Comparing and evaluating tools for sentiment analysis
cic.institucionOrigen | Laboratorio de Investigación y Formación en Informática Avanzada (LIFIA) | |
cic.isFulltext | SI | |
cic.isPeerReviewed | SI | |
cic.lugarDesarrollo | Laboratorio de Investigación y Formación en Informática Avanzada (LIFIA) | |
cic.parentType | Objeto de conferencia | |
cic.version | Aceptada | |
dc.date.accessioned | 2023-11-13T13:02:59Z | |
dc.date.available | 2023-11-13T13:02:59Z | |
dc.identifier.uri | https://digital.cic.gba.gob.ar/handle/11746/12111 | |
dc.title | Comparing and evaluating tools for sentiment analysis | en |
dc.type | Documento de conferencia | |
dcterms.abstract | Sentiment analysis is a process of identifying and extracting personal information from textual data. It has become essential for businesses and organizations to understand customers' opinions, emotions, and attitudes toward their products, services, or brands. While creating a custom sentiment analysis model can provide tailored results for specific datasets, it can also be time-consuming, resource-intensive, and require a high level of expertise in machine learning. Some tools offer a faster and more accessible alternative to users without a background in machine learning to create a custom model. However, researchers and practitioners usually do not know how to choose the best tool for each domain. This paper compares and evaluates some sentiment analysis tools' differences, considering how they were built and how suitable they are for analyzing sentiments on some specific topics. In particular, this paper focuses on four popular sentiment analysis tools for Python: TextBlob, Vader, Flair, and HuggingFace Transformers. | en |
dcterms.creator.author | Borrelli, Franco M. | |
dcterms.creator.author | Challiol, Cecilia | |
dcterms.extent | 36-40 | |
dcterms.identifier.other | ISBN: 978-950-34-2271-7 | |
dcterms.identifier.other | hdl: 10915/155432 | |
dcterms.isPartOf.series | XI Jornadas de Cloud Computing, Big Data & Emerging Topics (La Plata, 27 al 29 de junio de 2023) | |
dcterms.issued | 2023 | |
dcterms.language | Inglés | |
dcterms.license | Attribution-NonCommercial-ShareAlike 4.0 International (BY-NC-SA 4.0) | |
dcterms.subject | Sentiment Analysis | en |
dcterms.subject | TextBlob | en |
dcterms.subject | Vader | en |
dcterms.subject | Flair | en |
dcterms.subject | HuggingFace Transformers | en |
dcterms.subject | Ruled-based approach | en |
dcterms.subject | Machine Learning | en |
dcterms.subject.materia | Ciencias de la Computación e Información |
Archivos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.46 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: