider security in requirements, but they
do not emphasize the way to specify security requirements precisely. Iqbal et
al. [9] present a literature review about an In-Depth Analysis of IoT Security
Requirements, but the work they present does not refer about how to specify
them. Özkaya et al. [18] proposal deal with different non-functional requirements:
security, scalability, and performance. And they try to balance the different



Title Suppressed Due to Excessive Length 7

requirements or decide which one to satisfy when there is a conflict. Carvalho
et al, [4] also deals with conflicts, but their approach deals with non-functional
Requirements.

Finally, Kammuller et al. [10] present an approach to specify security re-
quirements for IoT applications. They combine a framework for requirement
elicitation with automated reasoning to provide secure IoT for vulnerable users
in healthcare scenarios. They map technical system requirements using high-
level logical modeling. Then they perform an attack tree analysis. And finally, a
security protocol analysis. Their work pays more attention to the tree analysis
to identify the situation, while our approach pays attention to how to describe
security requirements precisely.

4 Our approach

This section is organized in the following manner: firstly, we provide a description
of the general approach, followed by a detailed explanation of each step.

4.1 Our approach in a nutshell

Our proposed approach consists of several steps. Firstly, we describe scenarios
that outline the intended usage of the software. Next, we create scenarios that
describe incorrect usage of the application in an attempt to exploit any vul-
nerabilities. We then establish rules for converting these scenarios into security
scenarios. Lastly, we refine and improve the security scenarios. Figure 5 provides
a summary of our approach.

Fig. 5. Our approach in a nutshell.

4.2 Description of the scenarios with the correct use of the indented
software application

This step describes the scenarios that focus on the correct use of the software
application regarding security concerns. This step should be executed by a re-
quirements engineer or analyst (or a group of them) that must interact with the
experts of the domain (clients, users, and stakeholders in general) to capture the
software application’s requirements and specify scenarios. Those should describe
the functionality of the intended software, and they should also consider secu-
rity concerns. That is why the analyst eliciting and defining scenarios should
have some background in security non-functional requirements to consider this
concern in the specification. The result of this step is a set of scenarios that
describes the functionality like the one described in Figure 2.



8 Authors Suppressed Due to Excessive Length

4.3 Description of the scenarios with the incorrect use of the
indented software application

This step consists in analyzing the scenarios described in the previous step to find
security issues and describing the ones that explode the problems and compro-
mise the security of the software application. Ideally, this step should be done by
the same requirement engineer (or group of them) that participated in the pre-
vious tasks. They should analyze every scenario in detail, and considering guides
like the ones proposed by Gupta et al. [8] and Yazdinejad [32], they must describe
scenarios of incorrect use of the software application. Basically, they should de-
scribe scenarios that explode possible vulnerabilities. For example, considering
the scenario that describes the correct use of the software application to activate
the irrigation system (Figure 2), the requirements engineer can determine that
the access to the system (and therefore the access to the activation of the pumps)
determine a security breach. Hence, the analyst describes a scenario where an
unauthorized person gets access to the software application and, consequently
to the irrigation infrastructure). Figure 6 describes the complete scenario.

Fig. 6. Unauthorized attempt to start the irrigation system.

4.4 Derivation of security scenarios

This step describes a set of rules to map the information contained in a scenario
that describes the incorrect use of the intended system to obtain a first draft
of a scenario to describe security concerns. It is essential to mention that the
scenario with incorrect usage will not provide complete information about the
security scenario. The rules proposed will use only four attributes (title, context,
actors, and resources), and this information will be used to fill four attributes
to the security scenario (stimulus, environment, source of the stimulus, and arti-
fact). Therefore, with this information, the following step can refine the security
scenario. Figure 7 summarizes the mapping between attributes of both types of
scenarios. Following the example of the scenario that describes the incorrect use
of the software application described in Figure 6, the scenario obtained applying
the proposed rules is the one described in Figure 8. It is important to mention
that this scenario (the resulting from the mapping rules) needs to be refined in
the following step, which is why this simple mapped security scenario is still far
from the security scenario (like the one described in Figure 4).



Title Suppressed Due to Excessive Length 9

Fig. 7. Mapping rules between attributes of the incorrect and security scenarios.

Fig. 8. Mapping rules between attributes of the incorrect and security scenarios.

4.5 Refinement of the security scenarios

Some adjustments and improvements should be made to the scenarios derived
from the mapping rules in the previous step. Some new information should be
added, and some information should be rephrased. Consequently, the require-
ments engineering should use his experience and knowledge to provide further
information and paraphrase some others based on the elicitation meeting and
his expertise in the field. For example, the identification of the security scenario
should be provided. But this is a minor issue since the indication must be an id
to identify the scenario inside the software development process, and it is more
related to documentation definitions. Afterward, the attributes of stimulus, envi-
ronment, source of stimulus, and artifact should be rephrased considering the in-
formation obtained in the previous step. The attributes environment and source
of stimulus mainly captured data from the same attribute in the incorrect usage
scenario, so in the security scenario, the information should be split and divided
into two attributes. Finally, the attributes response and response measure should
be completed. Although the mapping rules do not provide information to meet
these attributes, the information provided in the rest of the scenario provides the
context necessary so the requirement engineers can describe these two attributes.
It is important to mention that the response measure attribute, in particular,
should be described with quantitative measures. Therefore, engineering require-
ments should pay attention to that, although the tool described in the following
section provides some support. Figure 9 summarizes the refinements. Then, the
scenario described at the beginning of this paper in Figure 4 is an example of
the scenario that this approach pursues to obtain.



10 Authors Suppressed Due to Excessive Length

Fig. 9. Refinement to the security scenarios.

5 Assessment of the approach

5.1 Assesment Desing

Our aim is to assess the acceptance of our approach by security experts in the
context of IoT-based smart agriculture, using the Technology Acceptance Model
(TAM) to guide our evaluation. Specifically, we are interested in understanding
how much our approach is accepted by this target audience. To evaluate the
usefulness and ease of use of our approach, we have adopted the well-known
and widely used metrics of Perceived Usefulness and Perceived Ease of Use as
defined in Fred D. Davis’s work. To this end, we have designed and administered
a survey to a group of expert security professionals who are representative of
our target audience and possess experience in eliciting security requirements.
By administering the survey to a group of expert security professionals who are
representative of our target audience and possess experience in eliciting security
requirements, we will be able to gather valuable feedback and insights. These
insights will help us identify areas of strength and weakness in our approach,
and ultimately guide improvements that enhance its overall acceptance.

5.2 Survey Application and Data Collection

We conducted a survey with a group of five experts in the software and net-
working security field. Prior to the survey, we presented our methodology to the
group and spent approximately 40 minutes discussing and addressing any ques-
tions they had. Once we presented our approach, we administered a survey that
included 17 closed-ended questions and three open-ended questions. The survey
aimed to gather insights from the experts on the easy to use and usefulness per-
ception of our method. Most of the experts found the proposed security scenario
method to be a useful tool for specifying the requirements of agricultural IoT
solutions. Half of the experts surveyed agreed that the proposed method simpli-
fies the process of specifying security requirements, resulting in better quality
and control of the specification. The experts noted that the proposed method is
well-defined, easy to understand, and flexible, making it ideal for defining sce-
narios. Additionally, the evaluation revealed that the majority (over 60 percent)
found it to be clear, well-structured, and interactive in its development.



Title Suppressed Due to Excessive Length 11

5.3 Results and Analysis

While the method was generally perceived as useful and easy to use for devel-
oping security scenarios, it was suggested that it needs to be more specific to
determine its usefulness in practice. The experts suggested that the method can
be enhanced to include specific aspects of cybersecurity, as well as development
and implementation elements that are essential to ensuring the security of agri-
cultural IoT systems. This would enable a complete specification of the security
requirements of these systems. Furthermore, it was noted that users need to in-
teract with the method to remember its steps. During the evaluation, experts
identified some areas for improvement such as incorporating vulnerabilities and
risks commonly found in IoT systems, considering different types of users and
adversaries, and taking into account various attack vectors.

By doing so, the proposed method can be further refined to better meet the
needs of users and enhance the security of agricultural IoT systems, particularly
adding this information in the lexicon associated.

6 Prototype of the tool support

A software tool was prototyped in order to provide support to the proposed
approach. The tool was implemented in Python [22] using libraries such as Spacy
[30], an nlp processing library and textblob [23]. This tool consists of a web
application, that can be used on desktop computers as well as mobile phones.
The application manages different projects and different kinds of artifacts using
natural language. Scenarios are one kind of artifact, but the application can
be extended easily to manage other artifacts (User Stories, Use Cases, etc.).
The prototype provides support for the different activities of the approach. The
prototype provides some edition form to allow users to write scenarios of correct
and incorrect use of the software application.

The prototype also provides a form to list all the scenarios describing the
functionality of the intended software, and by selecting one or more scenarios, the
prototype performs the derivation of security scenarios by applying the mapping
rules proposed. Then, the security scenarios can be edited in order to improve
their description.

The prototype includes some natural language processing tools that make it
possible to provide support to assist the requirements engineering to describe the
security scenarios. For example, the prototype can verify the use of terms that
belong to a glossary. Thus, using Lemmatization and Stemming techniques, the
prototype can verify whether certain expressions are used. This is very important
in the attributes of response to ensure the use of the correct technique to cope
with the issue the scenario is describing. Another feature is the identification of
quantitative descriptions. Natural language processing tools make it possible to
assess whether this type of expression is present (for example, in the response
measure attribute) to be sure that the scenario is correctly written.



