Object Recognition Models for Indoor Users’ Location

cic.institucionOrigenLaboratorio de Investigación y Formación en Informática Avanzada (LIFIA)
cic.isFulltextSI
cic.isPeerReviewedSI
cic.lugarDesarrolloLaboratorio de Investigación y Formación en Informática Avanzada (LIFIA)
cic.parentTypeObjeto de conferencia
cic.versionAceptada
dc.date.accessioned2024-10-29T12:13:42Z
dc.date.available2024-10-29T12:13:42Z
dc.identifier.urihttps://digital.cic.gba.gob.ar/handle/11746/12347
dc.titleObject Recognition Models for Indoor Users’ Locationen
dc.typeDocumento de conferencia
dcterms.abstractDespite technological advances, precise positioning within buildings remains a considerable challenge. In this context, the present paper explores the research of user location in indoor spaces, embracing object recognition models executed directly on mobile devices. Our proposal is based on designing a generic solution architecture adaptable to any physical environment, enabling the definition and usage of relevant generic objects within the environment to determine the users' current location. This proposal uses Computer Vision, employing object recognition models for positioning. This kind of indoor positioning benefits from the growth of smartphones' functionalities and capabilities, thus avoiding the need to install additional infrastructures in physical spaces. A specific implementation of this architecture for React Native is presented, using the TensorFlow platform to support object recognition. This implementation allows demonstrating how this positioning works through concrete use cases. In addition, some lessons learned are discussed, which we hope will contribute to this topic.en
dcterms.creator.authorBorrelli, Franco Martín
dcterms.creator.authorChalliol, Cecilia
dcterms.identifier.otherDOI: 10.1007/978-3-031-70807-7_3
dcterms.identifier.otherISBN: 978-3-031-70807-7
dcterms.isPartOf.itemCloud Computing, Big Data and Emerging Topics. JCC-BD&ET 2024. Communications in Computer and Information Science, vol 2189
dcterms.isPartOf.series12 Jornadas de Cloud Computing, Big Data & Emerging Topics (La Plata, 25 al 27 de junio de 2024)
dcterms.issued2024
dcterms.languageInglés
dcterms.licenseAttribution-NonCommercial-ShareAlike 4.0 International (BY-NC-SA 4.0)
dcterms.subjectObject Recognition Modelsen
dcterms.subjectIndoor Locationen
dcterms.subjectUser Locationen
dcterms.subjectLightweight Networksen
dcterms.subject.materiaCiencias de la Computación e Información

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Object Recognition Models.pdf-PDFA.pdf
Tamaño:
719.38 KB
Formato:
Adobe Portable Document Format
Descripción:
Documento completo

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.46 KB
Formato:
Item-specific license agreed upon to submission
Descripción: