Optimizing a Gamified Design Through Reinforcement Learning - A Case Study in Stack Overflow
cic.institucionOrigen | Laboratorio de Investigación y Formación en Informática Avanzada (LIFIA) | es |
cic.isFulltext | true | es |
cic.isPeerReviewed | true | es |
cic.lugarDesarrollo | Laboratorio de Investigación y Formación en Informática Avanzada | es |
dc.date.accessioned | 2022-02-09T12:57:04Z | |
dc.date.available | 2022-02-09T12:57:04Z | |
dc.identifier.uri | https://digital.cic.gba.gob.ar/handle/11746/11414 | |
dc.title | Optimizing a Gamified Design Through Reinforcement Learning - A Case Study in Stack Overflow | en |
dc.type | Parte de libro | es |
dcterms.abstract | Gamification can be used to foster participation in knowledge sharing communities. While designing and assessing the potential impact of a gamification design in such a context, it is important to avoid work disruption and negative side effects. A gamification optimization approach implemented with deep reinforcement learning based on play-testing approaches helps prevent possible disruptive configuration and has the capability to adapt to different communities or gamification targets. In this research, a case of study for this approach is presented running over the Stack Overflow Q&A community. The approach detects the best configuration for a Contribution, Reinforcement, and Dissemination (CRD) gamification strategy using Stack Overflow historical data in a year. The results show that the approach funds proper gamification strategy configurations. Moreover, those configurations are robust enough to be applied along the time unseen periods. | en |
dcterms.creator.author | Martin, Jonathan | es |
dcterms.creator.author | Torres, Diego | es |
dcterms.creator.author | Fernández, Alejandro | es |
dcterms.identifier.isbn | ISBN:978-3-030-84825-5 | es |
dcterms.identifier.other | doi:10.1007/978-3-030-84825-5_7 | es |
dcterms.isPartOf.item | Cloud Computing, Big Data & Emerging Topics. JCC-BD&ET 2021 | es |
dcterms.isPartOf.series | 9th Conference, JCC-BD&ET (La Plata, 22 al 25 de junio de 2021) | es |
dcterms.issued | 2021 | |
dcterms.language | Inglés | es |
dcterms.license | Attribution-NonCommercial-ShareAlike 4.0 International (BY-NC-SA 4.0) | es |
dcterms.subject | Deep reinforcement learning | en |
dcterms.subject | Gamification | en |
dcterms.subject | Knowledge building community | en |
dcterms.subject | Optimization | en |
dcterms.subject | Stack Overflow | en |
dcterms.subject.materia | Ciencias de la Computación e Información | es |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Optimizing a Gamified Design Through.pdf-PDFA.pdf
- Tamaño:
- 349.98 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Documento completo