Resumen

Caracterizar las arquitecturas multiprocesador distribuidas enfocadas especialmente a cluster y cloud computing, con énfasis en las que utilizan procesadores de múltiples núcleos (multicores, GPUs y Xeon Phi), con el objetivo de modelizarlas, estudiar su escalabilidad, analizar y predecir performance de aplicaciones paralelas, estudiar el consumo energético y su impacto en la perfomance así como desarrollar esquemas para detección y tolerancia a fallas en las mismas.\nProfundizar el estudio de arquitecturas basadas en GPUs y su comparación con clusters de multicores, así como el empleo combinado de GPUs y multicores en computadoras de alta perfomance.\nIniciar investigación experimental con arquitecturas paralelas basadas en FPGAs. En particular estudiar perfomance en Clusters “híbridos”.\nAnalizar y desarrollar software de base para clusters, tratando de optimizar el rendimiento.\nInvestigar arquitecturas multicore asimétricas, desarrollar algoritmos de planificación en el software de sistema operativo para permitir la optimización del rendimiento y consumo energético en aplicaciones de propósito general.\nEstudiar clases de aplicaciones inteligentes en tiempo real, en particular el trabajo colaborativo de robots conectados a un cloud.\nEs de hacer notar que este proyecto se coordina con otros proyectos en curso en el III-LIDI, relacionados con Algoritmos Paralelos, Sistemas Distribuidos y Sistemas de Tiempo Real.

Palabras clave
multicore
cloud robotics
Parallel
Scheduling
Fault tolerance
http://creativecommons.org/licenses/by/4.0/

Esta obra se publica con la licencia Creative Commons Attribution 4.0 International (BY 4.0)

item.page.license
Cargando...
Miniatura