Evaluating Information Extraction Approaches in the Construction of a Real Estate Observatory
cic.institucionOrigen | Laboratorio de Investigación y Formación en Informática Avanzada (LIFIA) | |
cic.isFulltext | SI | |
cic.isPeerReviewed | SI | |
cic.lugarDesarrollo | Laboratorio de Investigación y Formación en Informática Avanzada (LIFIA) | |
cic.parentType | Objeto de conferencia | |
cic.version | Aceptada | |
dc.date.accessioned | 2025-09-05T12:12:42Z | |
dc.date.available | 2025-09-05T12:12:42Z | |
dc.identifier.uri | https://digital.cic.gba.gob.ar/handle/11746/12550 | |
dc.title | Evaluating Information Extraction Approaches in the Construction of a Real Estate Observatory | en |
dc.type | Documento de conferencia | |
dcterms.abstract | A real estate observatory plays a significant role in the aggregation and analysis of real estate market data. The information that lies in real estate advertisements can be leveraged to populate such an observatory. However, this data can present itself in both a structured and an unstructured manner. Unstructured data represents a problem to automatically process and extract information since it lacks a predefined structure. Thus, there’s a need for techniques to give structure to unstructured data. Information Extraction (IE) is the process of structuring data from unstructured data. Natural Language Processing techniques enable machines to understand texts, making them particularly significant in the context of IE. This work evaluates both rule-based and machine-learning based IE approaches to extract features from real estate descriptions within advertisements. Those features are relevant in the context of real estate observatory construction. The performance of each approach is measured using precision, recall and f1-score metrics. | en |
dcterms.creator.author | Tanevitch, Luciana | |
dcterms.creator.author | Antonelli, Leandro | |
dcterms.creator.author | Torres, Diego | |
dcterms.identifier.other | ISBN: 978-3-031-91690-8 | |
dcterms.identifier.other | DOI: 10.1007/978-3-031-91690-8_6 | |
dcterms.isPartOf.item | Collaboration in Knowledge Discovery and Decision Making. DECISIONING 2024 | |
dcterms.isPartOf.series | Decisioning 2024 (Colombia, 4 al 6 de junio de 2024) | |
dcterms.issued | 2025 | |
dcterms.language | Inglés | |
dcterms.license | Attribution-NonCommercial-NoDerivatives 4.0 International (BY-NC-ND 4.0) | |
dcterms.subject | Information Extraction | en |
dcterms.subject | Natural Language Processing | en |
dcterms.subject | Real Estate Observatory | en |
dcterms.subject.materia | Ciencias de la Computación e Información |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Evaluating Information Extraction.pdf-PDFA.pdf
- Tamaño:
- 275.21 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Documento completo
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.46 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: