Evaluation of Causal Sentences in Automated Summaries

cic.institucionOrigenInstituto de Investigación en Informáticaes
cic.isFulltexttruees
cic.isPeerReviewedtruees
cic.lugarDesarrolloInstituto de Investigación en Informáticaes
cic.versioninfo:eu-repo/semantics/submittedVersiones
dc.date.accessioned2018-11-15T13:21:56Z
dc.date.available2018-11-15T13:21:56Z
dc.identifier.urihttps://digital.cic.gba.gob.ar/handle/11746/8593
dc.titleEvaluation of Causal Sentences in Automated Summariesen
dc.typeDocumento de conferenciaes
dcterms.abstractThis paper presents an experiment to show the importance of causal sentences in summaries. Presumably, causal sentences hold relevant information and thus summaries should contain them. We perform an experiment to refute or validate this hypothesis. We have selected 28 medical documents to extract and analyze causal and conditional sentences from medical texts. Once retrieved, classic metrics are used to determine the relevance of the causal content among all the sentences in the document and, so, to evaluate if they are important enough to make a better summary. Finally, a comparison table to explore the results is showed and some conclusions are outlined.en
dcterms.creator.authorPuente Águeda, Cristinaes
dcterms.creator.authorVilla Monte, Augustoes
dcterms.creator.authorLanzarini, Laura Cristinaes
dcterms.creator.authorSobrino Cerdeiriña, Alejandroes
dcterms.creator.authorOlivas Varela, José Ángeles
dcterms.identifier.otherhttps://repositorio.comillas.edu/xmlui/handle/11531/22683es
dcterms.identifier.otherDOI:10.1109/FUZZ-IEEE.2017.8015666es
dcterms.identifier.urlRecurso Completoes
dcterms.isPartOf.issueIEEE International Conference on Fuzzy Systems FUZZ-IEEE (Nápoles, 2017)es
dcterms.issued2017
dcterms.languageIngléses
dcterms.licenseAttribution-NonCommercial-ShareAlike 4.0 International (BY-NC-SA 4.0)es
dcterms.subjectcausalityen
dcterms.subjectcausal sentencesen
dcterms.subjectautomatic summariesen
dcterms.subjectsentence scoring metricsen
dcterms.subjectSoft Computingen
dcterms.subject.materiaIngenierías y Tecnologíases

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Lanzarini - Evaluation of Causal Sentences in automated summaries V10.pdf-PDFA.pdf
Tamaño:
1012.86 KB
Formato:
Adobe Portable Document Format
Descripción:
Documento Completo