Simplifying credit scoring rules using LVQ + PSO

cic.isFulltexttruees
cic.isPeerReviewedtruees
cic.lugarDesarrolloInstituto de Investigación en Informáticaes
cic.versioninfo:eu-repo/semantics/submittedVersiones
dc.date.accessioned2018-01-10T14:41:49Z
dc.date.available2018-01-10T14:41:49Z
dc.identifier.urihttps://digital.cic.gba.gob.ar/handle/11746/6602
dc.titleSimplifying credit scoring rules using LVQ + PSOes
dc.typeArtículoes
dcterms.abstractOne of the key elements in the banking industry rely on the appropriate selection of customers. In order to manage credit risk, banks dedicate special efforts in order to classify customers according to their risk. The usual decision making process consists in gathering personal and financial information about the borrower. Processing this information can be time consuming, and presents some difficulties due to the heterogeneous structure of data. We offer in this paper an alternative method that is able to classify customers’ profiles from numerical and nominal attributes. The key feature of our method, called LVQ+PSO, is the finding of a reduced set of classifying rules. This is possible, due to the combination of a competitive neural network with an optimization technique. These rules constitute a predictive model for credit risk approval. The reduced quantity of rules makes this method not only useful for credit officers aiming to make quick decisions about granting a credit, but also could act as borrower’s self selection. Our method was applied to an actual database of a credit consumer financial institution in Ecuador. We obtain very satisfactory results. Future research lines are exposed.es
dcterms.creator.authorLanzarini, Laura Cristinaes
dcterms.creator.authorVilla Monte, Augustoes
dcterms.creator.authorBariviera, Aurelio F.es
dcterms.creator.authorSantana, Jimboes
dcterms.extent10 p.es
dcterms.identifier.otherdoi. 10.1108/K-06-2016-0158es
dcterms.isPartOf.issuevol. 46, no. 1es
dcterms.isPartOf.seriesKyberneteses
dcterms.issued2017
dcterms.languageIngléses
dcterms.licenseAttribution 4.0 International (BY 4.0)es
dcterms.subjectclassificationen
dcterms.subjectcredit risken
dcterms.subjectparticle swarm optimizationen
dcterms.subjectlearning vector quantizationen
dcterms.subject.materiaIngenierías y Tecnologíases

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Lanzarini - Simplifying credit scoring rules using LVQ+ PSO PREPRINT.pdf-PDFA.pdf
Tamaño:
173.18 KB
Formato:
Adobe Portable Document Format
Descripción:
Preprint (10 p.)
Cargando...
Miniatura
Nombre:
Lanzarini - Simplifying credit scoring rules using LVQ + PSO VERSION DEL EDITOR.pdf-PDFA.pdf
Tamaño:
150.33 KB
Formato:
Adobe Portable Document Format
Descripción:
Documento Completo