Show simple item record 2016-09-09T14:57:39Z 2016-09-09T14:57:39Z
dc.title Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavor en
dc.type Artículo es
dcterms.abstract In this paper we establish the existence of vortex solutions for a Chern–Simons– Higgs model with gauge group SU(N) × U(1) and flavor SU(N), these symmetries ensuring the existence of genuine non-Abelian vortices through a color-flavor locking. Under a suitable ansatz we reduce the problem to a 2 × 2 system of nonlinear ellip- tic equations with exponential terms. We study this system over the full plane and over a doubly periodic domain, respectively. For the planar case we use a variational argument to establish the existence result and derive the decay estimates of the solu- tions. Over the doubly periodic domain we show that the system admits at least two gauge-distinct solutions carrying the same physical energy by using a constrained mini- mization approach and the mountain-pass theorem. In both cases we get the quantized vortex magnetic fluxes and electric charges. en
dcterms.extent p. 2458-2498 es
dcterms.issued 2015
dcterms.language Inglés es
dcterms.license Attribution 4.0 International (BY 4.0) es
dcterms.publisher Elsevier es
dcterms.subject Chern–Simons–Higgs equations en
dcterms.subject BPS equations en
dcterms.subject Topological solutions en
dcterms.subject Doubly periodic solutions en
dcterms.subject Existence theorems en
cic.version info:eu-repo/semantics/submittedVersion es Chen, Shouxin es Han, Xiaosen es Lozano, Gustavo es Schaposnik, Fidel Arturo es
cic.lugarDesarrollo Universidad Nacional de La Plata es
dcterms.subject.materia Ciencias Físicas es
dcterms.identifier.url Documento completo es
dcterms.identifier.other DOI:10.1016/j.jde.2015.03.037 es
dcterms.isPartOf.issue vol. 259, nº 6 es
dcterms.isPartOf.series Journal of Differential Equations es
cic.isPeerReviewed true es
cic.isFulltext true es


  • Icon

    Documento completo 

    PDF file (399.8Kb)

  • This item appears in the following Collection(s)

    Show simple item record