The role of the proteinase inhibitor ovorubin in apple snail eggs resembles plant embryo defense against predation

cic.isFulltext true es
cic.isPeerReviewed true es
cic.lugarDesarrollo Universidad Nacional de La Plata es
cic.version info:eu-repo/semantics/submittedVersion es 2016-08-19T17:10:30Z 2016-08-19T17:10:30Z
dc.title The role of the proteinase inhibitor ovorubin in apple snail eggs resembles plant embryo defense against predation en
dc.type Artículo es
dcterms.abstract Background: Fieldwork has thoroughly established that most eggs are intensely predated. Among the few exceptions are the aerial egg clutches from the aquatic snail Pomacea canaliculata which have virtually no predators. Its defenses are advertised by the pigmented ovorubin perivitellin providing a conspicuous reddish coloration. The nature of the defense however, was not clear, except for a screening for defenses that identified a neurotoxic perivitellin with lethal effect on rodents. Ovorubin is a proteinase inhibitor (PI) whose role to protect against pathogens was taken for granted, according to the prevailing assumption. Through biochemical, biophysical and feeding experiments we studied the proteinase inhibitor function of ovorubin in egg defenses. Methodology/Principal Findings: Mass spectrometry sequencing indicated ovorubin belongs to the Kunitz-type serine proteinase inhibitor family. It specifically binds trypsin as determined by small angle X-ray scattering (SAXS) and crosslinking studies but, in contrast to the classical assumption, it does not prevent bacterial growth. Ovorubin was found extremely resistant to in vitro gastrointestinal proteolysis. Moreover feeding studies showed that ovorubin ingestion diminishes growth rate in rats indicating that this highly stable PI is capable of surviving passage through the gastrointestinal tract in a biologically active form. Conclusions: To our knowledge, this is the first direct evidence of the interaction of an egg PI with a digestive protease of potential predators, limiting predator's ability to digest egg nutrients. This role has not been reported in the animal kingdom but it is similar to plant defenses against herbivory. Further, this would be the only defense model with no tradeoffs between conspicuousness and noxiousness by encoding into the same molecule both the aposematic warning signal and an antinutritive/antidigestive defense. These defenses, combined with a neurotoxin and probably unpalatable factors would explain the near absence of predators, opening new perspectives in the study of the evolution and ecology of egg defensive strategies. en Ituarte, Santiago es Dreon, Marcos Sebastián es Heras, Horacio es
dcterms.extent 9 p. es
dcterms.identifier.other 1932-6203 es
dcterms.identifier.url Registro completo es
dcterms.isPartOf.issue vol. 5, no. 12 es
dcterms.isPartOf.series PLoS ONE es
dcterms.issued 2010-01-01
dcterms.language Español es
dcterms.license Attribution 4.0 International (BY 4.0) es
dcterms.subject predadores es
dcterms.subject embriones es
dcterms.subject nutrientes es
dcterms.subject Caracoles es
dcterms.subject Inhibidores de Serina Proteinasa es
dcterms.subject.materia Ciencias Naturales y Exactas es
dcterms.subject.materia Bioquímica y Biología Molecular es
Paquete original
Mostrando 1 - 1 de 1
Imagen en miniatura
dreon - role.pdf-PDFA.pdf
699.72 KB
Adobe Portable Document Format
Documento completo