Engaging end-user driven recommender systems: personalization through web augmentation

cic.institucionOrigenLaboratorio de Investigación y Formación en Informática Avanzada (LIFIA)es
cic.isFulltexttruees
cic.isPeerReviewedtruees
cic.lugarDesarrolloLaboratorio de Investigación y Formación en Informática Avanzadaes
cic.versioninfo:eu-repo/semantics/publishedVersiones
dc.date.accessioned2021-10-22T15:44:34Z
dc.date.available2021-10-22T15:44:34Z
dc.identifier.urihttps://digital.cic.gba.gob.ar/handle/11746/11345
dc.titleEngaging end-user driven recommender systems: personalization through web augmentationen
dc.typeArtículoes
dcterms.abstractIn the past decades recommender systems have become a powerful tool to improve personalization on the Web. Yet, many popular websites lack such functionality, its implementation usually requires certain technical skills, and, above all, its introduction is beyond the scope and control of end-users. To alleviate these problems, this paper presents a novel tool to empower end-users without programming skills, without any involvement of website providers, to embed personalized recommendations of items into arbitrary websites on client-side. For this we have developed a generic meta-model to capture recommender system configuration parameters in general as well as in a web augmentation context. Thereupon, we have implemented a wizard in the form of an easy-to-use browser plugin, allowing the generation of so-called user scripts, which are executed in the browser to engage collaborative filtering functionality from a provided external REST service. We discuss functionality and limitations of the approach, and in a study with end-users we assess the usability and show its suitability for combining recommender systems with web augmentation techniques, aiming to empower end-users to implement controllable recommender applications for a more personalized browsing experience.en
dcterms.creator.authorWischenbart, Martínes
dcterms.creator.authorFirmenich, Sergioes
dcterms.creator.authorRossi, Gustavo Héctores
dcterms.creator.authorBosetti, Gabriela Alejandraes
dcterms.creator.authorKapsammer, Elisabethes
dcterms.extent:6785–6809es
dcterms.identifier.otherdoi:10.1007/s11042-020-09803-8es
dcterms.isPartOf.issuevol. 80es
dcterms.isPartOf.seriesMultimedia Tools and Applicationses
dcterms.issued2021
dcterms.languageIngléses
dcterms.licenseAttribution 4.0 International (BY 4.0)es
dcterms.subjectWeb augmentationen
dcterms.subjectVisual programmingen
dcterms.subjectClient-side personalizationen
dcterms.subjectEnd-user programming ·en
dcterms.subjectEnd-user developmenten
dcterms.subjectControllability of recommender systemsen
dcterms.subjectBrowser-side trans-codingen
dcterms.subject.materiaCiencias de la Computación e Informaciónes

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Engaging end-user driven recommender systems.pdf-PDFA.pdf
Tamaño:
4.55 MB
Formato:
Adobe Portable Document Format
Descripción:
Documento completo