Chlorhexidine delivery system from titanium/polybenzyl acrylate coating: evaluation of cytotoxicity and early bacterial adhesion

cic.isFulltexttruees
cic.isPeerReviewedtruees
cic.lugarDesarrolloUniversidad Nacional de La Plata es
dc.date.accessioned2016-10-28T12:35:02Z
dc.date.available2016-10-28T12:35:02Z
dc.identifier.urihttps://digital.cic.gba.gob.ar/handle/11746/4523
dc.titleChlorhexidine delivery system from titanium/polybenzyl acrylate coating: evaluation of cytotoxicity and early bacterial adhesiones
dc.typeArtículoes
dcterms.abstract<em>Objectives:</em> The formation of biofilms on titanium dental implants is one of the main causes of failure of these devices. Streptococci are considered early colonizers that alter local environment favouring growing conditions for other colonizers. Chlorhexidine (CHX) is so far the most effective antimicrobial treatment against a wide variety of Gram-positive and Gram-negative organisms as well as fungi. This study was designed to develop a CHX delivery system appropriate for healing caps and abutments, with suitable drug release rate, effective as antimicrobial agent, and free of cytotoxic effects. <em>Methods: </em>Polybenzyl acrylate (PBA) coatings with and without CHX (Ti/PBA and Ti/PBA-CHX, respectively) and different drug loads (0.35, 0.70, and 1.40%, w/w) were assayed. The cytotoxic effect of CHX released from the different substrates on UMR106 cells was tested by alkaline phosphatase specific activity (ALP), and microscopic evaluation of the cells. Noncytotoxic drug load (0.35%, w/w) was selected to evaluate the antimicrobial effectiveness of the system using a microbial consortium of Streptococcus species. <em>Results:</em> The kinetic profile of CHX delivered by Ti/PBA-CHX showed an initial fast release rate followed by a monotonic increase of delivered mass over 48 h. The number of attached bacteria decreased in the following order: Ti > Ti/PBA > Ti/PBA-0.35. <em>Conclusions: </em>PBA-0.35 coating is effective to inhibit the adhesion of early colonizers on Ti without any cytotoxic effect on UMR-106 cells.en
dcterms.creator.authorCortizo, María Ceciliaes
dcterms.creator.authorOberti, Tamara G.es
dcterms.creator.authorCortizo, María Susanaes
dcterms.creator.authorCortizo, Ana Maríaes
dcterms.creator.authorFernández Lorenzo de Mele, Mónica A.es
dcterms.extent9 p.es
dcterms.isPartOf.issuenº 40es
dcterms.isPartOf.seriesJournal of Dentistryes
dcterms.issued2012
dcterms.languageIngléses
dcterms.licenseAttribution 4.0 International (BY 4.0)es
dcterms.subjectTitanium Dental implanten
dcterms.subjectAcrylate Chlorhexidineen
dcterms.subjectBiocompatibility testingen
dcterms.subjectBacterial adhesionen
dcterms.subject.materiaCiencias Químicases

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
073 - Cortizo MC-J Dentistry2012 ARTICULO.pdf-PDFA.pdf
Tamaño:
1.11 MB
Formato:
Adobe Portable Document Format
Descripción:
Documento completo