Comparing and evaluating tools for sentiment analysis

cic.institucionOrigenLaboratorio de Investigación y Formación en Informática Avanzada (LIFIA)
cic.isFulltextSI
cic.isPeerReviewedSI
cic.lugarDesarrolloLaboratorio de Investigación y Formación en Informática Avanzada (LIFIA)
cic.parentTypeObjeto de conferencia
cic.versionAceptada
dc.date.accessioned2023-11-13T13:02:59Z
dc.date.available2023-11-13T13:02:59Z
dc.identifier.urihttps://digital.cic.gba.gob.ar/handle/11746/12111
dc.titleComparing and evaluating tools for sentiment analysisen
dc.typeDocumento de conferencia
dcterms.abstractSentiment analysis is a process of identifying and extracting personal information from textual data. It has become essential for businesses and organizations to understand customers' opinions, emotions, and attitudes toward their products, services, or brands. While creating a custom sentiment analysis model can provide tailored results for specific datasets, it can also be time-consuming, resource-intensive, and require a high level of expertise in machine learning. Some tools offer a faster and more accessible alternative to users without a background in machine learning to create a custom model. However, researchers and practitioners usually do not know how to choose the best tool for each domain. This paper compares and evaluates some sentiment analysis tools' differences, considering how they were built and how suitable they are for analyzing sentiments on some specific topics. In particular, this paper focuses on four popular sentiment analysis tools for Python: TextBlob, Vader, Flair, and HuggingFace Transformers.en
dcterms.creator.authorBorrelli, Franco M.
dcterms.creator.authorChalliol, Cecilia
dcterms.extent36-40
dcterms.identifier.otherISBN: 978-950-34-2271-7
dcterms.identifier.otherhdl: 10915/155432
dcterms.isPartOf.seriesXI Jornadas de Cloud Computing, Big Data & Emerging Topics (La Plata, 27 al 29 de junio de 2023)
dcterms.issued2023
dcterms.languageInglés
dcterms.licenseAttribution-NonCommercial-ShareAlike 4.0 International (BY-NC-SA 4.0)
dcterms.subjectSentiment Analysisen
dcterms.subjectTextBloben
dcterms.subjectVaderen
dcterms.subjectFlairen
dcterms.subjectHuggingFace Transformersen
dcterms.subjectRuled-based approachen
dcterms.subjectMachine Learningen
dcterms.subject.materiaCiencias de la Computación e Información

Archivos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.46 KB
Formato:
Item-specific license agreed upon to submission
Descripción: