Show simple item record

dc.date.accessioned 2018-05-18T03:05:34Z
dc.date.available 2018-05-18T03:05:34Z
dc.identifier.uri http://digital.cic.gba.gob.ar/handle/11746/7754
dc.title Influencia de diferentes fuentes de carbono en la producción de fenilalanina amonio liasa (PAL) empleando Rhodosporidium toruloides es
dc.type Artículo es
dcterms.abstract La enzima Fenilalanina amonio liasa (PAL, EC 4.3.1.5), cataliza la biotransformación de L- fenilalanina en ácido trans- cinámico y amonio. En las últimas décadas ha sido ampliamente estudiada por su potencial uso en el tratamiento de pacientes con fenilcetonuria (PKU). Se han reportados sucesivos estudios acerca de su aislamiento en plantas y levaduras. Entre estas últimas, se destacan las del género Rhodotorula. Rhodosporidium toruloides (IFO 0559), antiguamente denominada Rhodotorula glutinis, ha sido ampliamente estudiada por su capacidad de producción de PAL en medios de composición simple, conteniendo fenilalanina como inductor. Si bien se han ensayado diferentes medios con composición nutricional variable a fin de determinar su incidencia en la expresión de la PAL, existen escasos registros acerca de la influencia de la fuente de carbono y energía (FCE), empleada para el crecimiento de la cepa, en la producción de la enzima. Con la finalidad de determinar la FCE mas apta para ser empleada en la producción de PAL, se utilizaron diversas fuentes de carbono, a saber: sacarosa, glucosa, fructosa, galactosa, maltosa, celobiosa, rafinosa, xilosa, etanol, glicerol y sorbitol, a razón de 0,165 Cmol/lt de cultivo, en un medio basal sintético para crecimiento de levaduras. A este medio se lo suplementó con L-fenilalanina (0,5 gr/lt) y L-isoleucina (5gr/lt). Adicionalmente, se ensayó una melaza obtenida como residuo de la extracción de aceite de soja, con un 70% de azúcares simples de composición variable. Los medios a ensayar, cada uno por duplicado, se inocularon con cultivos de Rhodosporidium toruloides crecidos en pico de flauta a razón de 1,5 x 107 UFC/ml, en cultivo batch. La incubación se llevó a cabo en condiciones aeróbicas en shaker a 200 rpm y 30°C. La actividad de PAL fue medida espectrofotométricamente monitoreando la producción de ácido cinámico a 290 nm, mediante método modificado de Yamada et. al (1981). La mezcla de reacción contiene: 25 l de biomasa (10x), 25 mM de L- fenilalanina, 25 mM de Tris-HCl buffer (pH=8,5) y 0,005% de CPC. La reacción se llevó a cabo a 30°C por 10 minutos. Una unidad de PAL se define como la cantidad de enzima que cataliza la formación de 1 mol de ácido trans-cinámico por minuto, por ml de cultivo. La actividad específica se expresó en términos de unidades enzimáticas por mg de células secas. En los ensayos realizados se pudo observar que tanto la glucosa como la sacarosa y la fructosa lograron un vertiginoso crecimiento de la cepa, seguido por la rafinosa y la melaza. Con menores tasas de crecimiento se encuentra el etanol, glicerol, sorbitol, maltosa y celobiosa y con crecimientos muy lentos, la xilosa y la galactosa. En cuanto a la expresión de PAL, se alcanzaron mayores actividades empleando maltosa como FCE (Amax=120 mU/mg) y celobiosa (Amax=116 mU/mg), seguidos por el etanol (Amax= 99 mU/mg), sorbitol (Amax= 95 mU/mg), melaza (Amax= 80 mU/mg), glicerol (Amax= 75 mU/mg), rafinosa (Amax= 68 mU/mg), galactosa (Amax= 38 mU/mg), mientras que con sacarosa, fructosa y glucosa las actividades máximas rondaron entre 25-30 mU/mg. En el caso de la xilosa, se obtuvo una actividad PAL muy pobre (A max=10 mU/mg). En todos los casos los picos de actividad máxima se hallaron entre las 10 y 25 horas de cultivo (entrando en la fase exponencial), variando dentro de dicho período, dependiendo de la fuente de carbono. A partir de estos resultados se puede concluir que las fuentes de carbono y energías más aptas a fin de optimizar la producción de PAL resultaron ser los disacáridos de glucosa (maltosa y celobiosa), aun cuando la velocidad de crecimiento en éstos fue menor. Los alcoholes y polioles tuvieron una buena performance, logrando actividades máximas altas, con una tasa de crecimiento similar. En el caso de la melaza (que incluye en su composición principalmente estaquiosa, sacarosa y rafinosa) y la rafinosa por si misma, las actividades alcanzadas fueron buenas a una tasa de crecimiento mayor que en el caso anterior. Finalmente para la sacarosa y los monosacáridos, si bien lograron tasas de crecimiento elevadas, las actividades obtenidas fueron muy bajas, no siendo aptas para su empleo en cultivo batch. La xilosa por su parte no mostró aptitud para ser empleada como FCE, en ninguno de los aspectos requeridos. es
dcterms.extent 2 p. es
dcterms.issued 2012-05
dcterms.language Español es
dcterms.license Attribution-NonCommercial-NoDerivatives 4.0 International (BY-NC-ND 4.0) es
dcterms.subject Fenilalanina amonio liasa es
dcterms.subject Fenilcetonuria es
dcterms.subject Rhodosporidium toruloides es
dcterms.subject Fuente de carbono es
cic.version info:eu-repo/semantics/submittedVersion es
dcterms.creator.author Castañeda, María Teresita es
dcterms.creator.author Villagarcía, Hernán Gonzalo es
dcterms.creator.author Hours, Roque A. es
dcterms.creator.author Mignone, Carlos es
cic.lugarDesarrollo Centro de Investigación y Desarrollo en Fermentaciones Industriales es
dcterms.subject.materia Biotecnología Industrial es
dcterms.isPartOf.issue II Simposio Argentino de Procesos Biotecnológicos (La Plata, 2012) es
dcterms.isPartOf.series Simposio Argentino de Procesos Biotecnológicos es


Files

  • Icon

    Documento Completo 

    PDF file (324.0Kb)

  • This item appears in the following Collection(s)

    Show simple item record