A scalable offline AI-based solution to assist the diseases and plague detection in agriculture

cic.institucionOrigenLaboratorio de Investigación y Formación en Informática Avanzada (LIFIA)
cic.isFulltextSI
cic.isPeerReviewedtrue
cic.lugarDesarrolloLaboratorio de Investigación y Formación en Informática Avanzada (LIFIA)
cic.parentTypeArtículo
cic.versionPublicada
dc.date.accessioned2023-06-26T14:16:06Z
dc.date.available2023-06-26T14:16:06Z
dc.identifier.urihttps://digital.cic.gba.gob.ar/handle/11746/11958
dc.titleA scalable offline AI-based solution to assist the diseases and plague detection in agricultureen
dc.typeArtículo
dcterms.abstractEarly detection of diseases and pests is a key factor in eradicating or minimising the damage that these may cause. In this work, a comprehensive solution is presented that is based on the composition of existing cloud solutions and mobile tools to detect in-situ issues. The platform presented was used for the detection of powdery mildew and Cladosporium diseases in tomatoes. The results of using the approach to carry out this task were more than satisfactory since it managed to correctly detect the symptoms, having mAP of 0.41 in at least some of these symptoms. We analysed the performance of our dataset, on the one hand, and the combination of PlantDoc dataset, on the other hand. This shows that the platform can be used in the agriculture sector, as an additional tool for detecting diseases and pests in order to combat the problem and reduce its consequences.en
dcterms.creator.authorUrbieta, Matías
dcterms.creator.authorUrbieta, Martín
dcterms.creator.authorPereyra, Mauro
dcterms.creator.authorLaborde, Tomás
dcterms.creator.authorVillarreal, Guillermo
dcterms.creator.authorDel Pino, Mariana
dcterms.identifier.otherDOI:10.1080/12460125.2023.2226381
dcterms.isPartOf.seriesJournal of Decision Systems
dcterms.issued2023-06-22
dcterms.languageInglés
dcterms.licenseAttribution 4.0 International (BY 4.0)
dcterms.publisherTaylor & Francis Group
dcterms.subjectAgricultureen
dcterms.subjectClouden
dcterms.subjectMachine learningen
dcterms.subjectMobileen
dcterms.subjecttomatoen
dcterms.subjectpowder moulden
dcterms.subjectcladosporiumen
dcterms.subject.materiaCiencias de la Computación e Información

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Documento completo
Tamaño:
4.39 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.46 KB
Formato:
Item-specific license agreed upon to submission
Descripción: