Show simple item record

dc.date.accessioned 2017-03-29T13:28:56Z
dc.date.available 2017-03-29T13:28:56Z
dc.identifier.uri http://digital.cic.gba.gob.ar/handle/11746/5461
dc.title Geometric multigrid methods on structured triangular grids for incompressible Navier-Stokes equations at low Reynolds numbers en
dc.type Artículo es
dcterms.abstract The main purpose of this work is the efficient implementation of a multigrid algorithmfor solving Navier-Stokes problems at low Reynolds numbers in different triangular geometries. In particular, a finite element formulation of the Navier-Stokes equations, using quadratic finiteelements for the velocities and linear finite elements to approximate the pressure, is used to solvethe problem of flow in a triangular cavity, driven by the uniform motion of one of its side walls. Anappropriate multigrid method for this discretization of Navier-Stokes equations is designed, basedon a Vanka type smoother. Moreover, the data structure used allows an efficient stencil-basedimplementation of the method, which permits us to perform simulations with a large number ofunknowns with low memory consumption and a relatively low computational cost. en
dcterms.extent 12 p. es
dcterms.issued 2014-03-01
dcterms.language Inglés es
dcterms.license Attribution-NonCommercial-NoDerivatives 4.0 International (BY-NC-ND 4.0) es
dcterms.subject Multigrid methods en
dcterms.subject Navier-Stokes equations en
dcterms.subject Vanka smoother en
dcterms.subject Cavity problem en
cic.version info:eu-repo/semantics/submittedVersion es
dcterms.creator.author Gaspar, F. J. es
dcterms.creator.author Rodrigo, C. es
dcterms.creator.author Heidenreich, Elvio es
cic.lugarDesarrollo Instituto de Investigaciones en Ingeniería Industrial es
dcterms.subject.materia Ingenierías y Tecnologías es
dcterms.isPartOf.issue vol. 11 es
dcterms.isPartOf.series International Journal of Numerical Analysis & Modeling es
cic.isPeerReviewed true es
cic.isFulltext true es


Files

  • Icon

    Documento completo 

    PDF file (861.5Kb)

  • This item appears in the following Collection(s)

    Show simple item record