4DoF Rat-SLAM with Memristive Spiking Neural Networks for UAVs Navigation System

cic.institucionOrigenCentro de Investigaciones en Física e Ingeniería
cic.isFulltextSI
cic.isPeerReviewedSI
cic.lugarDesarrolloUniversidad Nacional del Centro de la Provincia de Buenos Aires
cic.parentTypeArtículo
cic.versionPublicada
dc.date.accessioned2025-07-10T12:17:01Z
dc.date.available2025-07-10T12:17:01Z
dc.identifier.urihttps://digital.cic.gba.gob.ar/handle/11746/12514
dc.title4DoF Rat-SLAM with Memristive Spiking Neural Networks for UAVs Navigation Systemen
dc.typeArtículo
dcterms.abstractUnmanned Aerial Vehicles (UAVs) are versatile platforms with potential applications in precision agriculture, disaster management, and more. A core need across these applications is a navigation system that accurately estimates location based on environmental perception. Commercial UAVs use multiple onboard sensors whose fused data improves localization accuracy. The bioinspired Rat-Simultaneous Localization and Mapping (Rat-SLAM) system, is a promising alternative to beexplored to tackle the localization and mapping problem of UAVs. Its cognitive capabilities, semi-metric map construction, and loop closure make it attractive for localization in complex environments. This work presents an improved Rat-SLAM algorithm for UAVs, focusing on three innovations. First, Spiking Neural Networks (SNNs) are incorporated into Rat-SLAM’s core modules to emulate biological processing with greater efficiency. Second, Neuromorphic Computing models the neurons of the SNNs, assessing the feasibility of implementing SNNs on specialized hardware to reduce software processing, a key advantage for UAVs with limited onboard resources. Third, SNNs are developed based on the Memristive Leaky Integrate-and-Fire model, integratingmemristors into artificial neurons to leverage their low power and memory properties. Our approach was evaluated through trajectory simulations using the Hector Quadrotor UAV in the Gazebo environment within the Robot Operating System, yielding valuable insights and guiding future research directions.en
dcterms.creator.authorPirozzo, Bernardo
dcterms.creator.authorRoark, Geraldina
dcterms.creator.authorRuschetti, Cristian
dcterms.creator.authorVillar, Sebastián
dcterms.creator.authorDe Paula, Mariano
dcterms.creator.authorAcosta, Gerardo G.
dcterms.identifier.otherDOI: 10.70322/dav.2025.10004
dcterms.identifier.otherISSN: 2958-7689
dcterms.identifier.urlhttp://dx.doi.org/10.70322/dav.2025.10004
dcterms.isPartOf.issuevol. 2, no. 1
dcterms.isPartOf.seriesDrones and Autonomous Vehicles
dcterms.issued2025-02
dcterms.languageInglés
dcterms.licenseAttribution 4.0 International (BY 4.0)
dcterms.subjectRat-SLAMen
dcterms.subjectMemristorsen
dcterms.subjectNeuromorphic Computingen
dcterms.subjectNeuroscienceen
dcterms.subjectSpiking Neural Networksen
dcterms.subjectUnmanned Aerial Vehiclesen
dcterms.subject.materiaIngenierías y Tecnologías

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
4DoF Rat-SLAM with Memristive.pdf-PDFA.pdf
Tamaño:
2.87 MB
Formato:
Adobe Portable Document Format
Descripción:
Documento completo

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.46 KB
Formato:
Item-specific license agreed upon to submission
Descripción: