Diatom-driven recolonization of microbial mat-dominated siliciclastic tidal flat sediments

| |

Modern microbial mats and biofilms play a paramount role in sediment biostabilization. When sporadic storms affect tidal flats of Bahía Blanca Estuary, the underlying siliciclastic sediment is exposed by physical disruption of the mat, and in a few weeks’ lapse, a microbial community re-establishes. With the objective of studying colonization patterns and the ecological succession of microorganisms at the scale of these erosional structures, these were experimentally-made and their biological recolonization followed for 8 wk, with replication in winter and spring. Motile pennate diatoms led the initial colonization following two distinct patterns: a dominance by Cylindrotheca closterium in winter; and by naviculoid and nitzschioid diatoms in spring. During the first 7 d, cell numbers increased 2-17-fold. Cell densities further increased exhibiting sigmoidal community growth, reaching 2.9-8.9 × 106 cells cm-3 maxima around d-30; centric diatoms maintained low densities throughout. In the 56 d after removal of the original mat, filamentous cyanobacteria that dominates mature mats did not establish a significant biomass, leading to the rejection of the hypothesis that cyanobacteria would drive the colonization. The observed dominance of pennate diatoms is attributed to extrinsic factors determined by tidal flooding; and intrinsic ones, e.g. motility, nutrient affinity, and high growth rate.

Palabras clave
biological sediment colonization
ecological succession
filamentous cyanobacteria
microbial mats

Esta obra se publica con la licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (BY-NC-ND 4.0)
Imagen en miniatura