CINIBA
URI permanente para esta comunidad
Directora: Prof. Dra. Amada Segal Eiras.
Examinar
Examinando CINIBA por Autor "Aldaz, C. Marcelo"
Mostrando1 - 4 de 4
Resultados por página
Opciones de clasificación
- RevisiónAcceso AbiertoBreast Cancer Biomarker Discovery in the Functional Genomic Age: A Systematic Review of 42 Gene Expression Signatures(2010) Abba, Martín Carlos; Lacunza, Ezequiel; Butti, Matías; Aldaz, C. MarceloIn this review we provide a systematic analysis of transcriptomic signatures derived from 42 breast cancer gene expression studies, in an effort to identify the most relevant breast cancer biomarkers using a meta-analysis method. Meta-data revealed a set of 117 genes that were the most commonly affected ranging from 12% to 36% of overlap among breast cancer gene expression studies. Data mining analysis of transcripts and protein-protein interactions of these commonly modulated genes indicate three functional modules significantly affected among signatures, one module related with the response to steroid hormone stimulus, and two modules related to the cell cycle. Analysis of a publicly available gene expression data showed that the obtained meta-signature is capable of predicting overall survival (P < 0.0001) and relapse-free survival (P < 0.0001) in patients with early-stage breast carcinomas. In addition, the identified meta-signature improves breast cancer patient stratification independently of traditional prognostic factors in a multivariate Cox proportional-hazards analysis.
- ArtículoAcceso AbiertoDMBA induced mouse mammary tumors display high incidence of activating Pik3caH1047 and loss of function Pten mutations(Impact Journals, 2016) Abba, Martín Carlos; Zhong, Yi; Lee, Jaeho; Kil, Hyunsuk; Lu, Yue; Takata, Yoko; Simper, Melissa S.; Gaddis, Sally; Shen, Jianjun; Aldaz, C. MarceloControversy always existed on the utility of chemically induced mouse mammary carcinogenesis models as valid equivalents for the study of human breast cancer. Here, we performed whole exome and RNA sequencing on long latency mammary tumors (218 ± 27 days) induced by the carcinogen 7,12-Dimethylbenzathracene (DMBA) and short latency tumors (65 ± 11 days) induced by the progestin Medroxyprogesterone Acetate (MPA) plus DMBA in CD2F1 mice. Long latency tumors displayed a high frequency of Pi3kca and/or Pten mutations detected in 11 of 13 (85%) long latency cases (14/22, 64% overall). Eighty-two percent (9/11) of tumors carried the Pik3ca H1047L/R hot-spot mutation, as frequently found in human breast cancer. These tumors were luminal-like and mostly ER/PR+, as in humans. Transcriptome profiling indicated a significant activation of the PI3K-Akt pathway (p=3.82e-6). On the other hand MPA+DMBA induced short latency tumors displayed mutations in cancer drivers not commonly found mutated in human breast cancer (e.g. Hras and Apc). These tumors were mostly basal-like and MPA exposure led to Rankl overexpression (60 fold induction) and immunosuppressive gene expression signatures. In summary, long latency DMBA induced mouse mammary tumors reproduce the molecular profile of human luminal breast carcinomas representing an excellent preclinical model for the testing of PIK3CA/Akt/mTOR pathway inhibitory therapies and a good platform for the developing of additional preclinical tools such as syngeneic transplants in immunocompetent hosts.
- ArtículoAcceso AbiertoA Molecular Portrait of High-Grade Ductal Carcinoma In Situ(AACR Publications, 2015) Abba, Martín Carlos; Gong,Ting; Lu, Yue; Lee, Jaeho; Zhong, Yi; Lacunza, Ezequiel; Butti, Matías; Takata, Yoko; Gaddis, Sally; Shen, Jianjun; Estecio, Marcos R.; Sahin, Aysegul A.; Aldaz, C. MarceloDuctal carcinoma in situ (DCIS) is a noninvasive precursor lesion to invasive breast carcinoma. We still have no understanding on why only some DCIS lesions evolve to invasive cancer whereas others appear not to do so during the life span of the patient. Here, we performed full exome (tumor vs. matching normal), transcriptome, and methylome analysis of 30 pure high-grade DCIS (HG-DCIS) and 10 normal breast epithelial samples. Sixty-two percent of HG-DCIS cases displayed mutations affecting cancer driver genes or potential drivers. Mutations were observed affecting PIK3CA (21% of cases), TP53 (17%), GATA3 (7%), MLL3 (7%) and single cases of mutations affecting CDH1, MAP2K4, TBX3, NF1, ATM, and ARID1A. Significantly, 83% of lesions displayed numerous large chromosomal copy number alterations, suggesting they might precede selection of cancer driver mutations. Integrated pathway-based modeling analysis of RNA-seq data allowed us to identify two DCIS subgroups (DCIS-C1 and DCIS-C2) based on their tumor-intrinsic subtypes, proliferative, immune scores, and in the activity of specific signaling pathways. The more aggressive DCIS-C1 (highly proliferative, basal-like, or ERBB2+) displayed signatures characteristic of activated Treg cells (CD4+/CD25+/FOXP3+) and CTLA4+/CD86+ complexes indicative of a tumor-associated immunosuppressive phenotype. Strikingly, all lesions showed evidence of TP53 pathway inactivation. Similarly, ncRNA and methylation profiles reproduce changes observed postinvasion. Among the most significant findings, we observed upregulation of lncRNA HOTAIR in DCIS-C1 lesions and hypermethylation of HOXA5 and SOX genes. We conclude that most HG-DCIS lesions, in spite of representing a preinvasive stage of tumor progression, displayed molecular profiles indistinguishable from invasive breast cancer.
- ArtículoAcceso AbiertoRhomboid domain containing 2 (RHBDD2): A novel cancer-related gene over-expressed in breast cancer(2009) Abba, Martín Carlos; Lacunza, Ezequiel; Nunez, M. I.; Colussi, Andrea G.; Isla Larrain, Marina Teresita; Segal Eiras, Amada; Croce, María Virginia; Aldaz, C. MarceloIn the course of breast cancer global gene expression studies, we identified an uncharacterized gene known as RHBDD2 (Rhomboid domain containing 2) to be markedly over-expressed in primary tumors from patients with recurrent disease. In this study, we identified RHBDD2 mRNA and protein expression significantly elevated in breast carcinomas compared with normal breast samples as analyzed by SAGE (n=46) and immunohistochemistry (n=213). Interestingly, specimens displaying RHBDD2 over-expression were predominantly advanced stage III breast carcinomas (p=0.001). Western-blot, RT-PCR and cDNA sequencing analyses allowed us to identify two RHBDD2 alternatively spliced mRNA isoforms expressed in breast cancer cell lines. We further investigated the occurrence and frequency of gene amplification and over-expression affecting RHBDD2 in 131 breast samples. RHBDD2 gene amplification was detected in 21% of 98 invasive breast carcinomas analyzed. However, no RHBDD2 amplification was detected in normal breast tissues (n=17) or breast benign lesions (n=16) (p=0.014). Interestingly, siRNA mediated silencing of RHBDD2 expression results in a decrease of MCF7 breast cancer cells proliferation compared with the corresponding controls (p=0.001). In addition, analysis of publicly available gene expression data showed a strong association between high RHBDD2 expression and decreased overall survival (p=0.0023), relapsefree survival (p= 0.0013), and metastasis-free interval (p=0.006) in patients with primary ERnegative breast carcinomas. In conclusion, our findings suggest that RHBDD2 over-expression behaves as an indicator of poor prognosis and may play a role facilitating breast cancer progression.