12 Authors Suppressed Due to Excessive Length

7 Conclusion

This paper proposed an approach to describing security scenarios to design a
robust software architecture considering IoT technology in the agricultural do-
main. Developers of IoT applications should be concerned about security (and
some other non-functional requirements) since the risk of exposing physical ar-
tifacts to intruders is considerable. Moreover, it is difficult to identify the threat
and design a countermeasure. Generally, these issues are identified when it is
too late when some intruder explodes the vulnerability. Therefore, this paper
presents a lightweight approach that begins with a description of the functional
requirements. The misuse of the application is identified in order to design coun-
termeasures to deal with it. The paper also described a prototype tool to help
apply the proposed approach. Finally, a preliminary assessment was also pro-
vided.

The survey applied to five security experts found that the proposed security
scenario method is generally useful for specifying agricultural IoT solutions, but
needs improvement in certain areas. Experts suggested incorporating specific
cybersecurity aspects, vulnerabilities and risks commonly found in IoT systems,
and different types of users and adversaries. They also noted the method needs
to be more specific and interactive for users to remember its steps. The results
provide valuable insights for refining and improving the method to meet user
needs and enhance security.

Currently, the most widely used development process is agile development,
but we propose a complementary and lightweight technique specifically for IoT
applications the smart farm field. As future work, we aim to enrich the proposal
with additional guidelines for writing scenarios for each stage. Additionally, fur-
ther experimentation is necessary before we make the approach more complex.
However, we firmly believe that the approach should be strengthened and made
more robust.

Acknowledgements This paper is partially supported by funding provided by
the STIC AmSud program, Project 22STIC-01.

References

1. Ahmed, U.: A review on knowledge management in requirement engineering. IEEE
5 (2018)

2. Cardenas, H., Zimmerman, R., Viesca, A.R., Al Lail, M., Perez, A.J.: Formal
uml-based modeling and analysis for securing location-based iot applications. In:
2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems
(MASS). pp. 722–723 (2022). https://doi.org/10.1109/MASS56207.2022.00109

3. Carrol, J.: Five reasons for scenario-based design. In: Proceedings of the 32nd
Annual Hawaii International Conference on Systems Sciences. 1999. HICSS-
32. Abstracts and CD-ROM of Full Papers. vol. Track3, pp. 11 pp.– (1999).
https://doi.org/10.1109/HICSS.1999.772890



Title Suppressed Due to Excessive Length 13

4. Carvalho, R.M.: Dealing with conflicts between non-functional requirements of ubi-
comp and iot applications. In: 2017 IEEE 25th International Requirements Engi-
neering Conference (RE). pp. 544–549 (2017). https://doi.org/10.1109/RE.2017.51

5. CPS2023: Cyber-physical systems. https://ptolemy.berkeley.edu/projects/cps/
(2023)

6. Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S., Kaliaperu-
mal, R.: Smart farming: Internet of things (iot)-based sustainable agriculture. Agri-
culture 12(10), 1745 (2022)

7. El-Gendy, S., Azer, M.A.: Security framework for internet of things (iot). In: 2020
15th International Conference on Computer Engineering and Systems (ICCES).
pp. 1–6 (2020). https://doi.org/10.1109/ICCES51560.2020.9334589

8. Gupta, M., Abdelsalam, M., Khorsandroo, S., Mittal, S.: Security and privacy in
smart farming: Challenges and opportunities. IEEE Access 8, 34564–34584 (2020).
https://doi.org/10.1109/ACCESS.2020.2975142

9. Iqbal, W., Abbas, H., Daneshmand, M., Rauf, B., Bangash, Y.A.: An in-depth
analysis of iot security requirements, challenges, and their countermeasures via
software-defined security. IEEE Internet of Things Journal 7(10), 10250–10276
(2020). https://doi.org/10.1109/JIOT.2020.2997651

10. Kammüller, F., Augusto, J.C., Jones, S.: Security and privacy require-
ments engineering for human centric iot systems using efriend and is-
abelle. In: 2017 IEEE 15th International Conference on Software Engineer-
ing Research, Management and Applications (SERA). pp. 401–406 (2017).
https://doi.org/10.1109/SERA.2017.7965758

11. Karaduman, B., Mustafiz, S., Challenger, M.: Ftg+pm for the model-driven devel-
opment of wireless sensor network based iot systems. In: 2021 ACM/IEEE Inter-
national Conference on Model Driven Engineering Languages and Systems Com-
panion (MODELS-C). pp. 306–316 (2021). https://doi.org/10.1109/MODELS-
C53483.2021.00052

12. Khamaiseh, S., Xu, D.: Software security testing via misuse case modeling.
In: 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Com-
puting, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl
Conf on Big Data Intelligence and Computing and Cyber Science and Tech-
nology Congress(DASC/PiCom/DataCom/CyberSciTech). pp. 534–541 (2017).
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.98

13. Khan, N., Ray, R.L., Sargani, G.R., Ihtisham, M., Khayyam, M., Ismail, S.: Current
progress and future prospects of agriculture technology: Gateway to sustainable
agriculture. Sustainability 13(9), 4883 (2021)

14. Martin, T., Geneiatakis, D., Kounelis, I., Kerckhof, S., Nai Fovino,
I.: Towards a formal iot security model. Symmetry 12(8) (2020).
https://doi.org/10.3390/sym12081305, https://www.mdpi.com/2073-
8994/12/8/1305

15. Myagmar, S., Lee, A.J., Yurcik, W.: Threat modeling as a basis for se-
curity requirements. In: Symposium on Requirements Engineering for Infor-
mation Security (SREIS). University of Pittsburgh (August 2005), http://d-
scholarship.pitt.edu/16516/

16. Nguyen, X.T., Tran, H.T., Baraki, H., Geihs, K.: Frasad: A framework for model-
driven iot application development. In: 2015 IEEE 2nd World Forum on In-
ternet of Things (WF-IoT). pp. 387–392 (2015). https://doi.org/10.1109/WF-
IoT.2015.7389085



14 Authors Suppressed Due to Excessive Length

17. Ojo-Gonzalez, K., Bonilla-Morales, B.: Requerimientos no funcionales para sis-
temas basados en el internet de las cosas (iot): Una revisión. I+ D Tecnológico
17(2), 30–40 (2021)

18. Ozkaya, O., Ors, B.: Model based node design methodology for secure iot applica-
tions. In: 2018 26th Signal Processing and Communications Applications Confer-
ence (SIU). pp. 1–4 (2018). https://doi.org/10.1109/SIU.2018.8404490

19. Pal, S., Hitchens, M., Rabehaja, T., Mukhopadhyay, S.: Security requirements for
the internet of things: A systematic approach. Sensors 20(20), 5897 (2020)

20. Potts, C.: Using schematic scenarios to understand user needs. In: Proceed-
ings of the 1st Conference on Designing Interactive Systems: Processes, Prac-
tices, Methods, and Techniques. p. 247–256. DIS ’95, Association for Computing
Machinery, New York, NY, USA (1995). https://doi.org/10.1145/225434.225462,
https://doi.org/10.1145/225434.225462

21. do Prado Leite, J.C.S., Hadad, G.D.S., Doorn, J.H., Kaplan, G.N.: A scenario
construction process. Requirements Engineering 5, 38–61 (2000)

22. Python: Python framework. https://www.python.org/ (2023), accessed: 2023-03-
11

23. Python: Textblob library. https://pypi.org/project/textblob/ (2023), accessed:
2023-03-11

24. Rose, D.C., Wheeler, R., Winter, M., Lobley, M., Chivers, C.A.: Agriculture 4.0:
Making it work for people, production, and the planet. Land use policy 100, 104933
(2021)

25. Schneier, B.: Cryptography is harder than it looks. IEEE Security & Privacy 14(1),
87–88 (2016). https://doi.org/10.1109/MSP.2016.7

26. Serna M, E., Serna A, A.: Proceso y progreso de la formalización de requisitos
en ingeniería del software. Ingeniare. Revista chilena de ingeniería 28(3), 411–423
(2020)

27. Shankar, P., Morkos, B., Yadav, D., Summers, J.D.: Towards the formalization of
non-functional requirements in conceptual design. Research in engineering design
31, 449–469 (2020)

28. Slovenec, K., Vuković, M., Salopek, D., Mikuc, M.: Securing iot services based
on security requirement categories. In: 2022 International Conference on Soft-
ware, Telecommunications and Computer Networks (SoftCOM). pp. 1–6 (2022).
https://doi.org/10.23919/SoftCOM55329.2022.9911319

29. Sotoudeh, S., Hashemi, S., Garakani, H.G.: Security framework of iot-based smart
home. In: 2020 10th International Symposium onTelecommunications (IST). pp.
251–256 (2020). https://doi.org/10.1109/IST50524.2020.9345886

30. Spacy: Spacy library. https://spacy.io/ (2023), accessed: 2023-03-11
31. Y.2060, I.T.: Itu-t y.2060. https://handle.itu.int/11.1002/1000/11559 (2012)
32. Yazdinejad, A., Zolfaghari, B., Azmoodeh, A., Dehghantanha, A., Karimipour,

H., Fraser, E.D.G., Green, A.G., Russell, C., Duncan, E.: A review on security
of smart farming and precision agriculture: Security aspects, attacks, threats and
countermeasures. Applied Sciences (2021)


