Tesis de doctorado

Efecto de los parámetros de soldadura sobre la microestructura y la resistencia al desgaste de recargues martensíticos depositados con alambres tubulares metal-cored

Resumen

Se estudiaron las características microestructurales y las propiedades tribológicas del metal de aporte puro obtenido con un alambre tubular con relleno metálico (metal-cored), por el proceso de soldadura semiautomática con protección gaseosa (MCAW). Las variables estudiadas fueron: el procedimiento de soldadura (gas de protección: Ar-2%CO2 y Ar-80%CO2 y parámetros de soldadura: bajo y alto calor aportado) y el tratamiento térmico posterior. Para poder evaluar el efecto de los mismos sobre las características tribológicas de los depósitos, se realizó un estudio sistemático de dilución, se caracterizó la microestructura mediante microscopía óptica y electrónica, análisis químicos y mediciones de dureza y por último se estudió la resistencia al desgaste con un ensayo en seco bajo un sistema de deslizamiento puro con distintas condiciones de soldadura. También se tuvieron en cuenta distintas cargas aplicadas en el ensayo de desgaste y diferentes temperaturas de tratamientos térmicos.El objetivo de este trabajo fue relacionar los datos obtenidos y encontrar los vínculos existentes entre variables de proceso, tratamientos térmicos, microestructura, propiedades de dureza, resistencia al desgaste, oxidación y fricción.En general se encontró que soldar con el mayor calor aportado y con mayor contenido de CO2 en la mezcla gaseosa de protección produjo una mayor dilución, necesitándose 3 capas como mínimo para alcanzar la composición química del consumible. Para las probetas soldadas con menor calor aportado se encontró que en la segunda capa ya se alcanzó la composición química deseada.En cuanto a la composición química se observó que las probetas soldadas con mayor contenido de CO2 en el gas de protección presentaron la menor transferencia de elementos de aleación al metal depositado, como ser Mn y Si. Esto produjo un incremento de la temperatura de inicio de la transformación martensítica y una disminución en el contenido deaustenita retenida. Este efecto no influyó significativamente sobre las propiedades del metal depositado. Se observó que para todas las probetas soldadas la microestructura estuvo formada por martensita, con una pequeña fracción de austenita retenida y carburos. La caracterización tribológica evidenció una capa de óxido superficial sobre todas las probetas ensayadas. El gas de protección y el calor aportado influyeron sobre el revenido en multipasadas y en consecuencia en la precipitación de carburos, siendo aquél mayor cuanto mayor fue el calor generado (mayor contenido de CO2 y parámetros más altos). Este revenido produjo un aumento de dureza y una reducción de la resistencia a la oxidación que en las probetas ensayadas a bajas cargas produjo una disminución de la resistencia al desgate oxidativo suave. Asimismo, las muestras tratadas térmicamente y ensayadas bajo las mismas condiciones presentaron precipitación de carburos y reducción de la resistencia al desgaste oxidativo suave.Para las probetas ensayadas a alta carga, el mecanismo de desgaste encontrado fue oxidativo severo. La resistencia del sustrato controló la resistencia al desgate. Las probetas soldadas con menor contenido de CO2 en la mezcla gaseosa y con menor calor aportado presentaron la menor dureza inicial y, por ende, la menor resistencia al desgaste. El tratamiento térmico post soldadura produjo endurecimiento secundario, lo que mejoró el comportamiento al desgaste para todas las condiciones.Los ensayos realizados bajo carga variable mostraron oxidación superficial y microfisuras debajo de la capa de óxido. El mecanismo de desgaste fue delaminación. Las probetas más duras presentaron la menor resistencia al desgaste.Los ensayos de desgaste realizados a elevadas presiones de contacto mostraron una fuerte deformación en la zona cercana a la superficie y extrusión de la superficie desgastada. La probeta tratada térmicamente que presentó mayor dureza inicial tuvo mejor resistencia al desgaste. Por último, se encontró que el tipo y el espesor del óxido formado sobre la superficie desgastada controlaron el coeficiente de fricción.

The microstructure and tribological properties of all weld metal obtained with a tubular wire filled with metals (metal-cored) using semiautomatic welding process under gas shielding (MCAW) were studied. The following welding variables were analyzed: type of shielding gas (Ar-2% CO2 and Ar-80% CO2), low and high heat input and post weld heat treatments. A systematic study of dilution was performed, the weld metal microstructure was characterized by light and electron microscopy, chemical analysis was determined and hardness was measured. Finally, to evaluate tribological characteristics of deposits, the wear resistance was studied in pure sliding, with an AMSLER machine, varying loads and under different temperatures of heat treatments. The aim of this work was to relate the data obtained so as to find the relationship among process variables, heat treatments, microstructure, hardness properties, wear resistance, oxidation and friction. In general, it was found that welding with higher heat input and higher levels of CO2 in the shielding gas mixture produced a higher dilution, requiring at least 3 layers to reach the all-weld metal chemical composition of the consumable. For welded specimens with lower heat input, in the second layer, the desired chemical composition was reached. Regarding the chemical composition, it was observed that the specimens welded with higher levels of CO2 in the shielding gas showed the lowest alloying elements transfer to the weld metal, such as Mn and Si. This produced an increase in the martensitic transformation starting temperature and a decrease in the retained austenite content. This effect did not significantly influence the properties of the weld metal. It was observed that for all the welded specimens, the microstructure consisted of martensite with a small fraction of retained austenite and carbides. The tribological characterization showed a surface oxide layer on all the specimens tested. Shielding gas and heat input influenced the multipass tempering and consequently the precipitation of carbides, being higher when increasing the generated heat (higher content of CO2 and higher parameters). This tempering resulted in increased hardness and a reduction in the resistance to oxidation which meant a decreased resistance to mild oxidative wear in the specimens tested with low loads. Also, the heat treated samples tested under the same conditions showed carbide precipitation and reduction of mild oxidative wear resistance. For the specimens tested at high load, the wear mechanism found was severe oxidative. The resistance of the substrate controlled wear resistance. The specimens welded with less CO2 in the gas mixture and lower heat input had the lowest initial hardness and therefore lower wear resistance. Post weld heat treatment caused secondary hardening, which improved the wear behaviour for all conditions. The tests performed with variable load showed surface oxidation and microcracks below the oxide layer. The wear mechanism was delamination. The hardest specimens had the lowest wear resistance. The wear tests performed at high contact pressures showed a strong deformation in the area near the surface and extrusion of the worn surface. The heat-treated specimen that showed a higher initial hardness presented better wear resistance. Finally, it was found that the type and thickness of the oxide formed on the worn surface controlled the friction coefficient.

Palabras clave
Soldadura
Col-Red
http://creativecommons.org/licenses/by-nc-nd/3.0/

Esta obra se publica con la licencia Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (BY-NC-ND 3.0)

item.page.license
Imagen en miniatura